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1 Vector Spaces

Definition 1. Let K =R or K= C. Then a set V is called K-vector space
with (operators) +:V xV =V and - : V x K — V if the following holds



a) (V,+) is a commutative group. E.g. this means:
(v+0=v, (v+tw)+g=v+(w+g), vtw=w+v, v+ (-v)=0).

b) i) (a+b)-A=a-A+b-X foralla,beV, leK
i) a-(AN+p)=a-A+a-p forallaeV, pAeK
iii) a-(Ap)=(a-X)-p  foralaeV, pIreK
w)a-1=a forallaeV

Example 1.

a) Example in three dimensions: K*

o 10

3 |-2= 6

2 4
5 1 6
S|+ 2 ]=125
2 4 6

b) Let A, B two sets (not empty)
F(A,B) :={f:A— B |fis a function}.
Then F(A,R) is a vector space with operators

(f+9)(x) = f(x)+g(),
(f-N(@) = fl@)-A

for every f,g € F(A,R).

c) Let Q C R™ be an open subset. Then Cgr(2) = {f : Q@ — R| fis continuous}
is a subspace of vector space F (€2, R).

d) Let Rk([a,b]) be the set of Riemann integrable functions
Rx(la,b]) € F(la, b], K).

2



2 Normed Vector Spaces

Definition 2. Let V be a K vector space. A mapping p: V — [0, 00] is called
semi-norm if the following holds:

a) p(Azx) = |A|p(z) VieK,zeV,
b) p(z+vy) <plx)+ply) Yr,y €V (triangle inequality).

p is called norm if p(z) =0 = x = 0.
A wector space V' with norm || - || is called normed vector space.

Usually we write
|- || for norms and

|| for semi-norms.
Example 2.

a) The Euclidian norm on R™ is defined by

b) Let 2 C R™ be a closed and bounded subset (e.g. Q = [a,b]). The
maximum norm on Cg(€2) is defined by

1 £ljoo := max|f(z)|  for f & Cr(62).

Proof: || - || is @ norm on Cg(2) . Since Q closed and bounded, we
get max,cq |f(z)] € [0, 00] by elementary analysis. Furthermore, there
exists a xg such that max,cq |f(x)| = |f(x¢)|. This implies that:

AL flloo = [ALf(zo)l = [Af(20)]
< maxpea|Af(2)] = [|Af o

Assume that A # 0. Then, we get

S e < [15A flloo = 1 flloc
[Aflloo j A1 flloo < 1Al
A flloe = (AT oo
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The triangle inequality follows by

1+ 9llos | (z0) + g(wo)| < | (wo)| + lg (o)
maxyeq|f ()| + maxeealg(2)]
[ f1lso + Nlgloc-

At least, let us prove positive definiteness. Assume || f||oc = 0. Then,

IA Il

maxgeo|f(z)|=0 = |f(z)] = 0 Ve
= f(z) = 0 Vel

Therefore, f is the zero-element in Cg(2). O
Example 3. Take R([a,b]). If f is Riemann-integrable, then

b —a " —a
/Gf(x)d:v ::nh_{gobn ;f(cwr(i—%)bn )

converges.

(b-a)/n

Let us define the space
R*([a,0]) = {f : [a,b] = R | [f|* € R([a,}])}

and the semi-norm:
b
oz =] [ 1)

This semi-norm can be obtained by the limit of the Euclidian norm

| (@i)ier




Let f € R*([a,b]) be Riemann-integrable. Then, we get

b
fBoguny = [ @)Pda

= 1imb_az f(a+(i—1)b_a)2
nseo M L 27 n
2
S T (e (f<a+(¢—1)b_“)>
n—o0 n n i=1,...n || pn

But |f] (44 is semi-norm! For example, consider the function:

1 ify = e
f(flf) - { 0 else 2 = |f‘L([a,b}) = 0.

2.1 Quotient Construction
On R?([a, b]) we define the relation
f =g < ’f — g|L2([a,b]) =0.

The equivalence classes of R?([a, b]) with respect to = define a new im-
portant normed vector space:

R¥((a,b)) = R*([a,b])/ =
= {in={seR¥@t) | g=r} | feR:(at)}.

Lemma 1. R*([a,b]) is a vector space with operators:

lg] + [w] = [g+w] Vg],[w] € R*([a,b]) and
lg]- X = [g\] VAER, Vg € R*([a,b]).
Iglllzz == |g|z2 is a norm on R*([a,b]).

Proof: Let us show that the operation + is well defined. Assume that

[91] = [ga], [wi] = [w].



Then, we get [g1 + wi] = [g2 + wo], since

91 +w1] = [go +wa] <= [(g1 +w1) — (g2 +w2)|2 =0
— (91— 92) + (w1 —wy)[2 =0
= (g1 — g2) + (w1 —w2)|r2 < |g1 — 92|12 + |w1 — wal2 = 0.

Analogously, it can be proved that - is well defined. To prove the axioms of a
vector space and axioms of a semi-norm is left to the reader. By construction,
I[g]llz2 is a norm on L3([a, b]).

O

Instead of [f], we often just write f. Then, we can denote the space
R*([a, b]) by

Ra)= {1206 =7 | [ o< oo}

with norm

b
11|z = (/ | (2)]dx) 2.

2.2 Topology of a Normed Vector Space

Definition 3. “Topology”. Let A be a set. A collection U of subsets of A 1is
called topology on A, if the following conditions hold:

i) e U AeU
ii) O, PelU=0NPeclU
i) Let I be a subset of U. Then |Jo; 0 € U.
The sets O € U are called open sets of the topology.
Example 4. In R, we get

Ja,b] = {z €Rla<z<b} (open interval)
[a,b] = {z€Rla<z<b} (closed interval).

a and b are the boundary points of these intervals.



Definition 4. Let V|| - || be a normed vector space. Then, a set O C V is
called an open set, if

VeeO Fe>0:U(x)C O

where

Us(z) =y e V[[lz —yll <e}.
Example 5.
e nR: U(x)=|z—ec,x+¢].

e In R%: () is a ball of radius &, where we apply the norm

|Z|l2 := /23 + ... + 22

Theorem 1. The collection of all open sets of a vector space is a topology.
Proof: We have to prove that Definition 4 constructs a topology!
i) trivial
ii) Let O, P € U be two open sets. Then let z € ONP = x € O and

x € P. Then, we find £1,e92 > O such that U, (x) C O and U, (z) C P.
Now, we get

£:= min(ey,e) = U (zr) C OandU.(x) C P
= Ul zx)CcONP.

