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1 Basic Properties of a Laser

1.1 Elements of a Laser

A laser consists mainly of the following three elements (see Figure 1) :

1. Laser medium: collection of atoms, molecules, ions or a semiconductor
crystal:

• gas laser

• solid state lasers

• semiconductor lasers

• fiber laser

2. Pumping process to excite the atoms (molecules) into higher quantum
mechanical energy levels.

3. Suitable optical feedback elements

• as a laser amplifier (one pass of the beam)

• as a laser oscillator (bounce back and forth of the laser beam)

1. Population inversion (see Figure 19)

2. Amplification of light (electromagnetic radiation) within a certain nar-
row band of frequencies. The amplification depends on the population
inversion.

3. Oscillation: There must be more gain than loss of the beam. Reasons
of loss are:

• loss by medium

• not accurate construction of the mirrors

• output

4. Eigenmodes of a laser (e.g. Gauss modes , see Figure 3 ).

• deformation of the crystal

• gain, lenses

• different refraction index
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Figure 1: Basic Properties of a Laser

1.2 Atomic Energy Levels, Spontaneous Emission and

Stimulated Transition

Light of a certain wavelength is emitted if a transition between two energy
levels E2 → E1 takes place
“ jump of electrons “ .

Formula 1. The frequency of the emitted light is

ω21 =
E2 −E1

~
, (1)

where

~ =
h

2π
, h = 6.626 · 10−34Js Planck’s constant.

Notation for wavelength: 1µm = 10000A
Due to this formula, the energy levels can be described by

• 1
λ

in cm−1 where λ is the wavelength of the corresponding wave and

• by a value with unit eV .
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Figure 2: Population inversion

Transition from E2 → E1 takes place
only with a little additional energy:

• spontaneous emission: energy from small movements of the atoms

• stimulated emission: energy from absorption

Let Ni be the number of atoms with energy level Ei.
Within a short period of time a certain percentage of atoms make a

transition to a lower level.
This can be described by the following ODE:

dN2

dt

∣

∣

∣

spon
= −γN2 = −N2

τ
,

where

• γ is called energy-decay rate and

• τ = 1
γ

is called lifetime.
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Figure 3: Hermite-Gaussian Modes

The solution of this ODE is:

N2(t) = N2(0)e−
t
τ

If an external radiation signal is applied to the atom, then stimulated
transitions occur: “ atom reacts like an antenna “.
Let n(t) be the photon density of the radiation.
Then, there is a constant K such that (see Figure) 4

dN2

dt

∣

∣

∣

stim.upward
= Kn(t)N1(t), (absorption)

dN2

dt

∣

∣

∣

stim.downward
= −Kn(t)N2(t) (stimulated emission).

This implies:

dN2

dt

∣

∣

∣

total
= Kn(t)(N1(t) −N2(t)) − γ21N2(t) = −dN1

dt

∣

∣

∣

total
.

The total rate of signal stimulated transition between two energy levels
is:

Kn(t) · (N1(t) −N2(t)).

The energy transfer of stimulated transition by a signal is

dUa

dt
= Kn(t)(N1(t) −N2(t)) · ~ω,
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Figure 4: Stimulated transition

where Ua is the energy density.
The energy transfer changes the photon density of the signal by:

dn(t)

dt
= −K(N1(t) −N2(t)) · n(t). (2)

• Absorption (attenuation): N1(t) > N2(t)

• Population inversion: N1(t) < N2(t)
→ net amplification of a signal

1.3 Pumping Process and Population Inversion

Population inversion means that

N1 < N2

where Ni is the number of atoms with energy level Ei, such that E2 >
E1. In equilibrium there is no population inversion. The reason for this is
Boltzmann’s Principle of equilibrium:
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Theorem 1 (Boltzmann’s Principle). In case of equilibrium the populations
N1 and N2 depend on the temperature:

N2

N1
= exp

(

−E2 − E1

kT

)

.

This implies
N1 −N2 = N1

(

1 − e−~
ω

kT

)

.

To obtain population inversion, a pumping process is needed, which de-
stroys the state of equilibrium. Figure 5 shows a model of three level pumping
process.

Let

• Rp0 be the pumping rate (atoms/sec),

• ηp the pumping efficiency such that Rp = ηpRp0 and

• γij the decay rate from level Ei to Ej .

The following formulas describe the pumping process (without stimulated
transitions):

dN2

dt
= Rp − γ21N2

dN1

dt
= γ21N2 − γ10N1

If dNi

dt
= 0, then we get

N2 > N1 (population inversion) ⇔ τ10 < τ21

1.4 Example of Scalar Rate Equations

Let us consider a four level pumping process according [7].
Let us abbreviate

N = N2 −
g2N1

g1
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Figure 5: Three-level laser pumping process

then, the scalar rate equations are

∂N

∂t
= −γNnσc− N +Ntot(γ − 1)

τf
+Rp(Ntot −N) (3)

∂n

∂t
= Nnσc− n

τc
+ S. (4)

The unknowns of these equations are

• N : population inversion N = N2 − g2N1

g1
.

• n: photon density

Parameters for Ruby are (see [7] section 2.2):

• g1, g2: degeneracy factors for quantum energy levels of Ruby:

– g(N1) = 4

– g(N2(R1)) = 2, where R1 is the green band with wavelength
6943A
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Figure 6: Four-level laser pumping process

– g(N2(R2)) = 2, where R2 is the blue band with wavelength 6929A

• σ: stimulated emission cross section σ21 = 2.5 · 10−20cm2

• Ntot: 1.58 · 1019ions/cm3 is the maximal population inversion.

• Rp0: pumping rate atoms/sec

• ηp: Quantum efficiency 0.7

• τf : 3ms (see page 15 in [7]) for R1 line.

• S is a small value needed for the start up of a laser.

• τc: decay rate of photons.

1.5 Laser Amplification and Oscillation Condition

Let us assume that the optical wave can be modeled by

Ẽ(z, t) = exp(jωt)E(z)
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E(z) = exp(−jkz + αmz) = exp(−jkz)u(z)
u(z) = exp(αmz).

This implies that

Ẽ(z, t) = exp(jωt) · exp(−jkz + αmz)

Thus, a constant phase shift is obtained at ωt = kz.
Since t = z/c in vacuum, we get

k =
ω

c
.

(By k2 = µǫω2 in Section 3, we obtain c = 1√
µǫ

in vacuum.)

Now, let us model the optical wave by

Ẽ(z, t) = exp(jωt)E(z)

E(z) = exp(−jωz/c + αmz) = exp(−jωz/c)u(z)
u(z) = exp(αmz).

An increase of the photons leads to a gain of the optical wave:

|E(z)|2 = |E0|2 exp(+2αmz)

for the intensity of the optical wave, which is proportional to the photon
density. Let ri be the reflection coefficient at the mirrors Mi, i = 1, 2.
Let Lm be the length of the amplification medium.
Let L be the length of the laser medium.
Figure 7 shows one round trip of the optical wave.

Then, the minimal amplification by one round trip is:

exp(4αmLm)

and the round trip phase shift is:

exp(−2jωL/c)

Then, we get
r1r2 exp(2αmLm − j2ωL/c) = 1.
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This implies

αm =
1

2LM

ln

(∣

∣

∣

∣

1

r1

∣

∣

∣

∣

·
∣

∣

∣

∣

1

r2

∣

∣

∣

∣

)

The energy density of the electrical field is (see [2]):

ǫ

2
|E|2

Thus, by (1), we obtain

n(z) =
ǫ

2~ω
|E|2 =

ǫ

2~ω
|E0|2 exp(+2αmz)

Since z = ct, we obtain

n(t) =
ǫ

2~ω
|E|2 =

ǫ

2~ω
|E0|2 exp(+2αmct).

By (2), we get
K(N2 −N1) = 2αmc (5)

Consequences:

2ωL/c ∈ 2πZ ⇒ only certain frequencies!

|r1r2| exp(2αmLm) = 1 ⇒ N2 −N1 ≥
c

K

1

2LM

ln

(∣

∣

∣

∣

1

r1

∣

∣

∣

∣

·
∣

∣

∣

∣

1

r2

∣

∣

∣

∣

)

This is the threshold inversion population (density).

2 Numerical Discretization of a Scalar Rate

Equation

Consider the equations (3) and (4) according section 1.4

∂N

∂t
= −γNnσc− N +Ntot(γ − 1)

τf
+Rp(Ntot −N)

∂n

∂t
= Nnσc− n

τc
+ S

The initial values are

N(0) = N0 and n(0) = n0.

To discretize the unknowns
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r1 r2

laser medium

Lm
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Figure 7: Round trip in laser resonator

• N : population inversion N = N2 −N1.

• n: photon density

let us use an explicit / implicit Euler discretization with
meshsize τ .

Let

• Ns be the approximation of N(τs) and

• ns be the approximation of n(τs) .

We need a discretization which guarantees that

ns > 0 and Ns > 0

independent of s ∈ N. Let us assume that ns > 0 and Ns > 0 for a fixed s.

• Formula for Ns+1: The factor 1/τ +γ ∗ns ∗σ ∗ c+1/τf +Rp is positive.
Therefore we apply a pure implicit method:

Ns+1 = (Ns/τ−Ntot∗(γ−1)/τf+Rp∗Ntot)/(1/τ+γ∗ns∗σ∗c+1/τf+Rp);

• Formula for ns+1:
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– If cσNs − 1/τc > 0, then we apply an explicit method:

ns+1 = ns + τ ∗ (ns(cσNs − 1/τc) + S)

– If cσNs − 1/τc ≤ 0, then we apply an implicit method:

ns+1 = (ns/τ + S)/(1/τ − cσNs + 1/τc)

This discretization guarantees that ns+1 > 0 and Ns+1 > 0. By induction we
get ns > 0 and Ns > 0 for every s ∈ N.

Figure 8 depicts a numerical result.

n(t) photon density N(t) population inversion

Figure 8: Numerical result

The peak of the photon density after switching on the laser resonator
leads to the construction of pulsed lasers.

3 Maxwell’s Equations and Helmholtz’s Equa-

tion

The physical variables of Maxwell’s equations are the 3D-vectors (see [?]):

~E = electric field intensity (volts / meter)

~D = electric field density (coulombs / meter2)

~H = magnetic field intensity (amperes / meter)

~B = magnetic field density (webers / meter2)

~J = electric current density (amperes / meter2)

14



the scalar value

ρ = electric charge density (coulombs / meter3)

and the material parameter

ǫ = permittivity (farads/meter)

µ = permeability (henry/meter)

∇× ~E = −∂ ~B
∂t

Faraday’s law

∇× ~H = ∂ ~D
∂t

+ ~J Maxwell-Ampere law

∇ · ~D = ρ Gauss’s law

∇ · ~B = 0 Gauss’s law - magnetic

∇ · ~J = −∂ρ

∂t
equation of continuity

and constitutive relations:

~D = ǫ ~E, ~B = µ ~H, ~J = σ ~E

By the assumptions:

• µ is roughly constant.

