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1 Vector Spaces

Definition 1. Let K = R or K = C. Then a set V is called K-vector space
with (operators) + : V × V → V and · : V ×K→ V if the following holds
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a) (V,+) is a commutative group. E.g. this means:
(v + 0 = v, (v +w) + g = v + (w + g), v +w = w + v, v + (−v) = 0).

b) i) (a+ b) · λ = a · λ+ b · λ for all a, b ∈ V, λ ∈ K
ii) a · (λ+ ρ) = a · λ+ a · ρ for all a ∈ V, ρ, λ ∈ K
iii) a · (λρ) = (a · λ) · ρ for all a ∈ V, ρ, λ ∈ K
iv) a · 1 = a for all a ∈ V

Example 1.

a) Example in three dimensions: K3 5
3
2

 · 2 =

 10
6
4


 5

3
2

+

 1
2
4

 =

 6
5
6


Example in the n-dimensional space Kn

(ai)i=1,...,n + (bi)i=1,...,n = (ai + bi)i=1,...,n

(ai)i=1,...,nλ = (aiλ)i=1,...,n

b) Let A,B two sets (not empty)

F(A,B) := {f : A→ B | f is a function}.

Then F(A,R) is a vector space with operators

(f + g)(x) := f(x) + g(x),
(f · λ)(x) := f(x) · λ

for every f, g ∈ F(A,R).

c) Let Ω ⊂ Rn be an open subset. Then CR(Ω) = {f : Ω→ R | f is continuous}
is a subspace of vector space F(Ω,R).

d) Let RK([a, b]) be the set of Riemann integrable functions

RK([a, b]) ⊂ F([a, b],K).
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2 Normed Vector Spaces

Definition 2. Let V be a K vector space. A mapping p : V → [0,∞[ is called
semi-norm if the following holds:

a) p(λx) = |λ|p(x) ∀λ ∈ K, x ∈ V ,

b) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ V (triangle inequality).

p is called norm if p(x) = 0⇒ x = 0.
A vector space V with norm ∥ · ∥ is called normed vector space.
Usually we write

∥ · ∥ for norms and
| · | for semi-norms.

Example 2.

a) The Euclidian norm on Rn is defined by

∥(ai)i=1,...,n∥2 :=

√√√√ n∑
i=1

|ai|2.

b) Let Ω ⊂ Rn be a closed and bounded subset (e.g. Ω = [a, b]). The
maximum norm on CR(Ω) is defined by

∥f∥∞ := max
x∈Ω
|f(x)| for f ∈ CR(Ω).

Proof: ∥ · ∥∞ is a norm on CR(Ω) . Since Ω closed and bounded, we
get maxx∈Ω |f(x)| ∈ [0,∞[ by elementary analysis. Furthermore, there
exists a x0 such that maxx∈Ω |f(x)| = |f(x0)|. This implies that:

|λ| ∥f∥∞ = |λ| |f(x0)| = |λf(x0)|
≤ maxx∈Ω|λf(x)| = ∥λf∥∞.

Assume that λ ̸= 0. Then, we get

| 1
λ
| ∥λf∥∞ ≤ ∥ 1

λ
λf∥∞ = ∥f∥∞

∥λf∥∞ ≤ |λ| ∥f∥∞ ≤ ∥λf∥∞
⇓
∥λf∥∞ = |λ| ∥f∥∞.
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The triangle inequality follows by

∥f + g∥∞ = |f(x0) + g(x0)| ≤ |f(x0)|+ |g(x0)|
≤ maxx∈Ω|f(x)|+maxx∈Ω|g(x)|
= ∥f∥∞ + ∥g∥∞.

At least, let us prove positive definiteness. Assume ∥f∥∞ = 0. Then,

maxx∈Ω|f(x)| = 0 ⇒ |f(x)| = 0 ∀x ∈ Ω
⇒ f(x) = 0 ∀x ∈ Ω.

Therefore, f is the zero-element in CR(Ω). □

Example 3. Take R([a, b]). If f is Riemann-integrable, then∫ b

a

f(x) dx := lim
n→∞

b− a

n

n∑
i=1

f

(
a+ (i− 1

2
)
b− a

n

)
converges.

(b−a)/n

Let us define the space

R2([a, b]) := {f : [a, b]→ R | |f |2 ∈ R([a, b])}

and the semi-norm:

|f |L2[a,b] :=

√∫ b

a

|f(x)|2dx.

This semi-norm can be obtained by the limit of the Euclidian norm

∥(ai)i∈1,...,n∥2 :=

√√√√ n∑
i=1

|ai|2.
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Let f ∈ R2([a, b]) be Riemann-integrable. Then, we get

|f |2L2([a,b]) :=

∫ b

a

|f(x)|2dx

= lim
n→∞

b− a

n

n∑
i=1

∣∣∣∣f(a+ (i− 1

2
)
b− a

n
)

∣∣∣∣2

= lim
n→∞

b− a

n

∥∥∥∥∥
(
f(a+ (i− 1

2
)
b− a

n
)

)
i=1,...,n

∥∥∥∥∥
2

Rn


But |f |L2([a,b]) is semi-norm! For example, consider the function:

f(x) =

{
1 if x = b+a

2

0 else
⇒ |f |L([a,b]) = 0.

2.1 Quotient Construction

On R2([a, b]) we define the relation

f ≡ g :⇐⇒ |f − g|L2([a,b]) = 0.

The equivalence classes of R2([a, b]) with respect to ≡ define a new im-
portant normed vector space:

R2([a, b]) := R2([a, b])/ ≡
=

{
[f ] :=

{
g ∈ R2([a, b])

∣∣∣ g ≡ f
} ∣∣ f ∈ R2([a, b])

}
.

Lemma 1. R2([a, b]) is a vector space with operators:

[g] + [w] := [g + w] ∀[g], [w] ∈ R2([a, b]) and

[g] · λ := [gλ] ∀λ ∈ R, ∀[g] ∈ R2([a, b]).

∥[g]∥L2 := |g|L2 is a norm on R2([a, b]).

Proof: Let us show that the operation + is well defined. Assume that

[g1] = [g2], [w1] = [w2].
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Then, we get [g1 + w1] = [g2 + w2], since

[g1 + w1] = [g2 + w2] ⇐= |(g1 + w1)− (g2 + w2)|L2 = 0

⇐= |(g1 − g2) + (w1 − w2)|L2 = 0

⇐= |(g1 − g2) + (w1 − w2)|L2 ⩽ |g1 − g2|L2 + |w1 − w2|L2 = 0.

Analogously, it can be proved that · is well defined. To prove the axioms of a
vector space and axioms of a semi-norm is left to the reader. By construction,
∥[g]∥L2 is a norm on L2([a, b]).

□
Instead of [f ], we often just write f . Then, we can denote the space

R2([a, b]) by

R2([a, b]) :=

{
f : [a, b]→ R

∣∣ ∫ b

a

|f(x)|2dx <∞
}

with norm

∥f∥L2 := (

∫ b

a

|f(x)|2dx)
1
2 .

2.2 Topology of a Normed Vector Space

Definition 3. “Topology”. Let A be a set. A collection U of subsets of A is
called topology on A, if the following conditions hold:

i) ∅ ∈ U,A ∈ U

ii) O,P ∈ U ⇒ O ∩ P ∈ U

iii) Let I be a subset of U . Then
∪

O∈I O ∈ U .

The sets O ∈ U are called open sets of the topology.

Example 4. In R, we get

]a, b[ := {x ∈ R|a < x < b} (open interval)
[a, b] := {x ∈ R|a ≤ x ≤ b} (closed interval).

a and b are the boundary points of these intervals.

6



Definition 4. Let V, ∥ · ∥ be a normed vector space. Then, a set O ⊂ V is
called an open set, if

∀x ∈ O ∃ε > 0 : Uε(x) ⊂ O

where
Uε(x) := {y ∈ V | ∥x− y∥ < ε}.

Example 5.

• In R: Uε(x) = ] x− ε, x+ ε [ .

• In Rd: Uε(x) is a ball of radius ε, where we apply the norm

∥x⃗∥2 :=
√
x2
1 + . . .+ x2

d.

Theorem 1. The collection of all open sets of a vector space is a topology.

Proof: We have to prove that Definition 4 constructs a topology!

i) trivial

ii) Let O, P ∈ U be two open sets. Then let x ∈ O ∩ P ⇒ x ∈ O and
x ∈ P . Then, we find ε1, ε2 > O such that Uε1(x) ⊂ O and Uε2(x) ⊂ P .
Now, we get

ε := min (ε1, ε2) ⇒ Uε(x) ⊂ O andUε(x) ⊂ P
⇒ Uε(x) ⊂ O ∩ P.