This shows ON P € U.
iii) Proof is left to the reader.
0.

Definition 5. Let U be a topology on the normed vector space V. A set
B C V is called closed set if and only if V\B € U. Let B C 'V be a subset of
a normed vector space V. Then,

B = {z€B|F&>0: U.z)C B} is called interior of B
B = {r€V|Ve>0:U(r)NB#0} is called closure of B
OB = {z€VNe>0:U(x)NB#DAU(x)N B¢+ 0} is called boundary of B

Here we abbreviate B¢ = V\B .



Example 6. [a,b] is closed since R\ [a, b] = |—00,a] U ]b, oo].
Interior of [a, b] is ]a, b].
Interior of |a, b is | a,b]

[a,b] is |a,b

i
Interior of [a,b] is ]

UJi1] = =11

ﬂ[%,Q] = [1,2] closed

1 - not open
U[ﬁ’z] = 10.2]« not closed

Definition 6. Let V' be a normed vector space. A sequence (Ty,)nen 1S called
Cauchy sequence, if Ve >0 3k € N such that |z, — x| <& Vn,m > k.

The sequence (x,)men converges to x € V if lim, o ||z, — x| = 0. V is
called a Banach space, if every Cauchy sequence in V' converges.

R™ is a Banach space for every norm on R".

||(mi)’i:1 ..... n||oo = I?Z%XMA
n

|(zi)i=1,..mll2 = (Z|xz|2)%

i=1
C([a,b]) with norm || - ||z is not a Banach space.

Theorem 2. “Completeness”: Let V be a normed vector space, with norm
||| - ||. Then there exists a Banach space B with norm || - || such that

a) V C B is a subvector space and

b) lll = lllvlll voeV .

Proof (Idea): Define an equivalence relation on the set of Cauchy se-
quences. []

Example 7 (Lebesque space). The completeness of R?([a,b]) leads to the
Banach space L?([a,b]). This space can be described as the set of Lebesque
integrable functions. We integrate, add and multiply functions in this space
according to functions in R?([a, b]), but L*([a, b]) just contains some “more”
functions.



2.3 Equivalent Norms

Definition 7. Let || - ||, ||| - ||| be norms of a vector space V. These norms
are called equivalent, if there exist constants k,c > 0 such that:

cloll < [l[vlll < Ellv]] Vv e V.

Example 8. l~p norms on R”.

1 <& z

|(x:)iz1,..nllip = (— Z|xz|p> for 1<p<oo
[

[(i)i=1,..nllc = f?:afil%\

Formula 1. Assume p > 1.
a) |75 < || oo-

1
b) |l < [ 7|77

Proof: a)

. 1 — » ] — i P 11, B
12|l = EZ ") = (=~ SOIEE ) < nrnd [ Fle = 1]
i=1 i=1

3=
=

b)

n : 1

17 < (ZIW’) < ||Zpne .
=1

O

In Numerics: Use normalized norms ||(1);=1, || =1 on R".

Example 9 (Finite difference discretization of Poisson’s equation). Let w,

be the finite difference discretization of Poisson’s equations with mesh size
_ 1
h=—.

e Assume we prove (measure) ||u, — || < ch? =cn™L.

Then we get |lu, — ulljp < en™t.
e Assume we prove |Ju, — ullp < enh
1

[N

Then we get ||u, — ]| < cn™ ni=c-n



Theorem 3. All norms in R™ are equivalent.

Example 10. R* = {(z;);en|z; € R}.

oo ) 1
b = {(@)ien] 2202, |7l < oo}, where ||(@:)ienllw == (322 |2al”)”
lo = {(xi)ien|supiZ, |z;| < oo}, where |[(2;)ienllie := supiZ |zi].
Formula 2. [, Cl, if p<gq.
Observe that the sequence (1,1,1,...) € [, but (1,1,1,...) € [;.
This implies I 2 lo-
| - |J; is not equivalent to || - |[;. This follows by the following counter-
example:
7 = (1,0,0,0
# = (1,1,0,0...
# = (1,1,1,0,0..
o= ()2,
L [ i<s
i 0 0 i>s
125 = Do [l = s
[2]ree =1

2.4 Continuity, Linear Mappings

Definition 8. Let f : X — Y be a mapping, where X C VY CW and V,W
are normed vector spaces. f is called continuous at xo € X, if for everye > 0
there exists a 6 > 0:

Vo ol —xol| <6 = [|f(x) = flzo)ll <&
Lemma 2. f: X — Y is continuous in x. <= Let (x;) be a sequence such
that lim,, o x,, = x, then lim,_, f(z,) = f(x).
Lemma 3. : The composition, sum and product of continuous functions is

continuous.

Definition 9. A mapping between two vector spaces f : V. — W is called
linear, if:

i) fle+y) =f@)+fly) VzyeV,

i) f(Ax) = Af(x) VeV, Ae K

10



Theorem 4. Let T : X — Y be a linear mapping between normed vector

spaces. Then, the following statements are equivalent:
a) T is continuous at a fived point xy.
b) T is continuous in x = 0.

18 bounded.

) |T||x—y = SUp»cx
Proof
a) = b) trivial.

b) = ¢) For ¢ =
IT() —TO)lly <1.

1 let 6 > 0 such that VZ : ||z — 0|lx < 0 =

Now let z # 0. Then, define £ = —*—¢. Observe ||Z||x = 0. Therefore,

llzllx
we get
- 1T@)lly _ [T@)ly _ 1
1> TGy =9 = <1
]| x lzllx  — 0
This implies
1
1Tl x-y < 5
c) = a) Let € > 0 and choose
€
b= ——.
1Tl x-y

Assume that ||z — x||x < 0. Then, we get

|T(x) = T(xo)lly = |IT(x—x)lly < Tl xsvlle — 2ollx
< |T||xoyd <e.

O

Lemma 4. Let T : X =Y, S :Y — Z be continuous linear mappings

between normed vector spaces. Then we get:

a) |T]x=y = SupHIex T (x)|ly. (I|T] is called operator norm.)
z||=1

11



b) [[ST| x5z < ||S|ly=z T x-y-
c) IT(@)| < |IT]|lz|| Vze X.