• ρ = 0

• J = 0

we get

∇× ~E = −∂ ~B
∂t

Faraday’s law

∇× ~H = ∂ ~D
∂t

Maxwell-Ampere law

∇ · ~D = 0 Gauss’s law

∇ · ~B = 0 Gauss’s law - magnetic
~D = ǫ ~E
~B = µ ~H

Since µ is constant, we get from Maxwell’s equations:

∇×∇× ~E = −µ ∂
∂t

∇× ~H

= −µ ∂
∂t

(

∂ ~D

∂t
+ ~J

)

.
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Thus, we get

∇×∇× ~E = −µ ∂
2

∂t2

(

ǫ ~E
)

− µ
∂

∂t
~J.

Now, by ~J = 0, we get the vector Helmholtz equation:

∇×∇× ~E = −µ ∂
2

∂t2

(

ǫ ~E
)

.

Let us assume the ǫ is constant. Then, we get

ǫ∇ · ~E = ∇ · ~D = ρ = 0.

This implies
∇(∇ · ~E) = 0. (6)

But, ǫ is not constant! Therefore, we assume (6).
Then, we get

∇×∇× ~E = ∇(∇ · ~E) −△ ~E = −△ ~E

Furthermore, we assume that
ǫ is constant with respect to time.

Now, the vector-Helmholtz equation

∇×∇× ~E = −µ ∂
2

∂t2

(

ǫ ~E
)

.

and the assumption (6) imply

−△ ~E = −µ ∂
2

∂t2

(

ǫ ~E
)

.

Assumption (6) is satisfied for the TE-wave (transversal electric wave):

~E(x, y, z) = E(x, y, z)ex −E(y, x, z)ey

For this wave, we get the scalar Helmholtz equation:

−△E = −µǫ ∂
2

∂t2
(E) . (7)
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Let us assume that E is time periodic. This means:

E(x, y, z, t) = exp(iωt)E(x, y, z).

Inserting in the scalar Helmholtz equation, leads to

−△E − k2E = 0,

where k2 = µǫω2.
This is the Helmholtz equation for time periodic solutions.

4 Beam Propagation

4.1 Paraxial Approximation

The paraxial approximation is an approximation of the scalar Helmholtz
equation.

(△ + k2)E(x, y, z) = 0.

Let k0 be an average value of k. Inserting the ansatz

E = e−ik0zΨ(x, y, z)

in the scalar Helmholtz equation leads to

−△Ψ + 2ik0
∂Ψ

∂z
+ (k2

0 − k2)Ψ = 0.

In the case that k = k0 is constant, we obtain

−△Ψ + 2ik0
∂Ψ

∂z
= 0.

In the paraxial approximation, we neglect the term ∂2Ψ
∂z2 . This leads to:

−∂
2Ψ

∂x2
− ∂2Ψ

∂y2
+ 2ik

∂Ψ

∂z
= 0.
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4.2 Gauss Mode Analysis

4.2.1 The Lowest Order Gauss-Mode

To solve the paraxial approximation, let us make the ansatz

Ψ(x, y, z) = A(z) exp

(

−ikx
2 + y2

2q(z)

)

,

where A(z) and q(z) are unknown functions.
This leads to:

∂Ψ

∂x
= A(z) exp

(

−ikx
2 + y2

2q(z)

)(

−ik 2x

2q(z)

)

∂2Ψ

∂x2
= A(z) exp

(

−ikx
2 + y2

2q(z)

)(

−k2 x2

q2(z)

)

+A(z) exp

(

−ikx
2 + y2

2q(z)

)(

−ik 1

q(z)

)

∂Ψ

∂z
= A′(z) exp

(

−ikx
2 + y2

2q(z)

)

+A(z) exp

(

−ikx
2 + y2

2q(z)

)

(−ik(x2 + y2))(−1)
1

2q2
q′.

Thus, we get

0 = −∂
2Ψ

∂x2
− ∂2Ψ

∂y2
+ 2ik

∂Ψ

∂z

= A(z) exp

(

−ikx
2 + y2

2q(z)

)

·
(

k2 1

q2
(x2 + y2) − k2 1

q2
q′(x2 + y2) + 2ik

1

q
+ 2ik

A′

A

)

0 =
k2

q2
(x2 + y2)(1 − q′) + 2ik

(

1

q
+
A′

A

)

.

This equation leads to the ODE’s

∂q

∂z
= 1 and

∂A

∂z
= −A · 1

q
.

The unique solutions of these equations are

18



• q(z) = q0 + z, where q0 and z0 are constants.

• A(z) = A0
q0

q(z)
.

Thus, lowest order Gauss mode is

E(x, y, z) = e−ikzΨ(x, y, z)

= A0
q0

q0 + z
exp

(

ik

(

−z − x2 + y2

2(q0 + z)

))

Let us normalize the amplitude of this mode by q0A0 = 1. Then,

E(x, y, z) =
1

q0 + z
exp

(

−ik
(

z +
x2 + y2

2(q0 + z)

))

Now, let us study the spot size, bream waist and the energy of the lowest
order Gauss mode.

Definition 1. The spot size is defined by the radius r such that

e−1 =
|E(z, r)|
|E(z, 0)|

Write
1

q0 + z
=

1

q(z)
=

1

R(z)
− i

λ

πw(z)

where R(z) and w(z) are real valued functions. This means

1

q0 + z
= (Re(q0) + z)

1

Im(q0)2 + (Re(q0) + z)2
− i

Im(q0)

Im(q0)2 + (Re(q0) + z)2

and

1

R(z)
= (Re(q0) + z)

1

Im(q0)2 + (Re(q0) + z)2

R(z) =
Im(q0)

2 + (Re(q0) + z)2

Re(q0) + z

= (Re(q0) + z)

(

1 +
Im(q0)

2

(Re(q0) + z)2

)2

(8)

w(z) =
λ

π

Im(q0)
2 + (Re(q0) + z)2

Im(q0)
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=
λ

π

(

Im(q0) +
(Re(q0) + z)2

Im(q0)

)

(9)

(10)

−Re(q0)
z

w(z)

Figure 9: Beam waist of a Gaussian beam.

Phase shift: exp
(

−ik
(

z + x2+y2

2R(z)

))

By this analysis of the Gaussian beam, we get:

• Phase shift: The phase shift of the beam E(x, y, z) behaves like

exp

(

−ik
(

z +
x2 + y2

2R(z)

))

• Spot size: The spot size is w(z).

• Figure 9 shows the beam waist w(z).

Now, let us analyze the energy of the beam at every slice z =constant.
To this end, observe that

|q0 + z|2 =
π|Im(q0)|

λ
|w(z)|

∫

R2

| exp(−b(x2 + y2))|2d(xy) =

∫ ∞

0

∫ 2π

0

exp(−2br2)r dϕdr

= 2π
1

−4b
exp(−2br2)

∣

∣

∣

∞

0

=
π

2b
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∫

R2

|E|2d(xy) =

∣

∣

∣

∣

A0q0
q0 + z

∣

∣

∣

∣

2 ∫

R2

∣

∣

∣

∣

exp

(

−ik
(

x2 + y2

2(q0 + z)

))∣

∣

∣

∣

2

=

∣

∣

∣

∣

A0q0
q0 + z

∣

∣

∣

∣

2 ∫

R2

∣

∣

∣

∣

exp

(

−λk
π

(x2 + y2)

w(z)

)∣

∣

∣

∣

2

=

∣

∣

∣

∣

A0q0
q0 + z

∣

∣

∣

∣

2
π

2

π

λk
|w(z)|

=
|A0q0|2

λ|Im(q0)|
π

|w(z)|
π

2

π

λk
|w(z)|

=
|A0q0|2
|Im(q0)|

π

2

π2

λ2k

This shows that the energy
∫

R2

|E|2d(xy) =
|A0q0|2
|Im(q0)|

π

2

π2

λ2k

is independent of z.

4.2.2 Gauss Mode in an Aperture

There exists several types of resonators (see Figure 11). Here, let us study
a one way resonator. Other resonators can be transformed to a one way
resonator.

This means that a beam travels from left to right and that the beam at
the right points z = L travels directly to the first point z = 0.

Let Ω = Ω2× [0, L] be a res-
onator geometry.
Let us assume that there are
n apertures in the res-
onator.
The start points of these
apertures are

0 = z0 ≤ z1 ≤ z2 ≤ ... ≤ zn = L.

z0 z1
z2

z3
z4

z5
z6

z7

free space

lense

free space

mirror

free space

lense

free space

mirrorstart

Let us shift the origin of the Gauss-modes in the resonator to these points
such that

Ei(x, y, z) = Ai

1

qi + (z − zi)
exp

(

−ik
(

(z − zi) +
x2 + y2

2(qi + (z − zi))

))
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two mirror resonator

three mirror resonator

theoretical one way resonator

Figure 10: Types of resonators.

where Ai := Aiqi.
Then, Ei(x, y, z) is the approximation of the electrical field in the subdo-

main

Ω2 × ]zi−1, zi[ if zi−1 6= zi

Ω2 × [zi−1, zi] if zi−1 = zi

The change of the Gauss-mode is described by ABCD matrices

Mi =

(

Ai Bi

Ci Di

)

Then, the beam parameter qi changes as follows

qi =
Aiqi−1 +Bi

Ciqi−1 +Di
=: Mi[qi−1].

Lemma 1.

Mi+1[Mi[qi−1]] = (Mi+1Mi)[qi−1]
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This lemma can be proved by a direct calculation.
Another way to prove this lemma is to use that ABCD matrices describe

the behavior of rays. To this end, one has to apply the mapping

(

rin

r′in

)

7→ q =
rin

r′in
.

Then, the above lemma follows by the formula of matrix multiplication.
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4.2.3 Ray Optics and ABCD Matrix

Originally, ABCD matrices were used to describe the behavior of rays in
optical apertures.

An optical ray can be described by

• the radius r(z) and

• the slope r′(z).

The change of an optical ray is described by

(

rout

r′out

)

=

(

A B
C D

)(

rin
r′in

)

Example 1 (Ray-matrix of free space).

(

rout
r′
out

)

=

(

1 L
n0

0 1

)(

rin
r′
in

)

Here, observe that the refraction index is n0 = c
v
, where v is the velocity

of the optical wave in the medium and c is the velocity in vacuum.

Ln0

rin

rout

Figure 11: Ray in free space.
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4.2.4 ABCD Matrix of free space

By
Ei(x, y, z) = Ei−1(x, y, z))

we obtain

Ai

1

qi + (z − zi)
exp

(

−ik
(

(z − zi) +
x2 + y2

2(qi + (z − zi))

))

= Ai−1
1

qi−1 + (z − zi−1)
exp

(

−ik
(

(z − zi−1) +
x2 + y2

2(qi−1 + (z − zi−1))

))

⇓
qi + (z − zi) = qi−1 + (z − zi−1)

and Ai exp(−ik(z − zi)) = Ai−1 exp(−ik(z − zi−1))

⇓
qi = qi−1 + (zi − zi−1)

and Ai = Ai−1 exp(ik(−(zi − zi−1)))

This shows

Formula 2 (ABCD matrix of free space).

(

A B
C D

)

=

(

1 zi − zi−1

0 1

)

and
Ai = Ai−1 exp(ik(−(zi − zi−1)))
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rr

s2

s1

R2 R1

n2, λ2n1, λ1 n1, λ1

d

Figure 12: Phase shift of a lense.