This shows O ∩ P ∈ U .

iii) Proof is left to the reader.

□.

Definition 5. Let U be a topology on the normed vector space V . A set
B ⊂ V is called closed set if and only if V \B ∈ U . Let B ⊂ V be a subset of
a normed vector space V . Then,

Ḃ = {x ∈ B|∃ε > 0 : Uε(x) ⊂ B} is called interior of B
B = {x ∈ V |∀ε > 0 : Uε(x) ∩B ̸= ∅} is called closure of B
∂B = {x ∈ V |∀ε > 0 : Uε(x) ∩B ̸= ∅ ∧ Uε(x) ∩Bc ̸= ∅} is called boundary of B

Here we abbreviate Bc = V \B .
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Example 6. [a, b] is closed since R\[a, b] = ]−∞, a[ ∪ ]b,∞[.
Interior of [a, b] is ]a, b[.
Interior of ]a, b[ is ] a, b [
Interior of [a, b[ is ] a, b [

∪
n∈N

[−1, 1
n
] = [−1, 1]

∩
n∈N

[
1

n
, 2] = [1, 2] closed

∪
n∈N

[
1

n
, 2] = ] 0, 2 ]← not open

not closed

Definition 6. Let V be a normed vector space. A sequence (xn)n∈N is called
Cauchy sequence, if ∀ε > 0 ∃k ∈ N such that ∥xn − xm∥ < ε ∀n,m ≥ k.

The sequence (xm)m∈N converges to x ∈ V if limn→∞ ∥xn − x∥ = 0. V is
called a Banach space, if every Cauchy sequence in V converges.

Rn is a Banach space for every norm on Rn.

∥(xi)i=1,...,n∥∞ =
n

max
i=1
|xi|

∥(xi)i=1,...,n∥2 = (
n∑

i=1

|xi|2)
1
2

C([a, b]) with norm ∥ · ∥L2 is not a Banach space.

Theorem 2. “Completeness”: Let V be a normed vector space, with norm
|∥ · ∥|. Then there exists a Banach space B with norm ∥ · ∥ such that

a) V ⊂ B is a subvector space and

b) ∥v∥ = |∥v∥| ∀v ∈ V .

Proof (Idea): Define an equivalence relation on the set of Cauchy se-
quences. □
Example 7 (Lebesque space). The completeness of R2([a, b]) leads to the
Banach space L2([a, b]). This space can be described as the set of Lebesque
integrable functions. We integrate, add and multiply functions in this space
according to functions in R2([a, b]), but L2([a, b]) just contains some “more”
functions.
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2.3 Equivalent Norms

Definition 7. Let ∥ · ∥, |∥ · ∥| be norms of a vector space V . These norms
are called equivalent, if there exist constants k, c > 0 such that:

c∥v∥ ≤ |∥v∥| ≤ k∥v∥ ∀v ∈ V.

Example 8. l̃p norms on Rn.

∥(xi)i=1,...,n∥l̃p =

(
1

n

n∑
i=1

|xi|p
) 1

p

for 1 ≤ p <∞

∥(xi)i=1,...,n∥∞ =
n

max
i=1
|xi|

Formula 1. Assume p ≥ 1.

a) ∥x⃗∥l̃p ≤ ∥x⃗∥∞.

b) ∥x⃗∥∞ ≤ ∥x⃗∥l̃pn
1
p .

Proof: a)

∥x⃗∥l̃p =

(
1

n

n∑
i=1

|xi|p
) 1

p

≤

(
1

n

n∑
i=1

∥x⃗∥p∞

) 1
p

≤ n
1
−pn

1
p∥x⃗∥∞ = ∥x⃗∥∞.

b)

∥x⃗∥∞ ≤

(
n∑

i=1

|xi|p
) 1

p

≤ ∥x⃗∥l̃pn
1
p .

□
In Numerics: Use normalized norms ∥(1)i=1,...,n∥ = 1 on Rn.

Example 9 (Finite difference discretization of Poisson’s equation). Let un

be the finite difference discretization of Poisson’s equations with mesh size
h = 1√

n
.

• Assume we prove (measure) ∥un − u∥∞ ≤ ch2 = cn−1.
Then we get ∥un − u∥l̃p ≤ cn−1.

• Assume we prove ∥un − u∥l̃2 ≤ cn−1.

Then we get ∥un − u∥∞ ≤ cn−1 · n 1
2 = c · n− 1

2 .
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Theorem 3. All norms in Rn are equivalent.

Example 10. R∞ = {(xi)i∈N|xi ∈ R}.

lp = {(xi)i∈N|
∑∞

i=1 |xi|p <∞} , where ∥(xi)i∈N∥lp := (
∑∞

i=1 |xi|p)
1
p

l∞ = {(xi)i∈N| sup∞
i=1 |xi| <∞} , where ∥(xi)i∈N∥l∞ := sup∞

i=1 |xi|.

Formula 2. lp ⊂ lq if p < q.

Observe that the sequence (1, 1, 1, ...) ∈ l∞ but (1, 1, 1, ...) ̸∈ l1.
This implies l1 ̸⊃ l∞.

∥ · ∥l1 is not equivalent to ∥ · ∥l∞ . This follows by the following counter-
example:

x⃗1 = (1, 0, 0, 0 . . .
x⃗2 = (1, 1, 0, 0 . . .
x⃗3 = (1, 1, 1, 0, 0 . . .
x⃗s = (xs

i )
∞
i=1

xs
i =

{
1 if i ≤ s
0 if i > s

∥x⃗s∥l1 =
∑∞

i=1 |xi|1 = s
∥x⃗s∥l∞ = 1

2.4 Continuity, Linear Mappings

Definition 8. Let f : X → Y be a mapping, where X ⊂ V, Y ⊂ W and V,W
are normed vector spaces. f is called continuous at x0 ∈ X, if for every ε > 0
there exists a δ > 0:

∀x : ∥x− x0∥ < δ ⇒ ∥f(x)− f(x0)∥ < ε.

Lemma 2. f : X → Y is continuous in x. ⇐⇒ Let (xi) be a sequence such
that limn→∞ xn = x, then limn→∞ f(xn) = f(x).

Lemma 3. : The composition, sum and product of continuous functions is
continuous.

Definition 9. A mapping between two vector spaces f : V → W is called
linear, if:

i) f(x+ y) = f(x) + f(y) ∀x, y ∈ V,
ii) f(λx) = λf(x) ∀x ∈ V, λ ∈ K.
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Theorem 4. Let T : X → Y be a linear mapping between normed vector
spaces. Then, the following statements are equivalent:

a) T is continuous at a fixed point x0.

b) T is continuous in x = 0.

c) ∥T∥X→Y := supx∈X
x ̸=0

∥T (x)∥Y
∥x∥X

is bounded.

Proof

a) ⇒ b) trivial.

b) ⇒ c) For ε = 1 let δ > 0 such that ∀x̃ : ∥x̃ − 0∥X ≤ δ ⇒
∥T (x̃)− T (0)∥Y ≤ 1 .

Now let x ̸= 0. Then, define x̃ = x
∥x∥X

δ. Observe ∥x̃∥X = δ. Therefore,
we get

1 ≥ ∥T (x̃)∥Y = δ
∥T (x)∥Y
∥x∥X

⇒ ∥T (x)∥Y
∥x∥X

≤ 1

δ
.

This implies

∥T∥X→Y ≤
1

δ
.

c) ⇒ a) Let ε > 0 and choose

δ =
ε

∥T∥X→Y

.

Assume that ∥x− x0∥X < δ. Then, we get

∥T (x)− T (x0)∥Y = ∥T (x− xo)∥Y ≤ ∥T∥X→Y ∥x− x0∥X
≤ ∥T∥X→Y δ ≤ ε.

□

Lemma 4. Let T : X → Y, S : Y → Z be continuous linear mappings
between normed vector spaces. Then we get:

a) ∥T∥X→Y = sup x∈X

∥x∥=1
∥T (x)∥Y . (∥T∥ is called operator norm.)
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b) ∥ST∥X→Z ≤ ∥S∥Y→Z∥T∥X→Y .

c) ∥T (x)∥ ≤ ∥T∥∥x∥ ∀x ∈ X.