Definition 10. Let X, Y > be normed vector spaces.
Then, let L(X,Y) ={f: X =Y | fis linear and continuous}.
In case of X =Y we write L(X).

Theorem 5. (L(X,Y), |- ||x=y) is a normed space. If Y is a Banach space,
then, L(X,Y') is a Banach space.

Proof:
Let us prove: If (T}) is a Cauchy sequence in £(X,Y’), then (7)) converges
in £L(X,Y).
Let us define: T'(x) = limg_,o Ti(x). This limit exists since, the inequality

| Tio(x) — Ti(2)| = [(T, = T)(@)| < | Th = Tallll=|
shows that (T} (z)), is a Cauchy sequence for every x.
1) Let us first prove that the mapping

T: X—=>Y
ry = limg e Ti(2)

is linear:
T(x+z) = lim Tip(x + 2) = lim Ti(x) + Ti(2)
k—ro0 k—ro0
= lim Ty(z) + lm Ty(2) = T(x) + T(2).
k—o00 k—o00

2) T is continuous: Observe that

1T ()] = lim [|Te(2)[] < sup |7 ][flz]], (1)
o0 k

since |[T(2)|| < [|Ti[lll«]] < supy [[Tx] - [[#]|. Since (T) is a Cauchy
sequence, there is a k such that ||T}, — T;|| < 1 Vk,l > k. Therefore, we
get:

Tkl < 1 Te = Ty + Tell < 1T = Tll + TRl < 1+ 1T Wk > .
This implies:
17l < max [T + 1k = 0. (2)

Theorem 4 and Equation (1) and (2) imply that 7" is continuous.

12



Now we prove: limy_,o |7 — T'|| = 0. Let € > 0. Since (7}) is a Cauchy
sequence there exists a k such that:

|- T <& Vki>k

= Ti(z) = Ti(=) || < [[(Th — T1) ()] < |NTe — Til[|l=ll < ell|l
[T(x) = T(2)|| = im0 | Th(2) = Ti(@)|| < ellz]]
= T, —T| <e.

This implies limy_,o ||Tx — T'|| = 0.
U

Definition 11. Let X be normed space. Then X' = L(X,K) is called the
dual space. f € X' is called a linear functional.

3 Hilbert Spaces

Definition 12. Let H be a vector space over K =C on R. A mapping
<+ -> Hx H — K s called scalar product, if

a) (ax+ By, z) = alx, z) + By, 2),

b) (z,y) = (y, x),
¢) (z,z) >0 forx #0.
Remark:

i) (z,z) € R.

ii) (,) is a sesquilinear form : §I7y> linear

x
y x,y) anti-linear
Proof:

a(z,x) +B{z,y) = o, 2) JIIF By, z)

(zyar +By) = (az+ By, 2)

Theorem 6. : Let H be a vector space with scalar product. Then, ||x||g =

(x,x) is a norm. Furthermore, the following Cauchy-Schwarz inequality
holds |(z,y)| < [lz||allylla-

13



Proof: Let z,y € Ha e K x #0:

0 < (az +y, oz +y) = |af*||z[lF + 2 Re(alz, y)) + [yl

Choose: a = —(x,y)/||z||%. Then, we get:

2
0 < |laz +yll3 = llvllz — |<|T’|?|J2>| = Cauchy-Schwarz inequality
iz,
Obviously, ||Az|lg = |M||z||z. To prove that || - || is norm, it is enough to

show that the triangle inequality holds:

le+ylll = @+y,z+y) = (2 + (@9 + y2) + (yy) =
(3 + (2, ) + (2, 9) + yll%

/I3 + 2Re(z, y) + [yl

< el + 2zl allylla + vl

(2l + Nlyllu)?

OJ

Remark: By the Cauchy-Schwarz inequality, we can show the continuity
(,-) : Hx H — K, where the norm ||(v,w)|gxg = max(||v||a, |w| ) is
used.

Definition 13. A wvector space H with scalar product is called pre-Hilbert
space. H is called Hilbert space, if H is Banach space with respect to ||u|| =

V (u, u).

Example 11.

e (C" is a Hilbert space with scalar product:
i=1

e 1%(]0,1][) is Hilbert space with scalar product {(u,v) = fol u - vdz.

e L?(Q) is Hilbert space with scalar product (u,v) = |

o U - vdy, where
Q2 C R? is an open subset.

14



e C}([0,1])) == {f € C([0,1])|f" € C([0,1])} is pre-Hilbert space with
scalar product (f, g) g1 = fol flod+f-g d

The completeness of this pre-Hilbert space leads to the Hilbert space
H(]0,1).

Problem: Find a € R such that
e H'(]0,1]).
Definition 14. Let V,W be subspaces of the real pre-Hilbert space H. Then,

I ]

sevew ]|y
z,y#0

is called constant in the strengthened Cauchy-Schwarz inequality between V

and W. arccos(y) =: Z(V,W) is called the angle between V, W .

Lemma 5. Let K > 1 be a constant. Then the following equivalence holds:

o] + [Jw|* < Klv+wl|? YoeViweW
T
K-1
V) < ——
(VW) < 7
Proof:
= <v,w>< —|v||w]
0< (lv] = [lwl)* = 2follwl] < o]+ [Jw]?

= —2<v,w>K < (K-=1)(v]+ |lw])?
= ol + w]* < K(|Jv+ wl|

|} Choose v € V,w € W such that ||v|| = ||w|| = 1. Then, we get
Wl + wl* < Kl + (—w)|?

2 <v,w>K (K —D[v])* + (K — 1)||Jw]|]?

4
<
4
<

<v,w>K (K = Dfofflw].

15



1

Figure 1: Hierarchical Basis.

Example 12. See Figure 1.

1
/ wodr =< u,v >r2, W = {oyplp € R},
0
V ={uv.B + avg|a, B € R}
(W, V) ~ 0.8603.

Definition 15. Let H be a Hilbert space.

a) d=dim(H) < oo. Then (by)n=1.. 4 is a Hilbert space basis, if

,,,,,

b) dim(H) = co. Then (by)nen is a Hilbert space basis, if

o for every x € H there exists a unique sequence (\;)ien, i € K
such that -
i=1

o and

<bna bm> = 5n,m'

16



Problem: Assume that (b;);eny is Hilbert space basis. Then, for every
x € H exists (\;)jen such that x =Y .2, \;b;. How can we compute \;?