4.2.5 ABCD Matrix of a lense

In ray optics the ABCD matrix of a lense of calculated by Snellius law:

ni sin Θi = nt sin Θt,

where the angles Θi and Θt are defined by the following figure:

Θt

Θi
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Let us shift the lense such that zi−1 = zi = 0. The lense leads to a phase
shift

exp(−i2πϕ(r))

where r =
√

x2 + y2 such that

Ei(x, y, z) = Ei−1(x, y, z)) exp(−i2πϕ(
√

x2 + y2)) (11)

Let us first calculate this phase shift. By Figure 12, we see that

s2
2 + r2 = R2

2

s2
1 + r2 = R2

1.

Observe the R1 +R2 − d is the distance of the to focus points of the lense.
Let us compose the beam by several rays. Then, the length of the way of

the ray through the media n1 is:

(R1 +R2 − d) − s1 + (R1 +R2 − d) − s2

= 2(R1 +R2 − d) − s1 − s2

and the length of the way of the ray through the media n2 is:

R1 +R2 − d − (2(R1 +R2 − d) − s1 − s2)

= −(R1 +R2 − d) + s1 + s2.

To calculate, the phase shift we have to divide by the wavelength λ1 and
λ2, respectively:

2(R1 +R2 − d) − s1 − s2

λ1
+

−(R1 +R2 − d) + s1 + s2

λ2

= Q+ (s1 + s2)

(

1

λ2
− 1

λ1

)

= Q+ (s1 + s2)
1

λ1

(

λ1

λ2

− 1

)

,

where Q is a constant term independent of r. Thus, the principal part of the
phase shift is contained in

(s1 + s2)
1

λ1

(

λ1

λ2

− 1

)
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=

(

√

R2
1 − r2 +

√

R2
2 − r2

)

1

λ1

(

λ1

λ2
− 1

)

Taylor
≈

(

R1 −
1

2

r2

R1
+R2 −

1

2

r2

R2

)

1

λ1

(

λ1

λ2
− 1

)

=

(

R1 +R2 −
1

2
r2

(

1

R1

+
1

R2

))

1

λ1

(

λ1

λ2

− 1

)

This shows that the principal part of the phase shift is

ϕ(r) = −1

2

r2

f

1

λ1
,

where 1
f

=

(

λ1

λ2
− 1

)(

1

R1
+

1

R2

)

.

Furthermore, we define k to be

k =
2π

λ1

.

Thus, the ansatz (12) leads to

Ai

1

qi + z
exp

(

−ik
(

z +
r2

2(qi + z)

))

|z=0

= Ai−1
1

qi−1 + z
exp

(

−ik
(

z +
r2

2(qi−1 + z)

))

· exp

(

−2πi

(

−1

2

r2

f

1

λ1

))

|z=0

⇓
k

1

qi
= k

1

qi−1
− 2π

1

f

1

λ1

and
Ai

qi
=

Ai−1

qi−1

⇓
1

qi
=

1

qi−1
− 1

f

and Ai = Ai−1
qi
qi−1

⇓
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qi =
qi−1

− 1
f
qi−1 + 1

and Ai = Ai−1
1

1 − 1
f
qi−1

This shows

Formula 3 (ABCD matrix of a lense).

(

A B
C D

)

=

(

1 0
− 1

f
1

)

and Ai = Ai−1
1

1 − 1
f
qi−1

Observe that this formula preserves energy, since

|Ai|
|Im(qi)|

=
|Ai−1|

|Im(qi−1)|
.

(Show this by a calculation as a homework.)

s

R
r

R

Figure 13: Phase shift of a mirror.
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4.2.6 ABCD Matrix of a Mirror

Let us shift the mirror such that zi−1 = zi = 0. The mirror leads to a phase
shift

exp(−ik(2s(r)))
where r =

√

x2 + y2 such that

Ei−1(x, y, z) = Ei(x, y, z) exp(+ik(2s(r))/λ) (12)

Here we assume that the wave propagates before and after the mirror in the
+z direction.

Let us first calculate this phase shift. By Figure 13, we see that

s(r) = R−
√
R2 − r2

Taylor

≈ R−
(

R2 − 1

2

r2

R

)

=
1

2

r2

R

Thus, we get

−ik r2

2(qi−1 + z)
= −ik

(

r2

R
+

r2

2(qi + z)

)

This implies

qi =
qi + 0

−qi−1
2
R

+ 1

Formula 4 (ABCD Matrix of a mirror).

(

A B
C D

)

=

(

1 0
− 2

R
1

)

4.2.7 Other ABCD Matrices

The last two sections showed how to calculate the ABCD matrix of a lense
and of free space. Similar calculations lead to the ABCD matrices of other
apertures (see [1]). Here, additionally, let us mention the ABCD matrix of a
“Gausian Duct”:

Formula 5 (ABCD Matrix of a Duct).
Let k = ω

√
µǫn(x), where n(x) = n0 − 1

2
n2x

2. Then
(

A B
C D

)

=

(

cos(γz) (n0γ)
−1 sin(γz)

−(n0γ) sin(γz) cos(γz)

)

,

where γ2 = n2/n0.
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4.2.8 Ray (or Beam) Matrix of the Resonator

The last sections showed how to calculate the ABCD matrix of a lense, mirror
and free space.

Using the ABCD matrix Mi of each aperture on can calculate the ABCD
matrix of the whole resonator by (see Lemma 1)

M =

n
∏

i=1

Mi =:

(

A B
C D

)

Lemma 2.

det

(

A B
C D

)

= det(M) = 1

Proof. Observe that for every aperture the corresponding ABCD matrix Mi

satisfies det(Mi) = 1.

Let r0 be a start vector. Consider

rs = Msr0

The eigenvalues of M are

λa,b := m+
−
√
m2 − 1, where m = A+D

2
.

Observe that λaλb = 1.
Let qa, qb be the eigenvectors of M . Decompose

r0 = caqa + cbqb.

Such a decomposition is possible, if qa 6= qb. This is the case of m 6= 1.
Then,

rs = caλ
s
aqa + cbλ

s
bqb.

• Stable Laser: −1 ≤ |m| ≤ 1. Then,

rs = eiΘncaqa + e−iΘncbqb,

where λa,b := cos Θ +
− i sin Θ = e

+

−
iΘ.
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L

R1 R2

Figure 14: Example of a two mirror resonator.

• Unstable Laser: |m| ≥ 1. Then,

rs = Mscaqa +M−scbqb,

where M = λa,
1
M

= λb, M = m+
√
m2 − 1.

Example 2 (Two Mirrors). Let us assume n0 = 0. Consider the resonator in
Figure 14 with two mirrors and free space. The corresponding ABCD matrix
for R1 = R2 = R is:

M =

((

1 0
− 2

R
1

)(

1 L
0 1

))2

=

(

1 − 2L
R

∗
∗ −2L

R
+
(

1 − 2L
R

)2

)

Let us abbreviate m = A+D
2

and α = 2L
R

. Then,

m = 1 − 2α +
1

2
α2.

Thus the resonator is stable (|M | ≤ 1) if and only if 0 ≤ α ≤ 4. This means

2R ≥ L.
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Figure 15: Gaussian duct.

4.2.9 Exact Solution in a Gaussian “Duct”

The refraction index of a Gaussian duct is (see Figure 15):

k = k0(1 − 1

2
n2r

2)

The paraxial approximation and neglecting the small high order term 1
4
n2

2r
2

leads to

△xyΨ − 2ik0
∂Ψ

∂z
− k0n2r

2Ψ = 0

An exact solution of this equation is:

Ψ(x, y, z) = exp

(

−x
2 + y2

w2
1

+ i
λz

w1

)

where w2
1 = 2 1

k0

√
n2

and λ = 2
k0

.

4.2.10 The Guoy Phase Shift

Let us define the Guoy phase shift ψ(z) by:

i|q(z)|
q(z)

= exp(iψ(z)).

This implies

tanψ(z) =
πw(z)2

R(z)λ
.

Thus, ψ(z) = 0 at the waist of the Gaussian beam.
Then, one can show

1

w0

q0
q(z)

=
exp(i(ψ(z) − ψ0))

w(z)
,

where ψ0 = ψ(0) and q0 = q(0).
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4.2.11 High Order Modes

Let us the notation in [3]:
In this book the spot size at the waist z = 0 is:

w2
D(z) = w2

0

(

1 +

(

λz

πw2
0

)2
)

By (9), we get

w2
D(z) = w(z)

∣

∣

∣

Re(q0)=0
=

λ

π

(

Im(q0) +
(Re(q0) + z)2

Im(q0)

)

∣

∣

∣

Re(q0)=0

⇒ w2
0 =

λ

π
Im(q0)

and

R(z) = (Re(q0) + z)

(

1 +
Im(q0)

2

(Re(q0) + z)2

)2

Hermite-Gaussian Modes
By this notation, we get the Hermite-Gaussian Modes:

Ψm,n =
w0

w
Hm

(√
2
x

w

)

Hn

(√
2
y

w

)

exp

(

−i(kz − Φ) − r2

(

1

w2
+
ik

2R

))

where

Φ(m,n, z) = (m+ n + 1) tan−1

(

λz

πw2
0

)

H0(x) = 1, H1(x) = x,

H2(x) = 4x2 − 2, ...

Hn(x) = (−1)nex2 dn

dxn
(e−x2

) n = 0, 1, ...

The set of these functions forms a basis.
Laguerre-Gaussian Modes
The absolute value of the Laguerre-Gaussian Mode Ψm,n is:

|Ψm,n| = E0

(√
2
r

wD

)l

Ll
p

(

2
r2

w2
D

)

e
r2

w2
D cos(lφ)
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where r, φ are the angle coordinates and

Ll
0(x) = 1 Ll

1(x) = l + 1 − x

Ll
2(x) =

1

2
(l + 1)(l + 2) − (l + 2)x+

1

2
x2

Ln(x) = ex d
n

dxn
(xne−x) n = 0, 1, ...

The set of these functions forms a basis.

4.2.12 Thermal Lensing

The refraction index nc(x) of a laser crystal changes by

a) thermal lensing .

b) internal change of the refraction index caused by deformation

c) deformation of the end faces of the laser crystal

a) The refraction index of a laser crystal changes by temperature

• Let T0 be the temperature before heating (refraction index n0).

• Let T be the temperature caused by the pumping process (refraction
index n).

Let ηT be the thermal index gradient.
(Example: ηT = 2.2 · 10−6 · ◦C−1 for Cr4+).
Then,

n(x, y, z) = n0 + ηT (T (x, y, z) − T0)

The heating of the laser crystal leads to a deformation of the laser crystal.
This deformation can be described in the following way.

Let B ⊂ R3 be the original domain of the laser crystal.
Let T : B → R

3 be the mapping of the laser deformation such that

{T (x) + x | x ∈ B}

is the deformed domain of the laser crystal.

• Heat and
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• deformation

of the crystal lead to a refraction index

nc(x), x ∈ B

such that kc(x) = ω
√
µǫnc(x).

Assume that B = D×]0, L[, L length of the laser crystal.

b) The parabolic fit of the refraction index is

• Subdivide ]0, L[ in N intervals of meshsize h = L
N

.

• Let Dh be the discretization grid.