Definition 10. Let X,Y > be normed vector spaces.
Then, let L(X, Y ) = {f : X → Y | f is linear and continuous}.
In case of X = Y we write L(X).

Theorem 5. (L(X,Y ), ∥·∥X→Y ) is a normed space. If Y is a Banach space,
then, L(X, Y ) is a Banach space.

Proof:
Let us prove: If (Tk) is a Cauchy sequence in L(X, Y ), then (Tk) converges
in L(X,Y ).
Let us define: T (x) = limk→∞ Tk(x). This limit exists since, the inequality

|Tk(x)− Tl(x)| = |(Tk − Tl)(x)| ≤ ∥Tk − Tl∥∥x∥

shows that (Tk(x))k is a Cauchy sequence for every x.

1) Let us first prove that the mapping

T : X → Y
x 7→ y = limk→∞ Tk(x)

is linear:

T (x+ z) = lim
k→∞

Tk(x+ z) = lim
k→∞

Tk(x) + Tk(z)

= lim
k→∞

Tk(x) + lim
k→∞

Tk(z) = T (x) + T (z).

2) T is continuous: Observe that

∥T (x)∥ = lim
k→∞
∥Tk(x)∥ ≤ sup

k
∥Tk∥∥x∥, (1)

since ∥Tk(x)∥ ≤ ∥Tk∥∥x∥ ≤ supk ∥Tk∥ · ∥x∥. Since (Tk) is a Cauchy
sequence, there is a k̃ such that ∥Tk − Tl∥ < 1 ∀k, l ≥ k̃. Therefore, we
get:

∥Tk∥ ≤ ∥Tk − Tk̃ + Tk̃∥ ≤ ∥Tk − Tk̃∥+ ∥Tk̃∥ ≤ 1 + ∥Tk̃∥ ∀k ≥ k̃.

This implies:

∥Tk∥ ≤
k̃

max
l=1
∥Tl∥+ 1 ∀k ≥ 0. (2)

Theorem 4 and Equation (1) and (2) imply that T is continuous.
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Now we prove: limk→∞ ∥Tk − T∥ = 0. Let ε > 0. Since (Tk) is a Cauchy

sequence there exists a k̃ such that:

∥Tk − Tl∥ ≤ ε ∀k, l ≥ k̃

⇒ ∥Tk(x)− Tl(x)∥ ≤ ∥(Tk − Tl)(x)∥ ≤ ∥Tk − Tl∥∥x∥ ≤ ε∥x∥
∥Tk(x)− T (x)∥ = liml→∞ ∥Tk(x)− Tl(x)∥ ≤ ε∥x∥

⇒ ∥Tk − T∥ ≤ ε.

This implies limk→∞ ∥Tk − T∥ = 0.
□

Definition 11. Let X be normed space. Then X ′ = L(X,K) is called the
dual space. f ∈ X ′ is called a linear functional.

3 Hilbert Spaces

Definition 12. Let H be a vector space over K = C on R. A mapping
< ·, · >: H ×H → K is called scalar product, if

a) ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩,

b) ⟨x, y⟩ = ⟨y, x⟩,

c) ⟨x, x⟩ > 0 for x ̸= 0.

Remark:

i) ⟨x, x⟩ ∈ R.

ii) ⟨, ⟩ is a sesquilinear form
x → ⟨x, y⟩ linear
y → ⟨x, y⟩ anti-linear

Proof:
ᾱ⟨z, x⟩+ β̄⟨z, y⟩ = α⟨x, z⟩+ β⟨y, z⟩

∥
⟨z, αx+ βy⟩ = ⟨αx+ βy, z⟩

Theorem 6. : Let H be a vector space with scalar product. Then, ∥x∥H =√
⟨x, x⟩ is a norm. Furthermore, the following Cauchy-Schwarz inequality

holds |⟨x, y⟩| ≤ ∥x∥H∥y∥H .
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Proof: Let x, y ∈ H,α ∈ K x ̸= 0:

0 ≤ ⟨αx+ y, αx+ y⟩ = |α|2∥x∥2H + 2 Re(α⟨x, y⟩) + ∥y∥2H .

Choose: α = −⟨x, y⟩/∥x∥2H . Then, we get:

0 ≤ ∥αx+ y∥2H = ∥y∥2H −
|⟨x, y⟩|2

∥x∥2H
⇒ Cauchy-Schwarz inequality

Obviously, ∥λx∥H = |λ|∥x∥H . To prove that ∥ · ∥ is norm, it is enough to
show that the triangle inequality holds:

∥x+ y∥2H = ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ ⟨x, y⟩+ ⟨y, x⟩+ ⟨y, y⟩ =
= ∥x∥2H + ⟨x, y⟩+ ⟨x, y⟩+ ∥y∥2H
= ∥x∥2H + 2Re⟨x, y⟩+ ∥y∥2H
≤ ∥x∥2H + 2∥x∥H∥y∥H + ∥y∥2H
= (∥x∥H + ∥y∥H)2

□
Remark: By the Cauchy-Schwarz inequality, we can show the continuity

⟨·, ·⟩ : H × H → K, where the norm ∥(v, w)∥H×H = max(∥v∥H , ∥w∥H) is
used.

Definition 13. A vector space H with scalar product is called pre-Hilbert
space. H is called Hilbert space, if H is Banach space with respect to ∥u∥ =√
⟨u, u⟩.

Example 11.

• Cn is a Hilbert space with scalar product:

⟨x, y⟩ :=
n∑

i=1

xiȳi.

• L2( ] 0, 1 [) is Hilbert space with scalar product ⟨u, v⟩ =
∫ 1

0
u · vdx.

• L2(Ω) is Hilbert space with scalar product ⟨u, v⟩ =
∫
Ω
u · vdy, where

Ω ⊂ Rd is an open subset.
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• C1([0, 1]) := {f ∈ C([0, 1])|f ′ ∈ C([0, 1])} is pre-Hilbert space with

scalar product ⟨f, g⟩H1 :=
∫ 1

o
f ′ · g′ + f · g dx.

The completeness of this pre-Hilbert space leads to the Hilbert space
H1( ] 0, 1 [).

Problem: Find α ∈ R such that

xα ∈ H1( ] 0, 1 [).

Definition 14. Let V,W be subspaces of the real pre-Hilbert space H. Then,

γ = sup
x∈V,y∈W

x,y ̸=0

|⟨x, y⟩|
∥x∥∥y∥

is called constant in the strengthened Cauchy-Schwarz inequality between V
and W . arccos(γ) =: ∠(V,W ) is called the angle between V,W .

Lemma 5. Let K ≥ 1 be a constant. Then the following equivalence holds:

∥v∥2 + ∥w∥2 ≤ K∥v + w∥2 ∀v ∈ V,w ∈ W

⇕

γ(V,W ) ≤ K − 1

K

Proof:

⇑: − < v,w >≤ K − 1

K
∥v∥∥w∥

0 ≤ (∥v∥ − ∥w∥)2 ⇒ 2∥v∥∥w∥ ≤ ∥v∥2 + ∥w∥2

⇒ −2 < v,w > K ≤ (K − 1)(∥v∥+ ∥w∥)2

⇒ ∥v∥2 + ∥w∥2 ≤ K(∥v + w∥2.

⇓ Choose v ∈ V,w ∈ W such that ∥v∥ = ∥w∥ = 1. Then, we get

∥v∥2 + ∥w∥2 ≤ K∥v + (−w)∥2

⇓
2 < v,w > K ≤ (K − 1)∥v∥2 + (K − 1)∥w∥2

⇓
< v,w > K ≤ (K − 1)∥v∥∥w∥.

□
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Figure 1: Hierarchical Basis.

Example 12. See Figure 1.∫ 1

0

uvdx =< u, v >L2 , W = {vMρ|ρ ∈ R},

V = {vLβ + αvR|α, β ∈ R}
γ(W,V ) ≈ 0.8603.

Definition 15. Let H be a Hilbert space.

a) d = dim(H) <∞. Then (bn)n=1,...,d is a Hilbert space basis, if

⟨bn, bm⟩ = δn,m.

b) dim(H) =∞. Then (bn)n∈N is a Hilbert space basis, if

• for every x ∈ H there exists a unique sequence (λi)i∈N, λi ∈ K
such that

x =
∞∑
i=1

λibi

• and
⟨bn, bm⟩ = δn,m.

16



Problem: Assume that (bi)i∈N is Hilbert space basis. Then, for every
x ∈ H exists (λi)i∈N such that x =

∑∞
i=1 λibi. How can we compute λi?