Formula 3. Let (b;)ien be a Hilbert space basis. Let x =Y .o, \;b;. Then,
i = (x,b;) for every i € N.
Furthermore, the following formula holds:

[ul| =
Proof:
(,b;) = <Z Ajbj, bi) = Z/\J<bj7bl> =\
i=1 j=1
and
x> = (z, )

j=1 i=1
= SN b b = I
=1

j=1 i=1

O

Remark: The functions sin(nz), cos(nz) or exp(inx) lead to Hilbert space
basis. Then, Formula 3 is the formula of Fourier transformation.

Observe that a Hilbert space basis is not a basis of H in the classical
sense.

Example 13.

a) A Hilbert space basis in R™ are the unit vectors:

e,=1 1 | « i-th component in R"

17



b) Consider the Hilbert space lo = {(2;)ien| D5y |2:]* < 00} with scalar
product ((2;)ien, (Yi)ien) = > ioq Ti%- Then
_ (1 =
J— (). i_
¢ = (@iens € { 0 else
is a Hilbert space basis.

Proof: Let ¥ = (;)ien. We want to prove: & = 3" x;e/. This follows
by

n o %
Hf—ijejng = ( Z |x1]2) — 0 forn — .
j=1

i=n+1
T T 0
T2 T2 0
0
Tnt1 0 Tnt1
12 ’ 12

c¢) Consider the space (see Example 7)
H = Lg(]0, 27 [)

with scalar product

e = [ uete) de

A Hilbert space basis of this space L3(]0,27[) is

S = {\/%;} U {%Cos(mx)}m € N} U {%sm(mx)\m € N}

where
1:]0,2r[ — R
z — 1°

27 1 2
= —— | dz =1.
L2 /0 (\/27T>

18
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This basis leads to the real Fourier series decomposition. To prove that
every function can be approximated by the above Hilbert space basis,
one studies the complex Fourier series decomposition.

Instead of H = L%(]0,27 [) one can also define the space
H=Lg(]—m7])
The space
H = L;(]0,7[)

with scalar product

() = [ ulyule) do

is a Hilbert space basis, too. Now, a Hilbert space basis is

{%sin(nx)}n € N} .

Observe, that the cosinus functions are orthogonal to these functions
on [—m,m]. To prove that these functions are a Hilbert space basis,
apply the mapping

12(0,7]) 3 f — <xH RO ) e L2~ m )

The Fourier series of a function obtained by this mapping does not
contain cosinus terms.

Consider H = L%(] 0,2 [) with scalar product

s = [ atrju@ dr

Then {\/szeim} is a Hilbert space basis. ( complex Fourier series
4 nez

decomposition).

Proof of orthogonality:

D S
eine emTly  — _ez(nfm)a:dx —
0o V2w V2T /0 2m

2T 1

1 if n=m
- T L Leiln=m)e|2r — () else

i(n—m) 27

19



The difficulty is to show that every function can be approximated by

the Hilbert space basis [ —=e™® . To prove this property, observe
Var nez

that
ZeinmAn _ Z(ezm)n)\n

nel ne”l

Then, one applies the approximation property of polynomials.

d) C™ is a Hilbert space with scalar product
((27), () =D ;1.
j=1

Then, (by)p=1,.. n, where

1 2n,
by = ﬁ(e wPicn
is Hilbert space basis of C".
Theorem 7. (German: Hauptachsentransformation, English: principal azis theorem).
Let A be a symmetric matriz over R. Then there is an orthogonal matrix B

such that BTAB = (Al “n, |, where Ay, ..., N\, are the eigenvalues of A.

The colums of B are the corresponding eigenvectors by, ..., b,.
Orthogonality of B means BT B = E. This is equivalent to

(bi, bj) = 0i5.
Definition 16. Let H be a Hilbert space and f : H — H, continuous and
linear. f s called selfadjoint, if
< f(x),y >=<uz, fly) > Vz,ye H.
Using this definition, Theorem 7 can be described as follows.

Theorem 8. Let f: H — H be linear and selfadjoint and H = R™. Then,
there exists an orthonormal basis of eigenvectors (ej)jzl,m,n i H. The matriz
corresponding to f : R™ — R™ with respect to <€j)j:1’m,n 1s an n X n diagonal
matriz. This means

f(ej) = )\jej, >‘j eR.

20



Example 14. Let Q;, := {ih|i = 0,...,n — 1}, h = % be a discretization
grid of [0, 1[. Let us extend ), periodically Q3° = Zh.
The space of 1-periodic functions is defined by

Frpee(G7) ={f: Q= C| f(p)=flp+1) VpeQ}

This space is isomorph (has the same structure as) to C". An isomorphism
is given by
Qo

— (ih — a; mod n)
apn—1

Consider the finite difference operators

u(p+h) —u(p—nh)

0 (u)(p) = 57 :
57 (u) (p) = u(p +h) —ulp)

h
Fiper(§27°) is Hilbert space with scalar product:

n—1
<u,v>= Y ulih)v(ih).
i=0

62 is selfadjoint in Fi pe, (25°)

< R)v> = Z( w(ih + h) — 2u(ih) + u(ih — h)) D)

—QZU (ih)v(ih) + Z ((i 4+ 1)h — Rh)o((i + 1)h)>
u(m) <u(m —h) — 20(ih) + v(ih + h)) _

2 u, 62 (v) >
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The eigenvectors of 62 are:

by 1= = () e, g = 0, — L.

The corresponding eigenvalue is:

i(ei%rqh 4 e—i27rqh - 2) —

12
1
= ﬁ(cos(%rqh) +isin(2mqh) — 2 + cos(—2mqh) + isin(—2mqh))
1
= ﬁ(Q cos(2mqh) — 2)
2
= ﬁ(cos(%rqh) —1).

Theorem 9 (Riesz Representation Theorem). Let H be a Hilber space. For
every f € H' exists a y € H, such that

<zy>= f(z) VzeH.

Furthermore, ||yllg = ||fllm:- y is the unique solution of the following min-
imization problem
Find x € H, such that F(z) =< x,x > —2Ref(x) minimal.

Idea of proof:

F(y) =<y,y > —2Ref(y) > lyll3 — 2|l Il ||yl = = flI7n-

Therefore, there is a sequence (y)ken such that limy_,o F(yx) = inf ey F(y).