• For every i = 0, ..., N − 1: Find n0,i, n2,i such that:

∥

∥

∥

∥

nc(x, y, h(i+
1

2
)) − (n0,i −

1

2
n2,i(x

2 + y2))

∥

∥

∥

∥

l2(Dh)

• Each of the parameters n0,i, n2,i lead to a matrix

Ai =

[

cos γiz n0γ
−1
i sin γiz

n0γi sin γiz cos γiz

]

c) Additionally, perform a parabolic fit of T (x, y, 0) and T (x, y, L).

4.3 Beam Propagation Method BPM

The paraxial approximation leads to

−∂
2Ψ

∂x2
− ∂2Ψ

∂y2
+ 2ik0

∂Ψ

∂z
+ (k2

0 − k2)Ψ = 0.

Let us write this equation as follows:

2ik0
∂Ψ

∂z
=
∂2Ψ

∂x2
+
∂2Ψ

∂y2
− (k2

0 − k2)Ψ.

Let Ω = D×]0, L[, then one can apply

• FE or FD in x, y-direction
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• Crank-Nicolson in z-direction.

Let Ψl(x, y) be the approximation of Ψ(x, y, τ l), where τ is the time step.
Then, Ψl(x, y) is defined by the equations:

2ik0
Ψl+1 − Ψl

τ
=

1

2

(

∂2Ψl+1

∂x2
+
∂2Ψl+1

∂y2
+ (k2

0 − k2)Ψl+1+

∂2Ψl

∂x2
+
∂2Ψl

∂y2
+ (k2

0 − k2)Ψl

)

Ψ0(x, y) = Ψinitial(x, y) (initial condition)

• Additional boundary conditions are needed (see section 5.2).

• Lenses and mirrors can be discretized by a phase shift.

4.4 Iteration Method of Fox and Li

Consider a resonator with a left and right mirror. Let Ψinitial be an initial
condition at the left mirror. By the BPMethod calculate

• the beam configuration at the right mirror and the

• reflected beam configuration Ψend := B(Ψinitial) at the left mirror.

If Ψinitial = Ψend, then Ψinitial is an eigenvector Ψeigen of the BPM operator B.
The iteration method of Fox and Li is a power iteration method for the

eigenvalue problem of the BPM operator B.
This means:

Ψ1 = Ψinitial, Ψs+1 = B(Ψinitial,s)

Ψeigen = lim
s→∞

Ψs

The advantages of the BPM and Fox and Li method are:

• 3D approximation

• more general

• simple method
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The disadvantages of the BPM and Fox and Li method are:

• no or bad convergence due to several eigenvectors with eigenvalues close
to each other.

• bad convergence due to round off errors

• low accuracy

• large computational time

• model errors by the paraxial approximation

5 Finite Element Discretization of Optical Waves

in Solid State Laser Resonators

5.1 Weak Formulation of the Helmholtz Equation

Let D ⊂ Rd−1 be a bounded open domain with a smooth boundary and

Ω = D×]0, L[

∂Ω = ΓM
˙⋃

ΓR

ΓM = D × {0, L}.
Let us assume that there are mirrors at 0 and L and non-reflecting boundary
conditions at ΓR. In the Section 5.2, we will show that

u|ΓM
= 0,

u · ik +
∂u

∂n
|ΓR

= 0

are suitable boundary conditions for the optical wave in a laser resonator. To
transform the Helmholtz equation in a weak form, we need suitable spaces.

Let
V := {v ∈ H1(Ω)|ΓM

= 0}.
Then,

−△u− k2u = f

u|ΓM
= 0,

u · ik +
∂u

∂n
|ΓR

= 0
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transforms to:

Problem 1. Find u ∈ V = {v ∈ H1(Ω)
∣

∣

∣
v|ΓM

= 0} such that

∫

Ω

∇u∇v̄ − k2uv̄ dµ− ik

∫

Γ

∂u

∂n
v̄ dµ =

∫

Ω

f v̄ dµ for every v ∈ V.

Define the bilinear form

a(u, v) =

∫

Ω

∇u∇v̄ − k2uv̄ dµ−
∫

Γ

∂u

∂n
v̄ dµ

Then, the week form of the Helmholtz equation is transforms to:

Problem 2. Find u ∈ V = {v ∈ H1(Ω)
∣

∣

∣
v|ΓM

= 0} such that

a(u, v) =

∫

Ω

f v̄ dµ for every v ∈ V.

Properties of a(u, v):

a) The local part of a(u, v) is the bilinear form

aloc(u, v) =

∫

Ω

∇u∇v̄ − k2uv̄ dµ

Let k be constant. Then, aloc is not positive definite, since

aloc(e
+

−
ik1z, e

+

−
ik1z) =







> 0 if k1 > k
= 0 if k1 = k
< 0 if k1 < k

b) Let k be constant. Then, the functions e
+

−
ikz are contained in the local

kernel of a. This means

a(e
+

−
ikz, v) = 0 for every v ∈ H1

0 (Ω).

c) The bilinear form a(u, v) is H1-coercive. This means that there exist
c, C > 0 such that

Re(a(u, u)) + C‖u‖2
L2 ≥ c‖u‖2

H1 ∀u ∈ H1(Ω)
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d) The problem

Find u ∈ V such that

a(u, v) = 0 for every v ∈ V

has the unique solution u = 0, if k > 0.

The consequence of property d) is, that we cannot model a laser resonator
by

−△u− k2u = 0

u|ΓM
= 0,

u · ik +
∂u

∂n
|ΓR

= 0.

Instead, we have to solve the eigenvalue problem

Problem 3. Find u ∈ V = {v ∈ H1(Ω)|ΓM
= 0} and ξ ∈ C such that

a(u, v) = ξ

∫

Ω

uv̄ dµ for every v ∈ V.

d) The problem

Find u ∈ V such that

a(u, v) = 0 for every v ∈ V

has the unique solution u = 0, if k > 0.

5.2 Boundary Conditions

Let Ω ⊂ Rd, d = 1, 2, 3 be an open d-dimensional open bounded domain.
Consider

−△u− k2u = 0

The rays exp(ik ~m · x) are solutions of this equation, where ~m = 1.
1D Case:
First, let us consider the 1D case d = 1 and Ω =]0, 1[. Then

exp(ikz) and exp(−ikz)
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are solutions of −∂2u
∂z2 − k2u = 0.

Let us assume that the reflection of the ray exp(−ikz) at the point 0 is
α exp(ikz).

This means we need a boundary condition at 0 with solution

u(x) = exp(−ikz) + α exp(ikz).

A suitable boundary condition is

u|z=0(1 − α)ik + (1 + α)
∂u

∂z
|z=0 = 0.

Thus, a pure reflecting boundary condition is

α = −1 : u|z=0 = 0

and a pure non-reflecting boundary condition is

α = 0 : u|z=0ik +
∂u

∂z
|z=0 = 0.

2D-3D Case:

The 1D boundary conditions can be generalized to the 2D,3D case as follows:

• Reflecting boundary condition:

u|z=0 = 0

• Non-reflecting boundary condition:

u|z=0ik +
∂u

∂~n
|z=0 = 0.

The above non-reflecting boundary condition is not optimal, since the ray
exp(ik ~m · x) satisfies the non-reflecting boundary condition, if and only if
~m = ~n.

To construct a more accurate boundary condition, it is necessary to ex-
tend the computational domain.

Version 1: Absorption boundary condition by an absorption co-
efficient in the scalar Helmhotz equation:
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• Observe that
lim

x→−∞
exp(−i(k + iα) ~m · x) = 0,

where α > 0. This leads to the concept:

• Extend the PDE outside of the domain.

• Add an adsorbtion coefficient α outside of the domain.

• Put homogenous Dirichlet boundary conditions at a certain
distance for away from the boundary.

In the general 2D,3D case, define the an additional stripe of size s as
follows:

S = {x 6∈ Ω | dis(x, ∂Ω) ≤ s}.
This stripe S is used to extend the domain Ω:

Ω ⊂ Ω̃ := Ω ∪ S.
Observe that Ω̃ is connected, if Ω is connected.

Now, let us assume that D is the differential operator on Ω with constant
coefficients. Then, define the differential operator

D(u) − (2iα + α2)u

on the stripe S.

Example 3. Consider the differential operator

−u′′ − k2u

Let us assume non-reflecting boundary conditions at 0 and reflecting boundary
conditions at 1. Figure 16 depicts the domain Ω̃ = [−S, 0] ∪ [0, 1] = [−S, 1]
for these boundary conditions.

The exact solutions on [0, 1] are

u(x) = exp((+/−)ikx)

The exact solution on [−S, 0] are:

u(x) = exp((+/−)i(k + iα)x)

One can show that a small parameter α and a large stripe width S leads to a
small reflection of an optical wave at 0.
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1
0-S

extended domain physical domain

Figure 16: Ω̃ for Ω =]0, 1[, no reflection at 0 and reflection at 1.

Version 2: Absorption boundary condition by an absorption co-
efficient in Maxwell equations.

Using the PML (perfect matched boundary layer) method, one can obtain
better absorption boundary conditions.

5.3 Difficulties of a Pure Finite Element Discretization

The coercivity of a guarantees that a corresponding eigenvalue problem can
be discretized by finite elements. But there are several difficulties:

• One difficulty is the large number of discretization grid points which
are needed in case of long resonators. This means that wavelength λ
is small in comparison to the resonator length L. Difficulties occur,
if 1cm = L >> 5λ = 10µm. Then, more than 20 ∗ 1000 = 20000 grid
points are needed only in z-direction.

• The second difficulty is that a is not symmetric positive definite and
the resulting linear equation system cannot efficiently be solved by
multigrid or any other standard iterative solver.

• There exist several eigenvectors with eigenvalues close to each other.
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• A very accurate discretization of the non-reflecting boundary condition
is needed.

5.4 Eigenvalue Problem for Long Laser Resonators

5.4.1 Model

Property d) in section 5.1 shows that a simple straight forward model of the
wave in a laser resonator does not lead to PDE with a mathematical solution,
which is not the trivial solution 0. To improve the straight forward model,
we have to derive an appropriate eigenvalue problem. To this end, let us
make the ansatz

Ẽ(x, y, z) = exp [−i(kf − ε)z] ũ(x, y, z), (13)

where kf ∈ C is an average value of k(x, y, z) and ε ∈ C and ũ(x, y, z) are
unknowns. Furthermore, let us restrict to a one way resonator. This means
we assume periodic boundary conditions in the direction of the traveling
wave.

Let us abbreviate

ks(x, y, z) = kf − k(x, y, z). (14)

If the variation of k(x, y, z) is small, then ks(x, y, z) is small in comparison
to kf . Inserting the ansatz (13) into the Helmholtz equation

−△E − k2E = 0 (15)

leads to

−∆ũ + 2i(kf − ε)
∂ũ

∂z
+ ks(2kf − ks)ũ = ε(2kf − ε)ũ. (16)

If the variation of k(x, y, z) is small and kf is an average value of k(x, y, z),
then ε is small in comparison to kf . Therefore, let us model the wave
E(x, y, z) in a resonator by the following equations

−∆u+ 2ikf

∂u

∂z
+ ks(2kf − ks)u = ξu

E(x, y, z) = exp [−i(kf − ε)z] u(x, y, z)

2εkf = ξ
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Figure 17: Geometry

5.4.2 Two Wave Eigenvalue Model

Let us assume that Φ ⊂ R
2 is a bounded and connected domain with a

piecewise smooth boundary and let

Ω = Φ×]0, L[,

where L > 0. Let us subdivide the boundaries of Ω by (see Figure (17)

Γ0 := Φ × {0}, ΓL := Φ × {L} and Γr := ∂Ω \ (Γ0 ∪ ΓL).