Formula 3. Let (bi)i∈N be a Hilbert space basis. Let x =
∑∞

i=1 λibi. Then,
λi = ⟨x, bi⟩ for every i ∈ N.

Furthermore, the following formula holds:

∥u∥ =

√√√√ ∞∑
i=1

|λi|2.

Proof:

⟨x, bi⟩ = ⟨
∞∑
i=1

λjbj, bi⟩ =
∞∑
j=1

λj⟨bj, bi⟩ = λi

and

∥x∥2 = ⟨x, x⟩

= ⟨
∞∑
j=1

λjbj,

∞∑
i=1

λibi⟩

=
∞∑
j=1

∞∑
i=1

λjλi⟨bj, bi⟩ =
∞∑
i=1

|λi|2.

□
Remark: The functions sin(nx), cos(nx) or exp(inx) lead to Hilbert space

basis. Then, Formula 3 is the formula of Fourier transformation.
Observe that a Hilbert space basis is not a basis of H in the classical

sense.

Example 13.

a) A Hilbert space basis in Rn are the unit vectors:

ei =


0
...
1
...
0

← i-th component in Rn

17



b) Consider the Hilbert space l2 = {(xi)i∈N|
∑∞

i=1 |xi|2 < ∞} with scalar
product ⟨(xi)i∈N, (yi)i∈N⟩ =

∑∞
i=1 xiyi. Then

ej = (eji )i∈N, eji =

{
1 if i = j
0 else

is a Hilbert space basis.

Proof: Let x⃗ = (xi)i∈N. We want to prove: x⃗ =
∑∞

j=1 xje
j. This follows

by

∥x⃗−
n∑

j=1

xje
j∥l2 =

(
∞∑

i=n+1

|xi|2
) 1

2

−→ 0 for n→∞.

∥∥∥∥∥∥∥∥∥∥∥∥∥



x1

x2
...
xn

xn+1
...


−



x1

x2
...
xn

0
...



∥∥∥∥∥∥∥∥∥∥∥∥∥
l2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥



0
0
0
0
xn+1
...



∥∥∥∥∥∥∥∥∥∥∥∥∥
l2

c) Consider the space (see Example 7)

H = L2
R( ] 0, 2π [ )

with scalar product

⟨u,w⟩L2 =

∫ 2π

0

u(x)w(x) dx.

A Hilbert space basis of this space L2
R( ] 0, 2π [ ) is

S =

{
1√
2π

1

}
∪
{

1√
π
cos(mx)

∣∣m ∈ N
}
∪
{

1√
π
sin(mx)

∣∣m ∈ N
}

where
1 : ] 0, 2π [ → R

x → 1
.

Observe that ∥∥∥∥ 1√
2π

1

∥∥∥∥
L2

=

√∫ 2π

0

(
1√
2π

)2

dx = 1.
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This basis leads to the real Fourier series decomposition. To prove that
every function can be approximated by the above Hilbert space basis,
one studies the complex Fourier series decomposition.

Instead of H = L2
R( ] 0, 2π [ ) one can also define the space

H = L2
R( ]− π, π [ )

d) The space
H = L2

R( ] 0, π [ )

with scalar product

⟨u,w⟩L2 =

∫ π

0

u(x)w(x) dx

is a Hilbert space basis, too. Now, a Hilbert space basis is{
2√
π
sin(nx)

∣∣n ∈ N
}
.

Observe, that the cosinus functions are orthogonal to these functions
on [−π, π]. To prove that these functions are a Hilbert space basis,
apply the mapping

L2
R( ] 0, π [ ) ∋ f 7→

(
x 7→ f(x) if x > 0

−f(−x) if x ≤ 0.

)
∈ L2

R( ]− π, π [ )

The Fourier series of a function obtained by this mapping does not
contain cosinus terms.

e) Consider H = L2
C(] 0, 2π [) with scalar product

⟨u,w⟩L2 =

∫ 2π

0

u(x)w(x) dx.

Then
{

1√
2π
einx
}

n∈Z
is a Hilbert space basis. ( complex Fourier series

decomposition).

Proof of orthogonality:∫ 2π

0

1√
2π

einx
1√
2π

eimxdx =

∫ 2π

0

1

2π
ei(n−m)xdx =

=

{
1 if n = m

1
i(n−m)

1
2π
ei(n−m)x|2π0 = 0 else

.
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The difficulty is to show that every function can be approximated by

the Hilbert space basis
(

1√
2π
einx
)
n∈Z

. To prove this property, observe

that ∑
n∈Z

einxλn =
∑
n∈Z

(eix)nλn.

Then, one applies the approximation property of polynomials.

d) Cn is a Hilbert space with scalar product

⟨(xj), (yj)⟩ =
n∑

j=1

xj ȳj.

Then, (bp)p=1,...,n, where

bp =
1√
n
(ei

2π
n
pj)j=1,...,n

is Hilbert space basis of Cn.

Theorem 7. (German: Hauptachsentransformation, English: principal axis theorem).
Let A be a symmetric matrix over R. Then there is an orthogonal matrix B

such that BTAB =

(
λ1

. . .λn

)
, where λ1, . . . , λn are the eigenvalues of A.

The colums of B are the corresponding eigenvectors b1, . . . , bn.
Orthogonality of B means BTB = E. This is equivalent to

⟨bi, bj⟩ = δij.

Definition 16. Let H be a Hilbert space and f : H → H, continuous and
linear. f is called selfadjoint, if

< f(x), y >=< x, f(y) > ∀x, y ∈ H.

Using this definition, Theorem 7 can be described as follows.

Theorem 8. Let f : H → H be linear and selfadjoint and H = Rn. Then,
there exists an orthonormal basis of eigenvectors (ej)j=1,...,n in H. The matrix
corresponding to f : Rn → Rn with respect to (ej)j=1,...,n is an n×n diagonal
matrix. This means

f(ej) = λje
j, λj ∈ R.
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Example 14. Let Ωh := {ih|i = 0, ..., n − 1}, h = 1
n
be a discretization

grid of [0, 1[. Let us extend Ωh periodically Ω∞
h = Zh.

The space of 1-periodic functions is defined by

F1,per(Ω
∞
h ) = {f : Ω∞

h → C | f(p) = f(p+ 1) ∀p ∈ Ω∞
h }.

This space is isomorph (has the same structure as) to Cn. An isomorphism
is given by  a0

...
an−1

→ (ih 7−→ a
i mod n)

Consider the finite difference operators

δ1h(u)(p) =
u(p+ h)− u(p− h)

2h
,

δ2h(u)(p) =
u(p+ h)− 2u(p) + u(p− h)

h2
,

δ1,lh (u)(p) =
u(p+ h)− u(p)

h
.

F1,per(Ω
∞
h ) is Hilbert space with scalar product:

< u, v >=
n−1∑
i=0

u(ih)v(ih).

δ2h is selfadjoint in F1,per(Ω
∞
h )

< δ2n(u), v > =
n−1∑
i=0

(
u(ih+ h)− 2u(ih) + u(ih− h)

h2

)
v(ih)

=
1

h2

(
n−1∑
i=0

u((i− 1)h+ h)v((i− 1)h)

−2
n−1∑
i=0

u(ih)v(ih) +
n−1∑
i=0

u((i+ 1)h− h)v((i+ 1)h)

)

=
n−1∑
i=0

u(ih)

(
v(ih− h)− 2v(ih) + v(ih+ h)

h2

)
=< u, δ2n(v) >
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The eigenvectors of δ2n are:

bq :=
1√
n
(ei2πqx)x∈Ω∞

h
, q = 0, ..., n− 1.

The corresponding eigenvalue is:

1

h2
(ei2πqh + e−i2πqh − 2) =

=
1

h2
(cos(2πqh) + i sin(2πqh)− 2 + cos(−2πqh) + i sin(−2πqh))

=
1

h2
(2 cos(2πqh)− 2)

=
2

h2
(cos(2πqh)− 1).

Theorem 9 (Riesz Representation Theorem). Let H be a Hilber space. For
every f ∈ H ′ exists a y ∈ H, such that

< x.y >= f(x) ∀x ∈ H.

Furthermore, ∥y∥H = ∥f∥H1. y is the unique solution of the following min-
imization problem
Find x ∈ H, such that F (x) :=< x, x > −2Ref(x) minimal.

Idea of proof:

F (y) =< y, y > −2Ref(y) ≥ ∥y∥2H − 2∥f∥H1∥y∥H ≥ −∥f∥2H1 .