By Parallelogram equation one can prove that (y;) is Cauchy sequence.
Let

y = lim (yg).
k—o0

Furthermore

d
0= —F(y+tz)]im =

dt
d
= %(tz<x,x>+2tRe<x,y>+<y,y>—QtRef(:c)—QRef(y))]tzo
=0 = 2Re(<z,y>—f(z))

= Re(<z,y>)= Re(f(x)).
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Analogously, one can prove
Re(i < x,y >) = Re(if(x)).

This implies
<xzy>= f(x) V.

Proof of isometric mapping:

e o= sup L — g L= 2L g Il
s o P
Sl <l
Lol _ <yy>_ lyl’
ol IR

= fle = [yl

This shows || f||z = ||y]|-
]

4 Sobolev-Spaces

4.1 Basic Definitions

Definition 17. Let K C R%. K is called compact, if K is closed and bounded.

Example 15. A square domain [2,4]* in R? is compact. A set of 12 points
18 compact.

Definition 18. Let Q C R? be open. The support of a function f : 2 — R
is defined by

supp(f) ={z € Q| f(z) # 0}

Now, let us define the vector space

C’(Q) = {f:Q—K|[supp(f) CQ

is compact and f is arbitrary often differentiable}

Example 16 (Mollifier Function).

M(z) = KeXpW;—l for |z] <1
0 else.

K is chosen such that [7_ M(x)dx = 1.
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Theorem 10. C5°(Q) is dense in L*(2). This means that for every u €
L3(2) exists a sequence u,, € C5°(Q) such that lim,, o u, = u in L*(2).

This theorem can be proved by the convolution of f and the Mollifier
function. This leads to an arbitrary smooth function. Later, we will show
that the Mollifier function converges to the delta distribution. The convolu-
tion with this delta distribution is the identity.

A multiindex is o = (v, ..., aq) € N& la| == a1 + ... + ag.

dla‘p
Codat et
Example 17. D%p € C°(2) for every p € C§ ().
Definition 19. The weak derivative of u € L*(Q2) with respect to o is the
function g € L*(Q), if the following holds:

/QuD“pZ (—1)'“'/99/) Vp € Co ().

Let us abbreviate D*u := g.

D*(p)

The classical derivative of a function coincides with the weak derivative
for differentiable functions. To show this, let u € C'(R), ¢ € C5(R) and
observe that

< dy - < du B > du
/_mu%d:ﬂ— [u - ©]>, —/_oo %gpdzz— /_oo dxgpdx.

Let us prove that the weak derivative is unique. To this end let g1, g» € L*(2)
be the weak derivative of u. Then, we get

0= /2(91 —g)e Vo e Cyr(Q).

By Theorem 10 C§°(2) is dense in L?*(f2). Thus, there is a sequence p, €
C5°(£2) such that lim,, o ¢n = g1 — go-

0 = lim /9(91_92)‘:0n:/g(91 — 92)(91 — 92)

n—oo
- / g1 — 92|2 = [lg1 — 92||%2-
Q

This implies g; = go in L?(Q). Here, observe that L*(f2) is a quotient space
of £2(Q).
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Example 18. Let u(z) := |z|. Then, % = sgn(z).
Proof:

o= ]
,oouda: N ,Ooxdx

= - [ s agelt- [* Bt friy

[e.9]

= — [ setaota)

o0

Example 19. Let u = sgn(x). The weak derivative of u does not ezist.

Proof:
> de 0 dy < dp
= [(=1)¢)% + [10]5” = —2¢(0)
There is no function g € L*(R) such that

/ g dr = p(0) Vg€ CP(R).

—0o0
Therefore, the weak derivative of u does not exist.

Definition 20 (Sobolov Space). Let m € N and @ C R? open. The Sobolev
space of order m with respect to p = 2 is defined by

W™Q) ={f e L*Q) | f ism-times weak differentiable and
Def e L*(Q), V|| < M}.

The norm in W™(Q) is

lallwmay = (Y I1D%ul72@) ">

la<m
The Sobolev space of order m with respect to p = oo is
Wity =A{f € L*(Q)|D*f € L=(Q), V]a| <mj}.
The norm in W~ _(€2) is

ullw. @) = max [ D%ul| Lo ()
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Example 20. W!(R?):

du du
|ullwr = \/IIUIIiz + II%H%Q + IId—ylliz-

Definition 21. Let us define

© m STV @)
Wm(Q) == Ce(Q)

One can prove:
woQ) = L*9),
WHQ) # WHQ).

One can prove (see Trace Theorem) that Vf/l(Q) consists of functions
which are 0 at the boundary.
Wi (€2) is a Banach space. W™(2) ist Hilbert space with scalar product

(w,0) = /Q D*uD%v

la|<m
and norm [Ju||ym(q).

Theorem 11 (First Poincare’s Inequality). Assume that € is bounded. Then,

ulwr == \//Q(Du)2 = 1Y /Q|Docu|2

la|=1
is a norm on T/ffl(Q) which is equivalent to ||ul[y.

Proof:
Observe that

w10y = 0l + 1wlZ2@) > Wl g

This is the first inequality, which hast to be proved. The second is
w0y < [l
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Observe, that it is enough to show that there is a constant K such that
[w]|720) < Klwlf g (3)

for every w € I/f/l(Q) It is enough to thow (3) for functions ¢ € C§°(2),

since C§°(£2) is dense in Vf/l(Q) Here, let us prove (3) for a one dimensional
interval 2 =|a, b[C R. Then,

/ "t = p(2) = o) < / ).

— 00

This implies

[ie@rar < [([1etara=( [ rso/\dt)2-voz<9>
< / 2 dt - (vol(92))?

The last inequality follows by
L1110 < 19y o
O

4.2 Poisson’s Problem

Poisson’s problem can be described as follows:

Poisson’s Problem with homogenuous
Dirichlet Boundary Conditions

Let f € L2(Q). Find u € W(Q) such that
/Vqud(x,y) = / fud(x,y) Yo e W)
Q Q

An important application of the theory of Sobolov is that Poisson’s prob-
lem has a unique solution.

Proof:
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e By Poincare’s inequality, Wl(Q) is Hilbert space with scalar product:
(u,v) — / Vuvud(z,y).
Q

e v — [, fvd(z,y) is a mapping contained in (W) (dual space).
This follows by Theorem 4 and

| vd(x,w' < Iz - ol < 11z - C - el

where the constant C' is obtained by Poincare’s inequality.

e By Riesz Representation Theorem there is a unique solution of Pois-
son’s equation.