Reflecting boundary conditions can be modeled by pure Dirichlet boundary
conditions at Γ0 ∪ ΓL

E
∣

∣

∣

Γ0∪ΓL

= 0 (17)

and a non-reflecting boundary condition by a Robin boundary condition

∂Ẽ

∂~n
− iCbũ

∣

∣

∣

Γr

= 0, (18)

where ∂/∂~n denotes the derivation in direction of the normalized outer nor-
mal, and Cb ≥ 0 can be chosen as Cb = kf , see (Ihlenburg[13] and the
references cited therein).

For reasons of simplicity, let us additionally assume that we choose kf

such that
exp[jLkf ] = 1. (19)

To model the eigenmodes of a cavity, it is necessary to apply a two-wave
ansatz. These are the forward wave Er and the backward wave El such
that

E = Er + El,
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where each of these waves satisfy the Helmholtz equation (15).
Using the ansatz

Er(x, y, z) = exp [−j(kf − ε)z] ũr(x, y, z),

El(x, y, z) = exp [−j(kf − ε)(L− z)] ũl(x, y, z),

leads to the eigenvalue problem

−∆ur + 2jkf

∂ur

∂z
+ (k2

f − k2)ur = ξur, (20)

−∆ul − 2jkf

∂ul

∂z
+ (k2

f − k2)ul = ξul,

where

Er(x, y, z) = exp [−jkfz] ur(x, y, z),

El(x, y, z) = exp [−jkf (L− z)] ul(x, y, z),

as in Section 5.4.1.
To satisfy the boundary conditions (17) and (18), we need the boundary

conditions

ur + ul

∣

∣

∣

Γ0∪ΓL

= 0, (21)

∂ur

∂~n
− jCbur

∣

∣

∣

Γr

= 0, (22)

∂ul

∂~n
− jCbul

∣

∣

∣

Γr

= 0. (23)

Observe that (19) is needed to obtainEr+El

∣

∣

∣

Γ0∪ΓL

= 0 from ur+ul

∣

∣

∣

Γ0∪ΓL

= 0.

To obtain a system of equations with enough equations, we additionally
need the boundary condition

∂ur

∂z
− ∂ul

∂z

∣

∣

∣

Γ0∪ΓL

= 0. (24)

This boundary condition can be derived by a periodicity argument. To
explain this, let us define the band

B = Φ×] − L,L[
/

PL,
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where PL is the relation which glues (−L, x), (L, x) together for every point
x ∈ Φ. This means B is a quotient space with respect to PL. Now, let us
define the mapping

{(ul, ur) ∈ C(Ω̄) × C(Ω̄) | ur + ul

∣

∣

∣

Γ0∪ΓL

= 0} → C(B)

(ul, ur) 7→ u =

(

x 7→
{

ur(x) if x ≥ 0
−ul(−x) if x < 0

)

Physically, this mapping transforms a resonator with a forward and a back-
ward wave in a one way resonator. Then, by the model in Section 5.4.1, we
obtain

−∆u + 2ikf

∂u

∂z
+ ks(2kf − ks)u = ξu on B. (25)

The regularity theory of PDE’s shows that u ∈ H2(Ω). This implies the
boundary condition (24).

5.5 Weak Formulation

Let us describe the weak formulation of the eigenvalue problem (20) with
boundary conditions (21) and (24). To this end, let us define the space:

~H1 =
{

(ur, ul) ∈ H1(Ω) ×H1(Ω)
∣

∣

∣
ur + ul|Γ0

= 0, ur + ul|ΓL
= 0
}

.

and the sesquilinear form

~a((ur, ul), (vr, vl)) =

=

∫

Ω

(

∇ur∇v̄r + (k2
f − k2)urv̄r + 2jkf

∂ur

∂z
v̄r

)

− jCb

∫

Γr

urv̄r

+

∫

Ω

(

∇ul∇v̄l + (k2
f − k2)ulv̄l − 2jkf

∂ul

∂z
v̄l

)

− jCb

∫

Γr

ulv̄l,

where we assume that k ∈ L∞(Ω).
Now, the weak form of the eigenvalue problem (20) with boundary con-

ditions (21) and (24) is

Find ~u = (ur, ul) ∈ ~H1 and ξ ∈ C such that

~a(~u,~v) = ξ

∫

Ω

urvr + ulvl ∀~v = (vr, vl) ∈ ~H1.

47



Lemma 3. Let Cb = 0. Then, ~a(~u,~v) is symmetric.

But ~a(~u,~v) is not positive definite.

5.6 Discretization by Finite Elements

For reasons of simplicity, let us assume that Ψ =] − R,R[×] − R,R[. Then,
we get

Ω =] −R,R[×] − R,R[×]0, L[.

Let us discretize this domain by a grid of meshsize hx = hy in x- and y-
direction and by a grid of meshsize hz in z-direction. To this end, assume
R/hx =: Nx ∈ N and L/hz =: Nz ∈ N.

Ωh := {(ihx, jhy, khz) | i, j = −Nx, ..., Nx and k = 0, ..., Nz},

where we set h = (hx, hy, hz). Furthermore, we obtain the following set of
cells

τ := { [ihx, (i+ 1)hx] × [ihy, (i+ 1)hy] × [ihz, (i+ 1)hz]|
i, j = −Nx, ..., Nx − 1 and k = −Nz , ..., Nz − 1}.

Let us define the space of trilinear finite elements by

Vh :=
{

u ∈ C(Ω)
∣

∣

∣
∀T ∈ τ : ∃c1, c2, c3, c4, c5, c6, c7, c8 ∈ C :

u(x, y, z)|T = c1 + c2x+ c3y + c4z +

c5xy + c6yz + c7xy + c8xyz
}

Lemma 4. For every ~U = (Up)p∈Ωh
exists one and only one function u ∈ Vh

such that
u(p) = Up ∀p ∈ Ωh.

Let us define the finite element space

~Vh :=
{

(uh,r, uh,l) ∈ Vh × Vh

∣

∣

∣
uh,r + uh,l|Γ0

= 0, uh,r + uh,l|ΓL
= 0
}

⊂ ~H1

Let us first consider the problem:
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Let ~f = (fr, fl) ∈ L2(Ω)2.

Then, find ~u = (ur, ul) ∈ ~H1 such that

~a(~u,~v) =

∫

Ω

frvr + flvl ∀~v = (vr, vl) ∈ ~H1.

An unstable FE-discretization is:
Find ~uh ∈ ~Vh such that

~a(~uh, ~vh) =

∫

Ω

~f~vd ∀~vh ∈ ~Vh

To explain this instability, let us restrict to the 1D-case and let us consider
the limit kf → ∞. This leads to the bilinear form

al(u, v) =

∫ L

0

2j
∂u

∂z
v̄ dz

The discretization stencil of this bilinear form has the form

c (−1 0 1) .

This implies that there is no coupling between the odd and even grid points.
In case of a convection diffusion problem this leads to oscillations. In our
applications, no observations were observed.

The problem of the above stencil is that the resulting equation system is
not diagonal dominant and that there is even no value in the diagonal. Thus,
it is difficult to solve the resulting equation system by an iterative solver.

Another problem is that the bilinear form ~a is not positive definite. Thus,
the standard finite element theory cannot be applied. Let us recall this
theory:

Theorem 2. Let a be a continuous symmetric positive definite sesquilinear
form on a Hilbert space V , Vh a closed subspace and f ∈ V ′. Furthermore,
let u ∈ V and uh ∈ Vh such that

a(u, v) = f(v) ∀v ∈ V

a(uh, vh) = f(vh) ∀vh ∈ Vh

Then,
‖u− uh‖E ≤ inf

vh∈Vh

‖u− vh‖E,

where ‖.‖E is the norm corresponding to a.
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Theorem 3. Let a be a continuous positive definite sesquilinear form on a
Hilbert space V , Vh a closed subspace of V and f ∈ V ′. Furthermore, let us
assume that a is V -elliptic. This means that there is a constant α > 0 such
that

|a(u, u)| ≥ α‖u‖2 ∀u ∈ V.

The continuity of a implies that there is a constant C such that

a(u, v) ≤ C‖u‖‖v‖ ∀u, v ∈ V.

Furthermore, let u ∈ V and uh ∈ Vh such that

a(u, v) = f(v) ∀v ∈ V, a(uh, vh) = f(vh) ∀vh ∈ Vh.

Then,

‖u− uh‖ ≤ C

α
inf

vh∈Vh

‖u− vh‖.

Proof. For all v ∈ Vh:

α‖u− uh‖ ≤ |a(u− uh, u− uh)|
= |a(u− uh, u− v) + a(u− uh, v − uh)|
= |a(u− uh, u− v)|
≤ C‖u− uh‖ ‖u− v‖.

Therefore,

‖u− uh‖ ≤ inf
v∈Vh

‖u− v‖

To obtain a stable discretization, we apply the streamline diffusion con-
cept. To this end, let us consider the resonator equation extended to a band
(see equation 25) with right hand side f . This is

−∆u+ 2ikf

∂u

∂z
+ ks(2kf − ks)u = f on B. (26)

Let us extend the subdivision τ of Ω to a subdivision τB of B by using the
same meshsize. Furthermore, let Vh,B be the corresponding finite element
space of trilinear functions.
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Now, we can multiply equation (26) by v + hρ ∂
∂z
vh, where vh ∈ Vh,B is a

test function and ρ is a constant. Then, we obtain

∫

T

−∆u(v̄h + hρ
∂

∂z
v̄h) + 2ikf

∂u

∂z
(v̄h + hρ

∂

∂z
v̄h)+

ks(2kf − ks)u(v̄h + hρ
∂

∂z
v̄h) d =

∫

T

f(v̄h + hρ
∂

∂z
v̄h) d

for every T ∈ τB. A summation for every T ∈ τB leads to:

∑

T∈τB

∫

T

−hρ△u∇v̄hd− Cb

∫

∂B
uv̄h +

+

∫

B
∇u∇v̄h + 2ikf

∂u

∂z
(v̄h + hρ

∂

∂z
v̄h) +

ks(2kf − ks)u(v̄h + hρ
∂

∂z
v̄h) d =

∫

T

f(v̄h + hρ
∂

∂z
v̄h) d

Observe that △uh = 0 on T for uh ∈ Vh,B. Now, the streamline-diffusion
discretization replaces u by uh ∈ Vh,B: Discretization: Find uh ∈ Vh,B such
that

−Cb

∫

∂B
uhv̄h +

+

∫

B
∇uh∇v̄h + 2ikf

∂uh

∂z
(v̄h + hρ

∂

∂z
v̄h) +

ks(2kf − ks)uh(v̄h + hρ
∂

∂z
v̄h) d =

∫

T

f(v̄h + hρ
∂

∂z
v̄h) d

∀vh ∈ Vh,B.
The term

hρ

∫

B
ks(2kf − ks)uh

∂

∂z
v̄h d

is very small in this bilinear form. Thus, we can omit this term.
The above discretization on B leads to the following discretization on Ω:

An stable FE-discretization is:
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Find ~uh ∈ ~Vh such that

~a(~uh, ~vh) + hρ

∫

Ω

2ikf

∂uh,r

∂z

∂v̄h,r

∂z
d

+ hρ

∫

Ω

2ikf

∂uh,l

∂z

∂v̄h,l

∂z
d

=

∫

Ω

~f~vhd

+ hρ

(
∫

Ω

fr

∂

∂z
v̄h,r d−

∫

Ω

fl

∂

∂z
v̄h,l d

)

∀~vh ∈ ~Vh

We call this discretization streamline-diffusion discretization. However,
there are no streamlines. In case of a convection-diffusion equation, this
discretization converges with O(h2).