Therefore, there is a sequence (yk)k∈N such that limk→∞ F (yk) = infy∈H F (y).

By Parallelogram equation one can prove that (yk) is Cauchy sequence.
Let

y := lim
k→∞

(yk).

Furthermore

0 =
d

dt
F (y + tx)|t=0 =

=
d

dt

(
t2 < x, x > +2tRe < x, y > + < y, y > −2tRef(x)− 2Ref(y)

)
|t=0

⇒ 0 = 2Re(< x, y > −f(x))
⇒ Re(< x, y >) = Re(f(x)).
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Analogously, one can prove

Re(i < x, y >) = Re(if(x)).

This implies
< x, y >= f(x) ∀x.

Proof of isometric mapping:

∥f∥H′ := sup
x ̸=0

|f(x)|
∥x∥

= sup
x ̸=0

| < x, y > |
∥x∥

≤ sup
x ̸=0

∥x∥ · ∥y∥
∥x∥

≤ ∥y∥,

⇒ ∥f∥H′ ≤ ∥y∥H ,
|f(y)|
∥y∥

=
< y, y >

∥y∥
=
∥y∥2

∥y∥
,

⇒ ∥f∥H′ ≥ ∥y∥.

This shows ∥f∥H′ = ∥y∥.
□

4 Sobolev-Spaces

4.1 Basic Definitions

Definition 17. Let K ⊂ Rd. K is called compact, if K is closed and bounded.

Example 15. A square domain [2, 4]2 in R2 is compact. A set of 12 points
is compact.

Definition 18. Let Ω ⊂ Rd be open. The support of a function f : Ω → R
is defined by

supp(f) = {x ∈ Ω | f(x) ̸= 0}
Now, let us define the vector space

C∞0 (Ω) = {f : Ω→ K | supp(f) ⊂ Ω

is compact and f is arbitrary often differentiable}

Example 16 (Mollifier Function).

M(x) =

{
K exp 1

|x|2−1
for |x| < 1

0 else.

K is chosen such that
∫∞
−∞M(x)dx = 1.
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Theorem 10. C∞
0 (Ω) is dense in L2(Ω). This means that for every u ∈

L2(Ω) exists a sequence un ∈ C∞
0 (Ω) such that limn→∞ un = u in L2(Ω).

This theorem can be proved by the convolution of f and the Mollifier
function. This leads to an arbitrary smooth function. Later, we will show
that the Mollifier function converges to the delta distribution. The convolu-
tion with this delta distribution is the identity.

A multiindex is α = (α1, ..., αd) ∈ Nd
0 |α| := α1 + ...+ αd.

Dα(ρ) =
d|α|ρ

dxα1
1 · ... · dx

αd
d

.

Example 17. Dαρ ∈ C∞
0 (Ω) for every ρ ∈ C∞

0 (Ω).

Definition 19. The weak derivative of u ∈ L2(Ω) with respect to α is the
function g ∈ L2(Ω), if the following holds:∫

Ω

uDαρ = (−1)|α|
∫
Ω

gρ ∀ρ ∈ C∞
0 (Ω).

Let us abbreviate Dαu := g.

The classical derivative of a function coincides with the weak derivative
for differentiable functions. To show this, let u ∈ C1(R), φ ∈ C∞

0 (R) and
observe that∫ ∞

−∞
u
dφ

dx
dx = [u · φ]∞−∞ −

∫ ∞

−∞

du

dx
φdx = −

∫ ∞

−∞

du

dx
φdx.

Let us prove that the weak derivative is unique. To this end let g1, g2 ∈ L2(Ω)
be the weak derivative of u. Then, we get

0 =

∫
2

(g1 − g2)φ ∀φ ∈ C∞
0 (Ω).

By Theorem 10 C∞
0 (Ω) is dense in L2(Ω). Thus, there is a sequence φn ∈

C∞
0 (Ω) such that limn→∞ φn = g1 − g2.

0 = lim
n→∞

∫
Ω

(g1 − g2)φn =

∫
Ω

(g1 − g2)(g1 − g2)

=

∫
Ω

|g1 − g2|2 = ∥g1 − g2∥2L2 .

This implies g1 = g2 in L2(Ω). Here, observe that L2(Ω) is a quotient space
of L2(Ω).
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Example 18. Let u(x) := |x|. Then, du
dx

= sgn(x).
Proof:∫ ∞

−∞
u
dφ

dx
=

∫ ∞

−∞
|x|dφ

dx

= −
∫ 0

−∞

d(−x)
dx

φdx+ [(−x)φ]0−∞ −
∫ ∞

0

d(x)

dx
φdx+ [xφ]∞0

= −
∫ ∞

∞
sgn(x)φ(x).

Example 19. Let u = sgn(x). The weak derivative of u does not exist.
Proof: ∫ ∞

−∞
u
dφ

dx
=

∫ 0

−∞
(−1)dφ

dx
dx+

∫ ∞

0

1
dφ

dx
dx

= [(−1)φ]0−∞ + [1φ]∞0 = −2φ(0)

There is no function g ∈ L2(R) such that∫ ∞

−∞
gφ dx = φ(0) ∀φ ∈ C∞

0 (R).

Therefore, the weak derivative of u does not exist.

Definition 20 (Sobolov Space). Let m ∈ N and Ω ⊂ Rd open. The Sobolev
space of order m with respect to p = 2 is defined by

Wm(Ω) = {f ∈ L2(Ω) | f is m-times weak differentiable and

Dαf ∈ L2(Ω), ∀|α| ≤M}.

The norm in Wm(Ω) is

∥u∥Wm(Ω) := (
∑
|α|≤m

∥Dαu∥2L2(Ω))
1/2.

The Sobolev space of order m with respect to p =∞ is

Wm
p=∞(Ω) := {f ∈ L∞(Ω)|Dαf ∈ L∞(Ω), ∀|α| ≤ m}.

The norm in Wm
p=∞(Ω) is

∥u∥Wm
p=∞(Ω) := max

|α|≤m
∥Dαu∥L∞(Ω).
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Example 20. W 1(R2):

∥u∥W 1 =

√
∥u∥2L2 + ∥

du

dx
∥2L2 + ∥

du

dy
∥2L2 .

Definition 21. Let us define

◦
Wm(Ω) := C∞0 (Ω)

Wm(Ω)
.

One can prove:

W 0(Ω) = L2(Ω),
◦
W 1(Ω) ̸= W 1(Ω).

One can prove (see Trace Theorem) that
◦
W 1(Ω) consists of functions

which are 0 at the boundary.
Wm

p=∞(Ω) is a Banach space. Wm(Ω) ist Hilbert space with scalar product

(u, v)→
∑
|α|≤m

∫
Ω

DαuDαv

and norm ∥u∥Wm(Ω).

Theorem 11 (First Poincare’s Inequality). Assume that Ω is bounded. Then,

|u|W 1 :=

√∫
Ω

(Du)2 =

√√√√∑
|α|=1

∫
Ω

|Dαu|2

is a norm on
◦
W 1(Ω) which is equivalent to ∥u∥W 1.

Proof:
Observe that

∥w∥2W 1(Ω) = |w|2W 1(Ω) + ∥w∥2L2(Ω) ≥ |w|2W 1(Ω).

This is the first inequality, which hast to be proved. The second is

∥w∥2W 1(Ω) ≤ |w|2W 1(Ω).
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Observe, that it is enough to show that there is a constant K such that

∥w∥2L2(Ω) ≤ K|w|2W 1(Ω) (3)

for every w ∈
◦
W 1(Ω). It is enough to thow (3) for functions φ ∈ C∞0 (Ω),

since C∞0 (Ω) is dense in
◦
W 1(Ω). Here, let us prove (3) for a one dimensional

interval Ω =]a, b[⊂ R. Then,∫ x

−∞
φ′dt = φ(x)⇒ |φ(x)| ≤

∫
Ω

|φ′|dt.

This implies∫
Ω

|φ(x)|2dx ≤
∫
Ω

(

∫
Ω

|φ′|dt)2dx =

(∫
Ω

|φ′|dt
)2

· vol(Ω)

≤
∫
Ω

|φ′|2 dt · (vol(Ω))2 .