This concept of proofing existence and uniquness of a partial differential
equation can by extended to a large number of partial differential equations,
which can be described in a weak form. This means that a funtional in the
dual space and a bilinear form is given. As a second example consider the
bilinear form

a(u,u):/VuTAVud(a:,y),
Q

where is A € (L>(9))**? and A(z,y) symmetric positiv definit. A suitable
equvalence of norms follows by

Q
—~
£
£

Vv

[ pvut Vo= plu
Q

a(u,v) < HZI,E;X||ai,j||L°°’U|W1!U|W1-

Prove this as a homework and formulate ta suitable weak form of a partial
differential equation.

Theorem 12 (Theorem of Rellich). Let Q be a domain with Lipschitz-
continuous boundary (e.g. assume that the boundary has a finite number
of corners and edges). Then, W(Q) — L*(Q) is an compact embedding.
This means: Let H > 0 be a fivred number and (x,)nen a subset of W1(Q)
with ||z, ||wi) < H. Then, there exists a convergent subsequence of (T )nen
which converges with respect to L*(§2).
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A proof of this theorem for a simple domain is given in Section 4.9.
This important theorem is the basis of

1. the second Poincare inequality,
2. finite element interpolation theory,

3. abstract eigenvalue problem in infinite dimensional spaces, which is a
generalization of principal axis theorem in finite dimensional spaces.

Theorem 13 (Second Poincare’s Inequality). |- |1 and || - ||,1 are equivalent
norms on H = {u € W'(Q)| [, ud(z,y) = 0}.

Proof:
We have to prove that there is a constant C' > 0, such that

|||z < Clulyn Yu € H.
Suppose the opposite: Vn € N Ju,, € H, such that
L= [lunl[L2 > nfun|w:-

This implies || %2 || 22 < |u,|yr < L. By the Theorem of Rellich (u,,) contains
a convergent subsequence in L?({2):

(unk )k)EN'

Let

o= fm i g

in L3(Q),u € L*(Q). Let ¢ € C3°(Q). Then, we get

. dy
|| gl = |lim |, grd(y)
: dun,
= L J g ed@ )
) Ay,
< kh_>1£10|| o 2@ llellz2()

< Tim el
- kglolo Nk Plizz@):
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This implies j—z = 0. Analogously, we get ‘;—Z = 0. Thus, u is constant. By

(4) and [, uy, = 0 we conclude u = 0. This leads to the contracdiction
L= lm ||u,, 7> = [|ull7> = 0.
k—ro00

O
Using this inequality one can prove the existence and uniquness of Pois-
son’s problem with pure Neumann boundary condition:

Poisson’s problem with Neumann boundary condition
Let H={ue W' [u=0}and f € H. Find u € H such that

/Vqu:/fv Yv € H.
Q Q

One can prove that this weak solution of Possion’problem has the boundary
condition

du

4.3 Abstract Eigenvalue Problem
Let us assume that (X, a) and (Y, (,)) are Hilbert spaces, such that

X =Y

is a compact and dense embedding. (Embedding means that the mapping is
injective, linear and continuous.) Assume that X is an infinite dimensional
vector space. Let us consider the eigenvalue problem : Find u € X, A € C
such that

a(u,v) = Mu,v) Voe X.

Theorem 14. Then, there exists an infinite number of eigenvalues (\;)ien
with eigenvectors u;, ||u;|| = 1 such that

e D<M < <., >

This sequence contains only finite multiplicities.
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o (u;)ien are a— and (.,.)-orthogonal. (u;)ien @s a Hilbert space basis of

Y.

e The following equation holds:

a(v,v)

A1 = min .
veX (v, U)

Example 21. Consider the eigenvalue problem:

—Au = Au in ),
u = 0 on 0.

In case of 2 =]0, 1[2, the set of eigenvectors and eigenvalues is
uy; = sin(inz) sin(jry), Ny = 72> +5%), i,j€N.

Example 22. Consider the heat problem:

ou .

% Au = 0 in €,
u(t) = 0 ondf), Vt >0,
u(0) = wup,

where ug € W1(Q) is a given function.
Then, a Fourier-analysis with respect to the general eigenvectors of —A
implies that
lim ||u(t)]|z2 = 0. (5)

t—o0

Let us prove (5). To apply Theorem 14, we choose
) = (W@ [ vuvo i),
Q
Y, <>) = (L2(Q), (u,v) — / uv d(x,y)) .
Q

By Theorem 12 and Theorem 11, we can apply Theorem 14. Let (e,)nen be
the corresponding eigenvectors wit eigenvalues (\,)nen. Since (e,)nen is a
Hilbert space basis we can write

Uy = E €nCn.

neN
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Then,
u(t) = Z e, Cpent

neN

is the solution of the heat equation. Let € > 0 be given. First choose ¢ € N

such that

2
€
> lenl® < 5

n>gq

Then, choose t' such that
2
_>\ t 2 €
n " <=
S ene P < €
n<q

for every ¢t > t'. This implies

[u()] 2 =

g encne_’\"t

neN

<€

LQ

for every t > t'.

4.4 Sobolev Spaces for Periodic Functions

Definition 22.
Lzeriodic([_ﬂ-’ﬂ-[) = {U € ‘F(R) | ul]—ﬂﬂr[ € L2(] - 7T77TD and
Let s € N. Then, define

n
J"u 9

u(z) = u(z + 27) Vo € R}

]seriodic([_ﬂ-ﬂr[) = {u S L;%em‘odic | % € Lperiodic([_ﬂ-’ﬂ-[) vn < S}
Here, 3% € L2, y..([—7.7[) means that there is a g € L2, y.([—7,7[) such
that

g a T
/ﬂ.ua_i dlE - /ﬂ_gs& dZL' VQO € COO(R) N L;Q)em'odic([_ﬂ-a 7TD

Analogously, define the Sobolev Space L? ([=m, m[?), for d € N.

periodic
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4.5 Fractional Sobolev Spaces for Periodic Functions

The set of functions

¢ = By(7), fez

forms a Hilbert-space basis of L& ([—m,n[?).
Theorem 15. Let u =) . ;4 a53B5(x). Then,

ou _
% € Lperwdzc A Z ||aﬁ ) 7’L||% < 0.
nez

Furthermore, we get

uewemodzc( 7T7Td @Z‘GTJ 1+H H )

nezd
for every k € Ny.