The sesquilinear form of the streamline-diffusion discretization is

~ah(~uh, ~vh) = ~a(~uh, ~vh)

+ hρ

∫

Ω

2ikf

∂uh,r

∂z

∂v̄h,r

∂z
d + hρ

∫

Ω

2ikf

∂uh,l

∂z

∂v̄h,l

∂z
d

Lemma 5. For every ~vh ∈ ~Vh the following inequality holds:

|~ah(~vh, ~vh)| ≥ hkfρ

∥

∥

∥

∥

∂~vh

∂z

∥

∥

∥

∥

2

.

~ah(~uh, ~vh) = ~a(~uh, ~vh)

+ hρ

∫

Ω

2ikf

∂uh,r

∂z

∂v̄h,r

∂z
d + hρ

∫

Ω

2ikf

∂uh,l

∂z

∂v̄h,l

∂z
d

Lemma 6. Let ~uc
h ∈ ~H1 such that:

~ah(~u
c
h, ~v) =

∫

Ω

~f~v d ∀~v ∈ ~H1.

Then,
∥

∥

∥

∥

∂2~uc
h

∂z2

∥

∥

∥

∥

2

≤ C

hρkf

‖~f‖L2 .

52



Since ~ah satisfies the Garding inequality, one can prove the following
convergence theorem:

Theorem 4. Assume ~f = (fr, fl) ∈ L2(Ω)2. Let ~u = (ur, ul) ∈ ~H1 such that

~a(~u,~v) =

∫

Ω

frvr + flvl ∀~v = (vr, vl) ∈ ~H1.

and ~uh = (ur,h, ul,h) ∈ ~Vh such that

~ah(~uh, ~vh) =

∫

Ω

frvr + flvl ∀~vh = (vr, vl) ∈ ~Vh.

Then, ~uh converges to ~u.

Instead of

~ah(~uh, ~vh) := ~a(~uh, ~vh)

+ hρ

∫

Ω

2ikf

∂uh,r

∂z

∂v̄h,r

∂z
d + hρ

∫

Ω

2ikf

∂uh,l

∂z

∂v̄h,l

∂z
d

one can define

~ah(~uh, ~vh) := ~a(~uh, ~vh)

− hρ

∫

Ω

2ikf

∂uh,r

∂z

∂v̄h,r

∂z
d− hρ

∫

Ω

2ikf

∂uh,l

∂z

∂v̄h,l

∂z
d

Then, the meaning of uh,r and uh,l changes and the meaning of t and −t in
the ansatz

E(x, y, z, t) = exp(iωt)E(x, y, z).

In 1D the sesquilinear form

2ikf

∫ 1

0

∂uh

∂z
v̄h d+ hρ

∂uh

∂z

∂v̄h

∂z
d

leads to the stencil

ikf

1

2
(−1 0 1) + ikf

1

h
ρh (−1 2 − 1) = ikf (−1 1 0)

for ρ = 1
2
. This is the FD upwind discretization. An exact solver for the

resulting equation system is a Gauss-Seidel relaxation from left to right.
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5.7 Iterative Solver

Hackbusch’s rule: Consider a singular perturbed problem with pa-
rameter ǫ → ǫ0. Then, construct an iterative solver such that this
solver is an exact solver for ǫ0 (usually ǫ0 = 0).

Transform

−∆u+ 2ikf

∂u

∂z
+ ks(2kf − ks)u = ξu

to

−ǫ∆u + 2i
∂u

∂z
+ ǫks(2kf − ks)u = ǫξu

where ǫ = 1
kf

. Then, in 1D, the streamline diffusion discretization stencil for

ǫ→ 0 is
i (−1 1 0)

An exact solver for the corresponding equation system with suitable bound-
ary conditions is a relaxation from left to right. Thus, we used a relaxation
from left to right as a preconditioner for GMRES.

The simplest way to solve the eigenvalue problem is to apply an inverse
iteration with shift.

Figure 18: Gauss-Mode by FE
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Figure 19: Gauss-Mode by FE

5.8 Modeling of Mirrors, Lenses and Interfaces

Let us assume that there is a lense or an interface at the point l0 with
0 < l0 < L. Furthermore, let us assume a one-way resonator. Then, let us
write

Ωa = Ψ × [0, l0] ⊂ B and Ωb = Ψ × [l0, L] ⊂ B.ΨI = Ψ × {l0}.

Then, the ansatz
E(x, y, z) = exp [−ikfz] u(x, y, z)

is not appropriate. Instead, we use the ansatz

E(x, y, z) = u(x, y, z)

{

exp [−ikf,az] u(x, y, z) for z < l0
exp [−ikf,bz] u(x, y, z) for z > l0.

,

where kf,a is an average value of kf in Ωa and kf,b is an average value of kf

in Ωb. Let us define the following general bilinear form

aΞ(u, v) :=

∫

Ξ

∇u∇v̄ + 2ikΞ
∂u

∂z
v̄ + ks(2kΞ − ks)uv̄ d

and the bilinear form

a(u, v) = aΩa
(u, v) + aΩb

(u, v).
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From the results in sections 4.2.4 to 4.2.7, we know the phase shift in certain
apparatuses. Let us assume that this phase shift is ϕ(x, y). Then, let us
define the space

Hab =
{

u ∈ L2(B)
∣

∣

∣
u|Ωa

∈ H1(Ωa), u|Ωb
∈ H1(Ωb) and u|ΨI ,Ωa

·ϕ = u|ΨI ,Ωb

}

.

Here u|ΨI ,Ωc
means the restriction of u on ΨI as a function inH1(Ωc), c = a, b.

Now, let us model the wave in the above one way resonator by the following
eigenvalue problem Find u ∈ Hab such that

a(u, v) =

∫

B
uv̄ d ∀v ∈ Hab.

5.9 Gain and Absorption

To simulate gain and absorption in the Helmholtz equation

−△u− k2u = 0

we need the susceptibility ξ̃at of the medium. According [1] page 267, we get

k2 = ω2µǫ(1 + ξ̃at − jσ/(ωǫ)).

Similar to page 270 in [1], we apply suitable simplifications to obtain

k2 = ω2µǫ+ j2ω
√
µǫα.

If ω
√
µǫ is large in comparison to α, then we get

k2 ≈
(

ω
√
µǫ+ jα

)2

Here α is the size of the amplification or gain.
To understand this in more detail, let us consider the 1-dimensional

Helmholtz equation
−△u− k2u = 0.

one eigen-solution of this equation is

u(z) = exp (−ikz)

Thus, we get
|u(z)|2 = exp(2αz)
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and

E(z, t) = exp(iωt) · exp(−iω√µǫz + αz)

= exp(iω(t−√
µǫz) + αz).

This shows that u is a wave with

• decreasing amplitude in z direction if α < 0 and

• increasing amplitude in z direction if α > 0 .

Let us write as a gain part and an absorption part

α = αgain − αabsorption

αabsorption is mainly a material parameter.
To derive an equation for the gain part, consider the equations (5), (4)

and (2)

KN = 2αgainc

∂n

∂t
= Nnσc− n

τc
+ S

dn(t)

dt
= KN · n(t)

By these equations, we get K = σc and

αgain = σN
1

2

Thus, we get

k2 = ω2µǫ+ jω
√
µǫ(σN − 2αabsorption)

= ω2µǫ+ jω
√
µǫ(σN − 1

τc
).

5.10 Time-Dependent Behavior

Using the ansatz

E(x, y, z, t) = exp(iωt)(Er(x, y, z, t) + El(x, y, z, t))
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we obtain

µǫ
∂2ur

∂t2
+ iµǫω

∂ur

∂t
= ∆ur − 2jkf

∂ur

∂z
− (k2

f − k2)ur,

µǫ
∂2ul

∂t2
+ iµǫω

∂ul

∂t
= ∆ul + 2jkf

∂ul

∂z
− (k2

f − k2)ul,

∂N

∂t
= −γNnσc − N +Ntot(γ − 1)

τf
+Rp(Ntot −N)

k2 = ω2µǫ+ jω
√
µǫ(σN − 1

τc
)

n =
ǫ

2~ω
|E|2

|E|2 = |ur|2 + |ul|2.

5.11 Weak Formulation for the Maxwell Equation

The time-periodic vector Helmholtz equation is

∇×∇× ~E − k2 ~E = ~f.

The bilinear form of the weak formulation is positive definite:

a( ~E, ~W ) =

∫

Ω

∇× ~E · ∇ × ~̄W + k2 ~E ~̄W d(x, y, z)

Let us apply the ansatz

~E = e−ikz~u
~W = e−ikz ~w.

Then, we obtain

a(e−ikz~u, e−ikz ~w) =

∫

Ω

∇× ~u · ∇ × ~̄v + (k2 − k2
f )uzv̄z

−ikf2

(

∂uz

∂y
− ∂uy

∂z

)

v̄y + (k2 − k2
f )uyv̄y

−ikf2

(

∂uz

∂x
− ∂ux

∂z

)

v̄x + (k2 − k2
f)uxv̄x d(x, y, z)
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6 Finite Element Discretization of Optical Waves

in Semiconductor Laser Resonators

6.1 Construction of Semiconductor Lasers

Semiconductors have different physical properties than solid materials. One
of them is that the energy bands in semiconductors are not discrete but a
band. To select certain frequencies, most diode lasers use gratings or dis-
tributed Bragg reflectors (DBR). A VCSEL (Vertical Cavity Surface Emit-
ting Laser) is depicted in Figure 20 and a DFB laser (Distributed Feedback
Laser) in Figure 21.

M FO OP 
UC

/2001  Page 

p−contact

light output

oxide aperture

passivation

bottom  DBR

top  DBR

active layer

substraten−contact

current flow

Figure 20: VCSEL (Vertical Cavity Surface Emitting Laser)

6.2 Transfer Matrix Method

To obtain a gain of light for a certain frequency several different construc-
tions are used. The main concept is to use layers of materials with different
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contact

w

substrate

λ

4

L

active layer

injection current

Figure 21: VCSEL (Distributed Feedback Laser)

refraction indices. These layers of different materials form the resonators.
Let us assume that the resonator has the form

Ω = Ψ × [0, L]

and that 0 = l0 < l1 < ... < ls = L Furthermore, let us assume that the
resonator has the refraction index ni (ki) in the layer Ψ × [li−1, li]. Since
the layers are very thin, it is important to take into account reflection at the
interfaces of the different materials. To understand this in more detail let us
consider the 1D case. Assume that

−E ′′ − k2E = 0.