The last inequality follows by∫
Ω

|φ′| · 1dt ≤ ∥φ′∥L2(Ω′)· ∥1∥L2(Ω)

□

4.2 Poisson’s Problem

Poisson’s problem can be described as follows:

Poisson’s Problem with homogenuous
Dirichlet Boundary Conditions

Let f ∈ L2(Ω). Find u ∈ W̊ 1(Ω) such that∫
Ω

∇u∇vd(x, y) =
∫
Ω

fvd(x, y) ∀v ∈ W̊ 1(Ω)

An important application of the theory of Sobolov is that Poisson’s prob-
lem has a unique solution.

Proof:
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• By Poincare’s inequality, W̊ 1(Ω) is Hilbert space with scalar product:

(u, v)→
∫
Ω

▽u▽vd(x, y).

• v →
∫
Ω
fvd(x, y) is a mapping contained in (W̊ 1(Ω))′ (dual space).

This follows by Theorem 4 and∣∣∣∣∫
Ω

f · vd(x, y)
∣∣∣∣ ≤ ∥f∥L2 · ∥v∥W 1 ≤ ∥f∥L2 · C · |v|W 1 ,

where the constant C is obtained by Poincare’s inequality.

• By Riesz Representation Theorem there is a unique solution of Pois-
son’s equation.

This concept of proofing existence and uniquness of a partial differential
equation can by extended to a large number of partial differential equations,
which can be described in a weak form. This means that a funtional in the
dual space and a bilinear form is given. As a second example consider the
bilinear form

a(u, u) =

∫
Ω

∇uTA∇ud(x, y),

where is A ∈ (L∞(Ω))2×2 and A(x, y) symmetric positiv definit. A suitable
equvalence of norms follows by

a(u, u) ≥
∫
Ω

ρ∇uT∇v = ρ|u|2W 1 ,

a(u, v) ≤ max
i,j
∥ai,j∥L∞|u|W 1 |v|W 1 .

Prove this as a homework and formulate ta suitable weak form of a partial
differential equation.

Theorem 12 (Theorem of Rellich). Let Ω be a domain with Lipschitz-
continuous boundary (e.g. assume that the boundary has a finite number
of corners and edges). Then, W 1(Ω) → L2(Ω) is an compact embedding.
This means: Let H > 0 be a fixed number and (xn)n∈N a subset of W 1(Ω)
with ∥xn∥W 1(Ω) ≤ H. Then, there exists a convergent subsequence of (xn)n∈N
which converges with respect to L2(Ω).
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A proof of this theorem for a simple domain is given in Section 4.9.
This important theorem is the basis of

1. the second Poincare inequality,

2. finite element interpolation theory,

3. abstract eigenvalue problem in infinite dimensional spaces, which is a
generalization of principal axis theorem in finite dimensional spaces.

Theorem 13 (Second Poincare’s Inequality). | · |w1 and ∥ ·∥w1 are equivalent
norms on H = {u ∈ W 1(Ω)|

∫
Ω
ud(x, y) = 0}.

Proof:
We have to prove that there is a constant C > 0, such that

∥u∥L2 ≤ C|u|W 1 ∀u ∈ H.

Suppose the opposite: ∀n ∈ N ∃un ∈ H, such that

1 = ∥un∥L2 > n|un|W 1 .

This implies ∥dun

dx
∥L2 ≤ |un|W 1 ≤ 1

n
. By the Theorem of Rellich (un) contains

a convergent subsequence in L2(Ω):

(unk
)k∈N.

Let
u = lim

k→∞
unk

(4)

in L2(Ω), u ∈ L2(Ω). Let φ ∈ C∞
0 (Ω). Then, we get

|
∫
Ω

u
dφ

dx
d(x, y)| = | lim

k→∞

∫
Ω

unk

dφ

dx
d(x, y)|

= | lim
k→∞

∫
Ω

dunk

dx
φd(x, y)|

≤ lim
k→∞
∥dunk

dx
∥L2(Ω)∥φ∥L2(Ω)

≤ lim
k→∞

1

nk

∥φ∥L2(Ω).
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This implies du
dx

= 0. Analogously, we get du
dy

= 0. Thus, u is constant. By

(4) and
∫
Ω
unk

= 0 we conclude u = 0. This leads to the contracdiction

1 = lim
k→∞
∥unk
∥2L2 = ∥u∥2L2 = 0.

□
Using this inequality one can prove the existence and uniquness of Pois-

son’s problem with pure Neumann boundary condition:

Poisson’s problem with Neumann boundary condition
Let H = {u ∈ W 1|

∫
u = 0} and f ∈ H. Find u ∈ H such that∫

Ω

∇u∇v =

∫
Ω

fv ∀v ∈ H.

One can prove that this weak solution of Possion’problem has the boundary
condition

du

dn
= 0

∣∣∂Ω.

4.3 Abstract Eigenvalue Problem

Let us assume that (X, a) and (Y, ⟨, ⟩) are Hilbert spaces, such that

X ↪→ Y

is a compact and dense embedding. (Embedding means that the mapping is
injective, linear and continuous.) Assume that X is an infinite dimensional
vector space. Let us consider the eigenvalue problem : Find u ∈ X,λ ∈ C
such that

a(u, v) = λ⟨u, v⟩ ∀v ∈ X.

Theorem 14. Then, there exists an infinite number of eigenvalues (λi)i∈N
with eigenvectors ui, ∥ui∥ = 1 such that

• 0 < λ1 ≤ λ2 ≤ ...→∞
This sequence contains only finite multiplicities.
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• (ui)i∈N are a− and ⟨., .⟩-orthogonal. (ui)i∈N is a Hilbert space basis of
Y .

• The following equation holds:

λ1 = min
v∈X

a(v, v)

⟨v, v⟩
.

Example 21. Consider the eigenvalue problem:

−△u = λu in Ω,

u = 0 on ∂Ω.

In case of Ω =]0, 1[2, the set of eigenvectors and eigenvalues is

uij = sin(iπx) sin(jπy), λij = π2(i2 + j2), i, j ∈ N.

Example 22. Consider the heat problem:

∂u

∂t
−△u = 0 in Ω,

u(t) = 0 on ∂Ω, ∀t ≥ 0,

u(0) = u0,

where u0 ∈ W̊ 1(Ω) is a given function.
Then, a Fourier-analysis with respect to the general eigenvectors of −△

implies that
lim
t→∞
∥u(t)∥L2 = 0. (5)

Let us prove (5). To apply Theorem 14, we choose

(X, a) =

(
W̊ 1(Ω), (u, v) 7→

∫
Ω

∇u∇v d(x, y)

)
,

(Y,<>) =

(
L2(Ω), (u, v) 7→

∫
Ω

uv d(x, y)

)
.

By Theorem 12 and Theorem 11, we can apply Theorem 14. Let (en)n∈N be
the corresponding eigenvectors wit eigenvalues (λn)n∈N. Since (en)n∈N is a
Hilbert space basis we can write

u0 =
∑
n∈N

encn.
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Then,

u(t) =
∑
n∈N

encne
−λnt

is the solution of the heat equation. Let ϵ > 0 be given. First choose q ∈ N
such that ∑

n≥q

|cn|2 <
ϵ2

2
.

Then, choose t′ such that ∑
n<q

∣∣cne−λnt
∣∣2 < ϵ2

2

for every t > t′. This implies

∥u(t)∥L2 =

∥∥∥∥∥∑
n∈N

encne
−λnt

∥∥∥∥∥
L2

< ϵ

for every t > t′.

4.4 Sobolev Spaces for Periodic Functions

Definition 22.

L2
periodic([−π, π[) := {u ∈ F(R) | u|]−π,π[ ∈ L2(]− π, π[) and u(x) = u(x+ 2π) ∀x ∈ R}

Let s ∈ N. Then, define

W s
periodic([−π, π[) := {u ∈ L2

periodic |
∂nu

∂xn
∈ L2

periodic([−π, π[) ∀n ≤ s}

Here, ∂u
∂x
∈ L2

periodic([−π, π[) means that there is a g ∈ L2
periodic([−π, π[) such

that ∫ π

−π

u
∂φ

∂x
dx = −

∫ π

−π

gφ dx ∀φ ∈ C∞(R) ∩ L2
periodic([−π, π[).

Analogously, define the Sobolev Space L2
periodic([−π, π[d), for d ∈ N.
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4.5 Fractional Sobolev Spaces for Periodic Functions

The set of functions

1

(
√
2π)d

ein⃗x⃗ = Bn⃗(x⃗), n⃗ ∈ Zd

forms a Hilbert-space basis of L2
C([−π, π[d).

Theorem 15. Let u =
∑

n⃗∈Zd an⃗Bn⃗(x). Then,

∂u

∂x
∈ L2

periodic ⇔
∑
n∈Z

∥an⃗ · n⃗∥22 <∞.