Proof: Let us show this theorem for £ in 1D.
Let us assume %% € Lg([—, n[). This means

/_:g—z (2)dz = — / g“; (2)dz

for every ¢ € C3°(] — m, 7[). Now, we get

&p 890
(91: u(z) Zan / dx

ne”

— —Zanzn/ (7)) dx

ne’

Let b, be the Fourier coefficients of g_Z' Then, we obtain

Zb/ Bo ()¢ Zanzn/ (z)p dz

ne”L nez
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Let us choose a sequence of functions in C§°(] — m, w[) which converges in
L*(] — 7, 7[) to B,,. By this sequence, we get

b, = a,in.

This implies that

Z |lan|*n? < oc.

ne”

End of proof.

Definition 23. Let v = ) . ;4 azBs(x) and s > 0 a real positive number.
Then, define

u < st)eriodic([_ﬂ-vﬂ-[d) = Z |a’ﬁ|2(1 + Hﬁ”%s) < 0.
nezd

HS

periodic 1S 0 Hilbert space with scalar product

<Z aﬁBﬁ, Z bﬁBﬁ> = Z aﬁgﬁ(l + Hﬁ”%s)

nezd nezd nezZd

4.6 Trace Theorem

Let Q@ C R? a bounded domain with piecewise continuous differentiable
boundary. This means, that the boundary can be described by mappings

¢ :[0,1] — 09,

where ¢ is continuous and piecewise continuous differentiable. Then, there
are different ways to define Sobolev spaces W?(Q2) and W?(0€2), where p > 0.

Theorem 16. Let us assume that §2 is bounded and the boundary of € is
smooth enough. Furthermore, assume s > % Then, there exists a linear and
continuous mapping

T W Q) — W 2(09Q)

and an extension operator

F W 2(50Q) — W*(Q)
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such that
TF = Id.

This implies that T, F' are linear and continuous and that
T(p)(x) = ¢(x) forz € 002 and p € C*(Q) NW?*(Q).

Example 23. Let us assume that f € L*(Q) and g € W'?(9Q). Poisson’s
problem with inhomogeneous Dirichlet boundary conditions is:

Find u € WY(Q) such that
—Au = f
T(u) = g.
To find the unique solution of this problem, consider the problem

-Aw = [+ AF(g)
T(w) = 0.

Observe that w € HY(Q) and T(w) = 0 is equivalent to w € W'. Then,
the above homogenous Dirichlet boundary problem has a unique solution w €
HY(Q). Now, u = w+ F(g) is the solution of the inhomogeneous Dirichlet

boundary problem.

Theorem 17. Let s > 1. Then, there exists a linear and continuous mapping

T: H?

periodic

(l=m,7P) = Ho g ([, )
such that
p(x,0) = T()(x) Ve € C®(R?*) N L2, g ([—m, 7).

Proof: Let us prove the result for s = 1. For a > 0, we get

= 1 1
Z ; = v =
a+m 0 a+<x

m=1
1 [ 1 1 T oo
/ T a\/aarc an\/a|0




Choosing a = 1 + n?, this implies

1 1
< o, 6
Zl—i—nQ—i—mQ_ /—1+n277 ()

mezZ
Let ¢ € Hioqe([—m 7[*) N C(R?). Then, (see Heuser, Lehrbuch der

Analysis) the Fourier sequence

1 .
(P(x7y): Z an’m_ez(nm+my)

27
n,meZL
converges absolutly for every (z,y). This implies that

pla0) =37 e S

ne”z meZ

for every x. This implies that

1
bn = E mZE:Zan,m

are the Fourier coefficients of ¢(z,0).
Now, let us prove the inequality:

_1
lo(z,0)I1 .y = > (1402t (7)
neL
< C Y 1+ 0+ m))anml” = Cllell
n,me”L

for s = 1. Using (6), this inequality follows by

> @+ Inl)baf* =

NneZ
1 1 2
- Z(1+|”|1) 2(Zan,m\/1+n2+m2<\/1+n2+m2> ) <
nez V aTr meZ
1 2 2 2 9 oy —1
< Z(1+|n|)%<2(1+n +m)|an7m|><2(1+n +m?) <
nez meZ meZ
< TN (142 m?)an 21 + n]) e
i . it
< 8 ) (14 +m)|anm|”
n,me”z
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In the last eniquality, we applied the formula

1+n

V1+n?

Thus, we have proved (7) for every function ¢ € H}oqi.([—7, 7[*). Since
H ioaic ([, 7[*) NC>®(R?) is dense in H o5 ([=7, 7[*), (7) holds for every
u < H}ieriodic([_ﬂ—ﬂr[Q)‘

End of proof.

<2<=1+2n+n*<2(1+n*) <=0<1-2n+n’>=(1-n)

4.7 Symmetric Extension

Definition 24. Let Q =]0,7[*> and T =] — m,w[>. Then let us define the
extenston operator

L LAQ) — LA(T)

u(r,y) if 2,y >0
—u(r,y) if v>0,y<0
—u(x,y) if ©<0,y>0
u(r,y) if x,y<0

= sgn(z, y) - u(|z], [y]).

u = ux,y) =

Let f € L?(Q2). Let us consider the two problems:

e Find u € W(Q) such that
/ VuVo d(z,y) = / fvd(z,y) Yve I/(IJfl(Q)
0 0
e Find v’ € H} ;o4 such that

/ Vu'Vou d(x,y) = / fu d(z,y) VYve H;eriodic(T>‘
T T

Observe that @ = /.
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4.8 Regularity of Elliptic Equations

Definition 25. Let Q C R? a bounded domain. Poisson’s equation with
Dirichlet b.c. is called W?2-reqular, if for every f € L*(Q), there exists a
u € W?(Q) such that

—Au = f onQ
u = 0 on 9.

Theorem 18. Let Q C R? a bounded domain with piecewise continuous
differentiable boundary. Furthermore assume that all interior angles of the
boundary are smaller than w. Then, Poisson’s equation is W?-reqular.

Theorem 19. Let T =] — m,n[>. Poisson’s equation is H},.,z.-reqular in
the following sense:
For every f € L2, 00.(T), 7 f =0, there exists a u € Hy, . 0.(T) such

that

—Au = f onR?