Let us assume the k is constant in the interior of [li−1, li]. Then,

E(z) = ci,r exp(−iki(z − li−1)) + ci,l exp(iki(z − li−1)) for z ∈ [li−1, li].

By the regularity of differential equations, we obtain E ∈ C1([0, L]). This
leads to the following equations at the interfaces (see Figure 22):
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ci,r exp(−iki(li − li−1)) + ci,l exp(iki(li − li−1)) = ci+1,r + ci+1,l

−ci,r exp(−iki(li − li−1)) + ci,l exp(iki(li − li−1)))ki+1)ki = (−ci+1,r + ci+1,l).

Let us abbreviate hi = li − li−1. Then, we get

(

1 1
−ki ki

)(

exp(−ikihi) 0
0 exp(ikihi)

)(

ci,r
ci,l

)

=

(

1 1
−ki+1 ki+1

)(

ci+1,r

ci+1,l

)

⇓
(

ci+1,r

ci+1,l

)

= Mi

(

ci,r
ci,l

)

Mi =

(

1 1
−ki+1 ki+1

)−1

(

1 1
−ki ki

)(

exp(−ikihi) 0
0 exp(ikihi)

)

Mi =

(

ki+1 + ki ki+1 − ki

ki+1 − ki ki+1 + ki

)

· 1

2ki+1

(

exp(−ikihi) 0
0 exp(ikihi)

)

.

ci,r

ci,l

ci+1,r

ci+1,l

hi

ni
ni+1

Figure 22: Transmission of two waves from one layer to another layer

In general one can describe the behavior by a scattering matrix S and a
transmission matrix T :

(

c1,r

c1,l

)

= T

(

c2,r

c2,l

) (

c2,r

c1,l

)

= S

(

c1,r

c2,l

)
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c1,r

c1,l

c2,r

c2,l

black box

Figure 23: Black box

Example 4. Let us study 101 layers with refraction index n0, n1, n0, ..., n0,
λ0 = 1.6 · 10−6, k0 = 2π

λ0
, and ω = k√

ǫ0µ0n0
, where

√
ǫ0µ0 = 1

c
and n0 = 3.277.

Let us choose c2,l = 1, c1,r = 0. Then, c1,l shows the behavior of the con-
struction. Figure 24 and Figure 25 depict c1,l with respect to ω.

A high reflectivity is obtained for ω = ω0, 3ω0, 5ω0, ....

Figure 24: Reflection be-
havior for n1 = 3.275.

Figure 25: Reflection be-
havior for n1 = 3.220.

6.3 FE-Discretization for Long Resonators

The two-wave ansatz for solid state laser is not appropriate for semi-conductor
lasers, since it does not take into account the reflection property of the
medium. Therefore, we construct suitable basis functions, which factor out
the high frequency part of the optical wave. Let Ωh be a grid of meshsize
h for the domain Ω = [0, L]. Furthermore, let vp be the nodal basis function
with respect to linear elements. Then, define

vl
p = eikzvp
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vr
p = e−ikzvp

vm
p =

{

eikzvp(z) for z ≤ p and
e−ikzvp(z) for z > p.

Observe that

vl
p + vr

p − vm
p =

{

e−ikzvp(z) for z ≤ p and
eikzvp(z) for z > p.

Thus, we do not need 4 local basis functions. Now, let us define the FE
space

V ref
h = span{vl

p, v
r
p, v

m
p | p ∈ Ωh}.

This FE space leads to the results as the transfer matrix method. But these
basis functions can be extended to 2D and 3D.

Furthermore, the time-dependent scalar Helmholtz equation can be dis-
cretized as follows. Let us recall the scalar Helmholtz equation (7):

−△Ẽ = −µǫ ∂
2

∂t2

(

Ẽ
)

.

The ansatz
Ẽ(x, y, z, t) = exp(iωt)E(x, y, z, t)

leads to

µǫ
∂2E

∂t2
+ iµǫω

∂E

∂t
= △E + µǫω2E.

Since ω2 is large in comparison to µǫ, we apply the following model:

iµǫω
∂E

∂t
= △E + k2E.

Crank-Nicolson discretization of this equation leads to

iµǫω
Es+1 − Es

τ
=

1

2

(

△Es + k2Es + △Es+1 + k2Es+1
)

.

Let us analyze this equation by Fourier analysis in 2D. Then, for Es =
as sin(lxx) sin(lyy), we obtain

iµǫω
as+1 − as

τ
=

1

2

(

as(l2x + l2y + k2) + as+1(l2x + l2y + k2)
)

.
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This leads to

as+1 =
1
2
(l2x + l2y + k2) + iµǫω

τ
1
2
(l2x + l2y + k2) − iµǫω

τ

as

This equation implies
|as+1| = |as|

if k ∈ R. This means a real k does not lead to a gain or an absorption. An
explicit or implicit Euler discretization does not have this property.

7 Multi-Mode-Analysis

8 Numerical Approximation

Let us assume that Ω = Ω2D× [0, L] is the domain of a laser resonator, where
L is the length of the resonator.

Here, let us assume that E1, ..., EM are eigenmodes obtained by a Gauss
mode analysis or another method. Thus, Ei : Ω → C are functions, which
we normalize as follows

∫

Ω

|Ei|2 d(x, y, z) = 1.

Model Assumption 1 The electrical field E of the total optical wave is
approximated by M eigenmodes:

E(t, x, y, z) =

M
∑

i=1

ξi(t)Ei(x, y, z),

where ξi : [t0,∞[→ R is the time-dependent coefficient of the i-th mode.
Then, the photon density of the mode ξi(t)Ei(x, y, z) is

ni(t, x, y, z) =
ǫ

2~ωi

|ξi(t)Ei(x, y, z)|2 =
ǫ

2~ωi

Ξi(t)|Ei(x, y, z)|2,

where we abbreviate
Ξi(t) = |ξi(t)|2.

ωi is the frequency of the i-th mode.
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Model Assumption 2 The modes are incoherent modes. Here, this means
that the total photon density n(t, x, y, z) can be written as

n(t, x, y, z) =
M
∑

i=1

ni(t, x, y, z). (27)

Model Assumption 3 The local photon densities ni(t, x, y, z) and the pop-
ulation inversion density N(t, x, y, z) satisfy the rate equations:

∂ni

∂t
= Nniσc−

ni

τc
+ S, i = 1, ..,M, (28)

∂N

∂t
= −γNnσc− N +Ntot(γ − 1)

τf
+Rpump(Ntot −N). (29)

Observe that these rate equations depend on the spatial coordinate (x, y, z)
and the time coordinate t. σ is the stimulated emission cross section and c
the speed of light. τc and τf are decay rates. Ntot is the concentration of ions
per unit volume which are responsible for the laser activity. Rpump(x, y, z) is
the pumping rate per unit time per atom at position (x, y, z). σ, τc, τf , and
Ntot are constants. But Rpump : Ω → R is a function which describes the
pump configuration and the pumping power.

By these model assumptions, we can derive a system of ordinary differ-
ential equations, which we can solve numerically. To this end, we insert (27)
in (28) and integrate over Ω:

∂Ξi

∂t
= Ξi

∫

Ω

N |Ei|2 d(x, y, z) σc−
Ξi

τc
+

2~ωi

ǫ

∫

Ω

S d(x, y, z), i = 1, ..,M.

(30)
Furthermore, we put (27),(27) in (29):

∂N

∂t
= −γNσc

M
∑

i=1

ǫ

2~ωi

Ξi|Ei|2 −
N +Ntot(γ − 1)

τf
+Rpump(Ntot−N). (31)

(30) and (31) form a solvable system of ordinary differential equations, which
describes the time-dependent behavior of M modes. This behavior is mainly
influenced by the pump configuration Rpump.

The solution (Ξi(t))i=1,...,M , N(t, x, y, z) can tend to a stationary solution
(Ξ∞

i )i=1,...,M , N
∞(x, y, z), which corresponds to the optical wave of a cw-laser.
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This stationary solution satisfies the equations

0 = Ξ∞
i

∫

Ω

N∞|Ei|2 d(x, y, z) σc−
Ξ∞

i

τc
+

2~ωi

ǫ

∫

Ω

S d(x, y, z), i = 1, ..,M,

0 = −γN∞σc
M
∑

i=1

ǫ

2~ωi

Ξ∞
i |Ei|2 − N∞ +Ntot(γ − 1)

τf
+

Rpump(Ntot −N∞).

Motivations for model assumption 2.
Equation (27) is the only crucial point in our model. Therefore, let us

present two arguments which motivate assumption 2.

1. Assume that the eigenmodes Ei are orthogonal in the sense

∫

Ω

EiĒj d(x, y, z) = δij .

This orthogonality property holds for the Hermite-Gaussian modes[?].
Then, (??) leads to

∫

Ω

n(t, x, y, z) d(x, y, z) =

M
∑

i=1

∫

Ω

ni(t, x, y, z) d(x, y, z),

where
n(t, x, y, z) =

ǫ

2~ω
|E(t, x, y, z)|2

and ω is an average value of ωi. This means that (27) in assumption 2
holds in a certain mean value.

2. Assume that the frequencies ωi are different to each other and that
each mode can be represented as

ξi(t)Ei(x, y, z) = ejωitAi(t)Ei(x, y, z),

where the amplitude Ai(t) consists of small variations. For reasons of
simplicity, let us assume that M = 2. This means

E(t, x, y, z) = ejω1tA1(t)E1(x, y, z) + ejω2tA2(t)E2(x, y, z).
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Now, let us choose ∆t = 2π/(ω1 − ω2).

Since Ai(t) consists of small variations, we obtain

∫ t+∆t

t

ξ1(τ)E1(x, y, z) ξ2(τ)E2(x, y, z) dτ ≈

≈
∫ t+∆t

t

ej(ω1−ω2)τ dτ A1(t)E1(x, y, z)A2(t)E2(x, y, z) = 0.

Furthermore, we get

∫ t+∆t

t

|ξi(τ)Ei(x, y, z)|2 dτ =

∫ t+∆t

t

|Ai(τ)Ei(x, y, z)|2 dτ ≈ |Ai(t)Ei(x, y, z)|2 ∆t.

The last two equations imply

1

∆t

∫ t+∆t

t

|E(τ, x, y, z)|2 dτ =
1

∆t

∫ t+∆t

t

|ξ1(τ)E1(x, y, z) + ξ2(τ)E2(x, y, z)|2 dτ

≈ |A1(t)E1(x, y, z)|2 + |A2(t)E2(x, y, z)|2.

This motivates equation (27) of assumption 2.

Obviously, (27) will not hold, if the computed eigenmodes Ei are no phys-
ical eigenmodes of the laser. This means Ei are no solutions of Maxwell or
Helmholtz equation. Therefore, in the following we assume that the eigen-
modes Ei are chosen such that (27) leads to an adequate physical model.