Furthermore, we get

u ∈ W k
periodic([−π, π[d) ⇔

∑
n⃗∈Zd

|an⃗|2(1 + ∥n⃗∥2k2 ) <∞

for every k ∈ N0.

Proof: Let us show this theorem for k in 1D.
Let us assume ∂u

∂x
∈ L2

C([−π, π[). This means∫ π

−π

∂u

∂x
φ(x)dx = −

∫ π

−π

∂φ

∂x
u(x)dx

for every φ ∈ C∞0 (]− π, π[). Now, we get∫ π

−π

∂φ

∂x
u(x) dx =

∑
n∈Z

an

∫ π

−π

Bn(x)
∂φ

∂x
dx

= −
∑
n∈Z

an i n

∫ π

−π

Bn(x)φ dx

Let bn be the Fourier coefficients of ∂u
∂x
. Then, we obtain∑

n∈Z

bn

∫ π

−π

Bn(x)φ dx =
∑
n∈Z

an i n

∫ π

−π

Bn(x)φ dx
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Let us choose a sequence of functions in C∞0 (] − π, π[) which converges in
L2(]− π, π[) to Bm. By this sequence, we get

bn = an i n.

This implies that ∑
n∈Z

|an|2n2 <∞.

End of proof.

Definition 23. Let u =
∑

n⃗∈Zd an⃗Bn⃗(x) and s > 0 a real positive number.
Then, define

u ∈ Hs
periodic([−π, π[d) :⇔

∑
n⃗∈Zd

|an⃗|2(1 + ∥n⃗∥2s2 ) <∞.

Hs
periodic is a Hilbert space with scalar product⟨∑

n⃗∈Zd

an⃗Bn⃗,
∑
n⃗∈Zd

bn⃗Bn⃗

⟩
:=
∑
n⃗∈Zd

an⃗b̄n⃗(1 + ∥n⃗∥2s2 ).

4.6 Trace Theorem

Let Ω ⊂ Rd a bounded domain with piecewise continuous differentiable
boundary. This means, that the boundary can be described by mappings

φ : [0, 1]→ ∂Ω,

where φ is continuous and piecewise continuous differentiable. Then, there
are different ways to define Sobolev spacesW p(Ω) andW p(∂Ω), where p ≥ 0.

Theorem 16. Let us assume that Ω is bounded and the boundary of Ω is
smooth enough. Furthermore, assume s ≥ 1

2
. Then, there exists a linear and

continuous mapping
T : W s(Ω)→W s− 1

2 (∂Ω)

and an extension operator

F : W s− 1
2 (∂Ω)→W s(Ω)
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such that
TF = Id.

This implies that T, F are linear and continuous and that

T (φ)(x) = φ(x) for x ∈ ∂Ω and φ ∈ C∞(Ω) ∩W s(Ω).

Example 23. Let us assume that f ∈ L2(Ω) and g ∈ W 1.5(∂Ω). Poisson’s
problem with inhomogeneous Dirichlet boundary conditions is:

Find u ∈ W 1(Ω) such that

−△u = f

T (u) = g.

To find the unique solution of this problem, consider the problem

−△w = f +△F (g)

T (w) = 0.

Observe that w ∈ H1(Ω) and T (w) = 0 is equivalent to w ∈
◦
W 1. Then,

the above homogenous Dirichlet boundary problem has a unique solution w ∈
H1(Ω). Now, u = w + F (g) is the solution of the inhomogeneous Dirichlet
boundary problem.

Theorem 17. Let s ≥ 1. Then, there exists a linear and continuous mapping

T : Hs
periodic([−π, π[2)→ H

s− 1
2

periodic([−π, π[
1)

such that

φ(x, 0) = T (φ)(x) ∀φ ∈ C∞(R2) ∩ L2
periodic([−π, π[2).

Proof: Let us prove the result for s = 1. For a > 0, we get

∞∑
m=1

1

a+m2
≤

∫ ∞

0

1

a+ x2
dx =

=
1

a

∫ ∞

0

1

1 +
(

x√
a

)2dx =
1

a

√
a arctan

x√
a

∣∣∞
0

=
1

a

√
aπ. =

1√
a
π.
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Choosing a = 1 + n2, this implies∑
m∈Z

1

1 + n2 +m2
≤ 1√

1 + n2
5π. (6)

Let φ ∈ Hs
periodic([−π, π[2) ∩ C(R2). Then, (see Heuser, Lehrbuch der

Analysis) the Fourier sequence

φ(x, y) =
∑

n,m∈Z

an,m
1

2π
ei(nx+my)

converges absolutly for every (x, y). This implies that

φ(x, 0) =
∑
n∈Z

1

2π
einx

∑
m∈Z

an,m

for every x. This implies that

bn =
1√
2π

∑
m∈Z

an,m

are the Fourier coefficients of φ(x, 0).
Now, let us prove the inequality:

∥φ(x, 0)∥2
H1− 1

2
=

∑
n∈Z

(1 + n2(s− 1
2
))|bn|2 (7)

≤ C
∑

n,m∈Z

(1 + (n2 +m2)s)|an,m|2 = C∥φ∥2H1

for s = 1. Using (6), this inequality follows by∑
n∈Z

(1 + |n|1)|bn|2 =

=
∑
n∈Z

(1 + |n|1) 1
√
2π

2

(∑
m∈Z

an,m
√
1 + n2 +m2

(√
1 + n2 +m2

)−1
)2

≤

≤
∑
n∈Z

(1 + |n|) 1

2π

(∑
m∈Z

(
1 + n2 +m2

)
|an,m|2

)(∑
m∈Z

(
1 + n2 +m2

)−1

)
≤

≤ 5π

2π

∑
n,m∈Z

(1 + n2 +m2)|an,m|2(1 + |n|)
1√

1 + n2

≤ 8
∑

n,m∈Z

(1 + (n2 +m2)1)|an,m|2.
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In the last eniquality, we applied the formula

1 + n√
1 + n2

≤ 2⇐ 1 + 2n+ n2 ≤ 2(1 + n2)⇐ 0 ≤ 1− 2n+ n2 = (1− n)2.

Thus, we have proved (7) for every function φ ∈ Hs
periodic([−π, π[2). Since

Hs
periodic([−π, π[2)∩C∞(R2) is dense in Hs

periodic([−π, π[2), (7) holds for every
u ∈ Hs

periodic([−π, π[2).
End of proof.

4.7 Symmetric Extension

Definition 24. Let Ω =]0, π[2 and T =] − π, π[2. Then let us define the
extension operator

˜: L2(Ω) → L2(T )

u 7→ ũ(x, y) =


u(x, y) if x, y ≥ 0
−u(x, y) if x ≥ 0, y ≤ 0
−u(x, y) if x ≤ 0, y ≥ 0
u(x, y) if x, y ≤ 0


= sgn(x, y) · u(|x|, |y|).

Let f ∈ L2(Ω). Let us consider the two problems:

• Find u ∈
◦
W 1(Ω) such that∫

Ω

∇u∇v d(x, y) =

∫
Ω

fv d(x, y) ∀v ∈
◦
W 1(Ω).

• Find u′ ∈ H1
periodic such that∫

T

∇u′∇v d(x, y) =

∫
T

f̃v d(x, y) ∀v ∈ H1
periodic(T ).

Observe that ũ = u′.
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4.8 Regularity of Elliptic Equations

Definition 25. Let Ω ⊂ R2 a bounded domain. Poisson’s equation with
Dirichlet b.c. is called W 2-regular, if for every f ∈ L2(Ω), there exists a
u ∈ W 2(Ω) such that

−△u = f on Ω

u = 0 on ∂Ω.

Theorem 18. Let Ω ⊂ R2 a bounded domain with piecewise continuous
differentiable boundary. Furthermore assume that all interior angles of the
boundary are smaller than π. Then, Poisson’s equation is W 2-regular.

Theorem 19. Let T =] − π, π[2. Poisson’s equation is H2
periodic-regular in

the following sense:
For every f ∈ L2

periodic(T ),
∫
T
f = 0, there exists a u ∈ H2

periodic(T ) such
that

−△u = f on R2∫
T

u = 0.

Proof: Let f =
∑

n,m∈Z an,mBn,m. Since
∫
T
f = 0, we get a0,0 = 0.