/u:O.
T

Proof: Let f =3 . 7 @nmBnm. Since Jo f =0, we get ago = 0.
Now, define

b { 0 ifn=m=0
n,m — Gn,m

n2+m?2
Then, u = Zn,mGZ by m Bn,m 1s the solution of Poisson’s equation. Since

1
[ullfz = D A+ @ +m*) ) bl = D 1+ (0% +m?))|ap ml’
n,meZ nmez
< 237 fanml = If13
nmez

End of proof.
By the extension concept in Section 4.7, we get the following theorem

Theorem 20. Let Q =|0, w[2. Then, Poisson’s equation with Dirichlet bound-
ary conditions is W?2-regular.
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4.9 Proof of Compact Embedding
Theorem 21. H,,.q:.(] = 7, 7[) is compactly embedded in L, (|=m, ).

periodic

Proof:
Let u, = Y,z 0 Bi be a sequence such that ||u,| g1 <1 Vn € N. Then,
the following inequality holds

D lap(1+ k) < 1.
keZ

This implies |a}|? < ﬁ Vn € N.

Let us construct a subsequence as follows

nl
(als
seN

converges, where (n!).ey is a strictly monotonic increasing sequence.

e Choose subsequence such that

I+1

“1)sen from the

e Choose a strictly monotonic increasing subsequence (n
sequence (n)sey such that
I+1
Ns
aif))
( 1 seN

e Define my = nf. Then, the sequence

(W sen = ()

converges for every k. Define

converges.

— 1 ms
b, = lim a;".
5§—00

Let us define the function

kEZ

This function is in L?(Q) since

Z\bk\Qéilfk2 < 10.

keZ kEZ
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The proof of the theorem is complete, if we can show
lim ||’LU — Uy, ||L2(Q) =0. (8)
S5—00

To prove this convergence, let € > 0 be given. Now, choose ¢ € N such that

1 €
Z1+k:2<§‘

|k|>q

This implies

Z|a;ﬂs—bk|zgzl+4k2§

k|>q k|>¢q

N

By construction, we get
li M pl? = 0.
i > lai = biff =0
kl<q

This implies

lim E lai" — b|* = 0.
S§—00
keZ

This completes the proof of (8).
End of Proof.

5 Distribution Theory

5.1 Basic Theory

Definition 26. A set K C R? is compact if it is closed and bounded.

Definition 27 (Convergence of Test Functions). Let Q C R? open and
D(Q) :=C5 (). Let (Pr)ren be a sequence in D() and ® € D(X). Then,
(Pr)ren is called to be convergent to ® € D(R), if the following properties
hold:

1. There is a compact set K C Q such that supp(®x) C K.

2. limy_o [|[D*®) — D*®||o = 0 for every multi-indez «.
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Furthermore, let us write
P, =P
if (Pg)ren converges to ® € D(Q).

Definition 28. A linear mapping T : D(2) — R is called distribution, if
B0 = T(d) EIT(P).
Let D' be the set of all distributions.

Example 24. Let f: 2 — R be a local integrable function. This means that
[ |f(@)]de < 0o VK C Q compact.
Then, the distribution corresponding to f is:

Tf P /fCIDdx,
Q

T (®) = /Q foda.

Therefore, distrubution are called generalized functions!

Let us prove that T is a distribution. First, we have to show that [, | f®|dz <
0:

<00

N
~ <oo

—~
[iralae= [ jpwiaes [ sl TR
Q supp(®)CQ supp(®)

Now, assume Py 2 5. Then, we get

lim |T(®y) — TH(®)] < lim | / FOpdz — / FPdz|
k—o0 Q Q

k—o0

< Jm | [ (12— fo)ds

k—o0

< lim ' / fdx
k—o0 K
where K compact such that supp(®;) C K C Q. O

[Pk = Plloe =0,

Example 25. The delta distribution is:

0:D — R
o — P(0).
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Homework: Prove that ¢ is a distribution!

Formula 4.

T+G € D,
N e D

for every T,G € D' and A € R.
Definition 29. Let T € D', then

ar

D —- R
dz

dd
o =T
- ()
is defined to be the derivative of T'.

Homework: Show that is a distribution.

Example 26. Let f € CI(Q). Then

de
=T
dx T
Proof:
dTy dd
—(P) = -T
Ty = ()
d
- / I o= [ a0

— Tdf

O

Example 27. Let
0 for <0

H(m):{ 1 for w;O ’

Then, the following formula holds

dH

— =.
dx

42
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Proof:

dH AP < dP
< do 0
- [ Z_- 9
[ =
— B(0) = 5(®).

O

Definition 30. Let T € D' andT,, € D',n € N be a sequence of distributions.
Then, (T,))nen converges to T, if

lim T, (V) = T(T)

n—o0

for every W € D. Let us write lim,, T, =T.

Remark: Let M be the mollifier function in Example 16. Then, define

Tn = T(n./\/l(*n))
One can show that

lim 7,, = 9.

n—oo

5.2 Convolution and Applications

Definition 31. Convolution,(German: Faltung) Let T € D' und ¢ € D.
Then the convolution is defined by

(T xp)(z) =T(p(xr —-)).

Example 28. Let f: Q) — R be a local integrable function. Then,
(Trxo)(z) = T(p(z—))
— [ 1wt~ iy
Q
This shows that the convolution of distrubutions (generalized functions) gen-
eralizes the concept of convolutions for classical functions!
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Formula 5. Let T be a distrubution on R? and ¢ € D. Then, the following
formulas hold:
T x ¢ € C*(RY).

DT x @) = DT x o =T % D%p.
Let 0 be the delta distribution. Then,
d*p=¢.

Let us prove only the last formula:

(0 p)(x) =0y — p(z —y)) = p(z = 0) = p(z).
0

Definition 32. Let D = " CLS%, as € C, be a differential operator.
F €D is called fundamental solution, if DF = .

Theorem 22. Let F' € D' be a fundamental solution of the differential op-
erator D = """, as%, as € C. Furthermore, let f € D.
Then, u := F x f 1s a solution of the equation

Du = f.

Proof:
Du=DFxf)=DFxf=4dxf=F.

O
Example 29. Consider the differential equation

d2
da?"

:f7

where f € D. The fundamental solution is:

0 for <0
F_{x for x>0’

. 2
since 45 F = %H =0, where

dz?
0 for <0
H_{l for >0 °
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Thus, a solution of the above differential equation is obtained by

wa) = (Fep) = [ T FW) e - y)dy

o0

u(r) = /OOO yf(r —y)dy.

Literature see [1], [2], [7], [4], [5], [6], [3]-
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