9 Numerical Approximation

Our aim is to solve (30) and (31) numerically. For reasons of simplicity, let
us assume that

Ω = [−R,R]2 × [0, L]

is a cuboid. Now, observe that (30) is a system of ordinary differential
equations, which does not depend on a spatial coordinate. But (31) is an or-
dinary differential equation, which depends on the spatial coordinate (x, y, z).
Therefore we discretize (31) by a finite volume discretization. Let Ωhxy,hz

be the discretization mesh

Ωhxy,hz
=

{(

(i− 1

2
)hxy, (j −

1

2
)hxy, (k −

1

2
)hz

)

∣

∣

∣
i, j = −Mxy + 1, ...,Mxy, k = 1, ...,Mz

}

,
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where hxy = R
Mxy

, hz = L
Mz

, and Mxy,Mz ∈ N. To every grid point p =

(x, y, z) ∈ Ωhxy ,hz
corresponds a discretization cell

cp =

]

x− hxy

2
, x+

hxy

2

[

×
]

y − hxy

2
, y +

hxy

2

[

×
]

z − hz

2
, z +

hz

2

[

.

Observe that
Ω̄ =

⋃

p∈Ωhxy,hz

c̄p.

Using a finite volume discretization, we approximateN(t, x, y, z), (x, y, z) ∈
cp, by the constant value Np(t) for every point p ∈ Ωhxy,hz

. Then, the finite
volume discretization of (30) and (31) leads to

∂Ξi

∂t
= Ξi





∑

p∈Ωhxy,hz

h2
xyhz Np|Ei(p)|2



 σc− Ξi

τc
+

2~ωi

ǫ

∫

Ω

S d(x, y, z), i = 1, ..,M,

∂Np

∂t
= −γNpσc

M
∑

i=1

ǫ

2~ωi

Ξi|Ei(p)|2
Np +Ntot(γ − 1)

τf
+

Rpump(p)(Ntot −Np), p ∈ Ωhxy ,hz
.

(32) and (32) form a system of M + |Ωhxy,hz
| scalar ordinary differential

equations.
For the time discretization of these equations, we need a stable discretiza-

tion. A simple but very stable solver is the explicit/implicit Euler discretiza-
tion. To explain this discretization, let τ be the time step. Observe that the
equations (32) and (32) have the form

∂u

∂t
= λ(t)u+ f,

where f ≥ 0. Furthermore, there is an initial condition u(t0) = u0 ≥ 0. Let
us denote û(tj) as an approximation of u(tj), where tj = jτ + t0. Depending
on the sign of λ a stable discretization is either the explicit or the implicit
Euler discretization:

û(tj+1) = û(tj) + τ(λ(tj)û(tj) + f), if λ(tj) > 0,
û(tj+1) = (û(tj) + τf)(1 − τλ(tj))

−1, if λ(tj) < 0.
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This discretization guarantees that û(tj) ≥ 0 holds independent of j. Appli-

cation of this discretization to (32) and (32) leads to approximations Ξ̂i(tj)

and N̂p(tj) for j = 0, 1, ... .
For reducing the computational time one can apply a stepsize control and

suitable high order methods[?].
The finite volume discretization can also be used to calculate an approx-

imation of the stationary equations (32) and (32). To this end, set ∂
∂t

= 0 in
(32) and (32).

10 Finite Difference Time Domain Method

(FDTD) for Maxwell’s Equations

10.1 Introduction Maxwell’s Equations

The Finite Difference Time Domain Method (FDTD) is an explicit method
for the discretization of Maxwell’s equations. Therefore, this method is used
for the simulation of optical waves.

The solution of Maxwell’s equations in 3D is

• ~E: the electrical field and

• ~H: the magnetic field.

Given are

• µ: magnetic permeability,

• ǫ: electric permittivity,

• ~M : equivalent magnetic current density,

• ~J : electric current density.

Maxwell’s equations are:

∂ ~H

∂t
= −1

µ
∇× ~E − 1

µ
~M

∂ ~E

∂t
=

1

ǫ
∇× ~H − 1

ǫ
~J
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10.2 Finite Difference Time Domain Discretization (FDTD)

Let τ be a time step.
Time approximation:

• ~E|n+ 1

2 : approximation at time point (n+ 1
2
)τ .

• ~H|n: approximation at time point nτ .

Furthermore, let us use the following abbreviation:

~H|n+ 1

2 :=
1

2

(

~H|n+1 + ~H|n
)

,

~E|n :=
1

2

(

~E|n+ 1

2 + ~E|n− 1

2

)

.

Let h be a mesh size.
Space approximation:

• Ex|
n+ 1

2

i,j+ 1

2
,k+ 1

2

: at point (ih, (j + 1
2
)h, (k + 1

2
)h) (yz-face) .

• Ey|
n+ 1

2

i+ 1

2
,j,k+ 1

2

: at point ((i+ 1
2
)h, jh, (k + 1

2
)h) (xz-face).

• Ez|
n+ 1

2

i+ 1

2
,j+ 1

2
,k
: at point ((i+ 1

2
)h, (j + 1

2
)h, kh) (xy-face).

• Hx|ni+ 1

2
,j,k

: at point ((i+ 1
2
)h, jh, kh) (x-edge).

• Hy|ni,j+ 1

2
,k
: at point (ih, (j + 1

2
)h, kh).

• Hz|ni,j,k+ 1

2

: at point (ih, jh, (k + 1
2
)h).
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E
x

E
y

E
z

H
x

H
y

H
z

H
z

H
y

H
x

H
z

H
y

z

x
y

(i,j,k)

Now, the Maxwell equation

∂Ex

∂t
= −1

ǫ

(

∂Hz

∂y
− ∂Hy

∂z
+ Jx

)

is discretized as follows:

Ex|
n+ 1

2

i,j+ 1

2
,k+ 1

2

−Ex|
n− 1

2

i,j+ 1

2
,k+ 1

2

τ
=

1

ǫi,j+ 1

2
,k+ 1

2

(

Hz|ni,j+1,k+ 1

2

−Hz|ni,j,k+ 1

2

h
−
Hy|ni,j+ 1

2
,k+1

−Hy|ni,j+ 1

2
,k

h

−Jx|ni,j+ 1

2
,k+ 1

2

)

The other Maxwell’s equations are discretized analogously.
This discretization can be written in the following short notation:
Let ∂1

τ the symmetric difference operator applied to the time coordinate:

∂1
hQ(t) :=

Q(t+ τ/2) −Q(t− τ/2)

τ

Furthermore, let ∇h× the discrete curl operator on a staggered grid. Then
the FDTD discretization can be described as follows:

∂1
τ
~Hh,τ = −1

µ
∇h × ~Eh,τ −

1

µ
~Mh,τ at time points n + 1

2
,
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∂1
τ
~Eh,τ =

1

ǫ
∇h × ~Hh,τ −

1

ǫ
~Jh,τ at time points n.

Here, ~Hh,τ and ~Eh,τ are the vectors on a staggered grid.
Discretization of Losses and Boundary Conditions
~J has to be composed as follows:

~J = ~Jsource + σ ~E,

where σ is the electric conductivity.
~E is approximated by

~E|n =
1

2

(

~E|n+ 1

2 + ~E|n− 1

2

)

.

Reflecting boundary conditions can be modeled by pure Dirichlet bound-
ary conditions.

Non-reflecting boundary conditions can be discretized by the Perfect
Matched Layer (PML) method. These are not Neumann boundary condi-
tions!

10.3 Stability of FDTD

The Finite Difference Time Domain Method (FDTD) is an explicit method
for the discretization of Maxwell’s equations. Therefore, this method is used
for the simulation of optical waves.

Let us consider the FDTD discretization in the short form for ~Jh,τ = 0

and ~Mh,τ = 0 and µ = 1 and ǫ = 1 :

∂1
τ
~Hh,τ = −∇h × ~Eh,τ at time points n+ 1

2
,

∂1
τ
~Eh,τ = ∇h × ~Hh,τ at time points n.

Now, the abbreviation
~Vh,τ = ~Hh,τ + j ~Eh,τ

leads to

∂1
τ
~Vh,τ = j∇h × ~Vh,τ

Observe, that ~Gh,τ is a vector defined at all edges and faces of each cell and

which is defined at all time points t1
2
n, where n ∈ N. To this end set ~Hh,τ and

~Eh,τ to be zero at all points, where these vectors originally are not defined.
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Definition 2. The FDTD method is stable, if the solution ~Hh,τ , ~Eh,τ is
bounded for t→ ∞.

To analyze the stability of the FDTD method, we analyze the stability
of Let us analyze

∂1
τ
~Vh,τ = j∇h × ~Vh,τ .

To this end, it is enough to analyze the behavior of the solutions with periodic
initial condition:

~Vh,τ(0, x, y, z) = ~V0e
j(−kxx−kyy−kzz). (32)

The FDTD method is stable, if ~Vh,τ has the form

~Vh,τ(t, x, y, z) = ~V0e
j(ωt−kxx−kyy−kzz)

for every edge point, face point, and every time step t1
2
n. Observe, that a

Fourier decomposition with periodic functions as in the ansatz (32) spans the
whole space of possible initial conditions, since every unknown of the vectors
~Hh,τ and ~Eh,τ is located at a different spatial point.

The abbreviation ~V0 = (Vx, Vy, Vz)
T leads to

∇h × ~Vh,τ = det





ex δ1
hx,x Vx

ey δ1
hy ,y Vy

ez δ1
hz ,z Vz



 ej(ωt−kxx−kyy−kzz)

= det







ex
1
hx

sin(kxhx

2
) Vx

ey
1
hy

sin(kyhy

2
) Vy

ez
1
hz

sin(kzhz

2
) Vz






ej(ωt−kxx−kyy−kzz)

= −jδ1
τ





Vx

Vy

Vz



 ej(ωt−kxx−kyy−kzz)

= −j 1

τ
sin(

ωτ

2
)





Vx

Vy

Vz



 ej(ωt−kxx−kyy−kzz)
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The above equation system has a unique solution if and only if

0 = det







j 1
τ

sin(ωτ
2

) 1
hz

sin(kzhz

2
) − 1

hy
sin(kyhy

2
)

1
hz

sin(kzhz

2
) j 1

τ
sin(ωτ

2
) − 1

hx
sin(kxhx

2
)

− 1
hy

sin(kyhy

2
) + 1

hx
sin(kxhx

2
) j 1

τ
sin(ωτ

2
)







=

(

(

1

hx

sin(
kxhx

2
)

)2

+

(

1

hy

sin(
kyhy

2
)

)2

+

(

1

hz

sin(
kzhz

2
)

)2

−
(

1

τ
sin(

ωτ

2
)

)2
)

j
1

τ
sin(

ωτ

2
)

. This is equivalent to the stability equation:

(

1

hx

sin(
kxhx

2
)

)2

+

(

1

hy

sin(
kyhy

2
)

)2

+

(

1

hz

sin(
kzhz

2
)

)2

=

(

1

τ
sin(

ωτ

2
)

)2

The stability equation has a solution ω for every kx, ky, kz, if

τ

√

1

h2
x

+
1

h2
y

+
1

h2
z

< 1.

A renormalization of this stability condition shows

τ < c−1

(

1

h2
x

+
1

h2
y

+
1

h2
z

)− 1

2

.

where c is the velocity of the wave.
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