Now, define

bn,m =

{
0 if n = m = 0
an,m

n2+m2

Then, u =
∑

n,m∈Z bn,mBn,m is the solution of Poisson’s equation. Since

∥u∥2H2 =
∑

n,m∈Z

(1 + (n2 +m2)2)|bn,m|2 =
∑

n,m∈Z

(1 + (n2 +m2)2)|an,m|2
1

(n2 +m2)2

≤ 2
∑

n,m∈Z

|an,m|2 = ∥f∥2L2 .

End of proof.
By the extension concept in Section 4.7, we get the following theorem

Theorem 20. Let Ω =]0, π[2. Then, Poisson’s equation with Dirichlet bound-
ary conditions is W 2-regular.
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4.9 Proof of Compact Embedding

Theorem 21. H1
periodic(]−π, π[) is compactly embedded in L2

periodic(]−π, π[).

Proof:
Let un =

∑
k∈Z a

n
kBk be a sequence such that ∥un∥H1 ≤ 1 ∀n ∈ N. Then,

the following inequality holds∑
k∈Z

|ank |2(1 + k2) ≤ 1.

This implies |ank |2 ≤ 1
1+k2

∀n ∈ N.
Let us construct a subsequence as follows

• Choose subsequence such that(
a
n1
s

1

)
s∈N

converges, where (n1
s)s∈N is a strictly monotonic increasing sequence.

• Choose a strictly monotonic increasing subsequence (nl+1
s )s∈N from the

sequence (nl
s)s∈N such that (

an
l+1
s

l+1

)
s∈N

converges.

• Define ms = ns
s. Then, the sequence

(ams
k )s∈N =

(
a
ns
s

k

)
s∈N

converges for every k. Define

bk = lim
s→∞

ams
k .

Let us define the function
w =

∑
k∈Z

bkBk.

This function is in L2(Ω) since∑
k∈Z

|bk|2 ≤
∑
k∈Z

1

1 + k2
≤ 10.
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The proof of the theorem is complete, if we can show

lim
s→∞
∥w − ums∥L2(Ω) = 0. (8)

To prove this convergence, let ϵ > 0 be given. Now, choose q ∈ N such that∑
|k|≥q

1

1 + k2
<

ϵ

8
.

This implies ∑
|k|≥q

|ams
k − bk|2 ≤

∑
|k|≥q

4

1 + k2
≤ ϵ

2
.

By construction, we get

lim
s→∞

∑
|k|<q

|ams
k − bk|2 = 0.

This implies

lim
s→∞

∑
k∈Z

|ams
k − bk|2 = 0.

This completes the proof of (8).
End of Proof.

5 Distribution Theory

5.1 Basic Theory

Definition 26. A set K ⊂ Rd is compact if it is closed and bounded.

Definition 27 (Convergence of Test Functions). Let Ω ⊂ Rd open and
D(Ω) := C∞0 (Ω). Let (Φk)k∈N be a sequence in D(Ω) and Φ ∈ D(Ω). Then,
(Φk)k∈N is called to be convergent to Φ ∈ D(Ω), if the following properties
hold:

1. There is a compact set K ⊂ Ω such that supp(Φk) ⊂ K.

2. limk→∞ ∥DαΦk −DαΦ∥∞ = 0 for every multi-index α.
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Furthermore, let us write

Φk
D→ Φ

if (Φk)k∈N converges to Φ ∈ D(Ω).

Definition 28. A linear mapping T : D(Ω)→ R is called distribution, if

Φk
D→ Φ ⇒ T (Φk)

k→∞−→ T (Φ).

Let D′ be the set of all distributions.

Example 24. Let f : Ω→ R be a local integrable function. This means that∫
K
|f(x)|dx <∞ ∀K ⊂ Ω compact.

Then, the distribution corresponding to f is:

Tf : Φ 7→
∫
Ω

fΦdx,

Tf (Φ) =

∫
Ω

fΦdx.

Therefore, distrubution are called generalized functions!

Let us prove that Tf is a distribution. First, we have to show that
∫
Ω
|fΦ|dx <

∞: ∫
Ω

|fΦ|dx =

∫
supp(Φ)⊂Ω

|fΦ|dx ≤

<∞︷ ︸︸ ︷∫
supp(Φ)

|f(x)|dx ·
<∞︷ ︸︸ ︷
∥Φ∥∞

Now, assume Φk
D→ Φ. Then, we get

lim
k→∞
|Tf (Φk)− Tf (Φ)| ≤ lim

k→∞
|
∫
Ω

fΦkdx−
∫
Ω

fΦdx|

≤ lim
k→∞
|
∫
K

(fΦk − fΦ)dx|

≤ lim
k→∞

∣∣∣∣∫
K

fdx

∣∣∣∣ ∥Φk − Φ∥∞ = 0,

where K compact such that supp(Φk) ⊂ K ⊂ Ω. □

Example 25. The delta distribution is:

δ : D → R
Φ 7→ Φ(0).
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Homework: Prove that δ is a distribution!

Formula 4.

T +G ∈ D′,

λT ∈ D′

for every T,G ∈ D′ and λ ∈ R.

Definition 29. Let T ∈ D′, then

dT

dx
: D → R

Φ 7→ −T
(
dΦ

dx

)
is defined to be the derivative of T .

Homework: Show that dT
dx

is a distribution.

Example 26. Let f ∈ C1(Ω). Then

dTf

dx
= T df

dx
.

Proof:

dTf

dx
(Φ) = −Tf (

dΦ

dx
)

= −
∫
Ω

f
dΦ

dx
dx =

∫
Ω

df

dx
Φ dx

= T df
dx
(Φ) ∀Φ ∈ D(Ω).

□

Example 27. Let

H(x) =

{
0 for x ≤ 0
1 for x > 0

.

Then, the following formula holds

dH

dx
= δ.
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Proof:

dH

dx
(Φ) = −H

(
dΦ

dx

)
= −

∫ ∞

−∞
H
dΦ

dx
dx

= −
∫ ∞

0

dΦ

dx
= −Φ

∣∣∞
0

= Φ(0) = δ(Φ).

□

Definition 30. Let T ∈ D′ and Tn ∈ D′, n ∈ N be a sequence of distributions.
Then, (Tn)n∈N converges to T , if

lim
n→∞

Tn(Ψ) = T (Ψ)

for every Ψ ∈ D. Let us write limn→∞ Tn = T.

Remark: LetM be the mollifier function in Example 16. Then, define

Tn := T(nM(·∗n))

One can show that
lim
n→∞

Tn = δ.

5.2 Convolution and Applications

Definition 31. Convolution,(German: Faltung) Let T ∈ D′ und φ ∈ D.
Then the convolution is defined by

(T ∗ φ)(x) = T (φ(x− ·)).

Example 28. Let f : Ω→ R be a local integrable function. Then,

(Tf ∗ φ)(x) = Tf (φ(x− ·))

=

∫
Ω

f(y)φ(x− y)dy.

This shows that the convolution of distrubutions (generalized functions) gen-
eralizes the concept of convolutions for classical functions!
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Formula 5. Let T be a distrubution on Rd and φ ∈ D. Then, the following
formulas hold:

T ∗ φ ∈ C∞(Rd).

Dα(T ∗ φ) = DαT ∗ φ = T ∗Dαφ.

Let δ be the delta distribution. Then,

δ ∗ φ = φ.

Let us prove only the last formula:

(δ ∗ φ)(x) = δ(y 7−→ φ(x− y)) = φ(x− 0) = φ(x).

□

Definition 32. Let D =
∑m

s=0 as
ds

dxs , as ∈ C, be a differential operator.
F ∈ D′ is called fundamental solution, if DF = δ.

Theorem 22. Let F ∈ D′ be a fundamental solution of the differential op-
erator D =

∑m
s=0 as

ds

dxs , as ∈ C. Furthermore, let f ∈ D.
Then, u := F ∗ f is a solution of the equation

Du = f.

Proof:
Du = D(F ∗ f) = DF ∗ f = δ ∗ f = f.

□

Example 29. Consider the differential equation

d2

dx2
u = f,

where f ∈ D. The fundamental solution is:

F =

{
0 for x ≤ 0
x for x > 0

,

since d2

dx2F = d
dx
H = δ, where

H =

{
0 for x ≤ 0
1 for x > 0

.
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Thus, a solution of the above differential equation is obtained by

u(x) = (F ∗ f)(x) =

∫ ∞

−∞
F (y)f(x− y)dy

u(x) =

∫ ∞

0

yf(x− y)dy.

Literature see [1], [2], [7], [4], [5], [6], [3].
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