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1 Linear Equation Systems in the Numerical So-
lution of PDE’s

1.1 Examples of PDE’s

1. Heat Equation

hom. plate

at the boundary
temperature g 

Let us assume that there is a heat source f in the interior of the plate
and that the temperature at the boundary is given by g. Question:
What is the temperature inside of the plate?

Poisson Problem (P)

Let Ω ⊂ R
n open, bounded, f ∈ C(Ω), g ∈ C(δΩ).

Find u ∈ C2(Ω) such that

−∆u = f on Ω

u
∣∣
δΩ

= g

where ∆ =
∂2

∂x2
+

∂2

∂y2

2. Poisson’s equation with pure Neumann boundary conditions

Poisson Problem (P) with pure Neumann boundary conditions

Let Ω ⊂ R
n an open and bounded domain and f ∈ C(Ω) such that∫

Ω u d(x, y) = 0 . Find u ∈ C2(Ω) such that

−∆u = f on Ω∫

Ω
u d(x, y) = 0.

3. Let Ω ⊂ R
2 be an open domain. An anisotropic elliptic differential

equation is an equation of the form

L(u) := −divA grad u+ cu = f on Ω ⊂ R
2, where (1)

A =

(
a1,1 a1,2

a2,1 a2,2

)
∈ (L1

loc(Ω))2×2, c ∈ L1
loc(Ω),
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and with suitable boundary conditions. Here, A(x, y) is a symmetric
positive semidefinite matrix and c(x, y) is non-negative for almost ev-
ery (x, y) ∈ Ω. An additional assumption to the coefficients, described
at the end of this section, guarantees that the stiffness matrix exists.

Anisotropic differential equations appear in several situations. For
example equation (1) can describe a diffusion process with variable
coefficients. Another example can be constructed by Poisson equation
on a domain with a small hole (see [8]).

−△u = f L(u) = f

radius r

Figure 1: Transformation of a domain with a hole

Let us explain this example in more detail. Assume that the discretiza-
tion grid is a tensor product grid as in Figure 22 .The bilinear finite
element discretization on this grid has an equivalent formulation on
the unit square. By the transformation of the curvilinear bounded
domain onto the unit square one obtains an anisotropic elliptic differ-
ential equation on the unit square. If the radius r of the hole tends to
zero, then the coefficients of this anisotropic elliptic equation become
singular. For example they can tend to the following coefficients

A =

(
y−1 0
0 y

)
. (2)

4. Convection-Diffusion-Problem

Find u ∈ C2(Ω) such that

−∆u+~b · ∇u+ c = f on Ω

u
∣∣
δΩ

= 0

where ~b ∈ (C(Ω))2 , f, c ∈ C(Ω)
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5. Navier-Stokes-Equation

u

v

∂u

∂t
+
∂p

∂x
+
∂(u2)

∂x
+
∂(uv)

∂y
=

1

Re
∆u

∂u

∂t
+
∂p

∂y
+
∂(uv)

∂x
+
∂(v2)

∂y
=

1

Re
∆v

∂u

∂x
+
∂v

∂y
= 0

6. Laser simulation

M M21 r

mirror 1 mirror 2

ΓM = ΓM1 ∪ ΓM2

Find u ∈ C2(Ω), λ ∈ C such that

−∆u− k2u = λu

u
∣∣
ΓM

= 0

∂u

∂~n

∣∣∣
Γrest

= 0 (or boundary condition third kind)

We apply the ansatz

u = ure
−ik̃z + ule

ik̃z

where k̃ is an average value of k.
This leads to the equivalent eigenvalue problem:
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Find ur, ul, λ such that

−∆ur + 2ik̃
∂ur

∂z
+ (k̃2 − k2)ur = λur

−∆ul − 2ik̃
∂ul

∂z
+ (k̃2 − k2)ul = λul

ur + ul

∣∣
ΓM

= 0,
∂ur

∂z
− ∂ul

∂z

∣∣∣
ΓM

= 0

∂ur

∂~n

∣∣∣
Γrest

=
∂ul

∂~n

∣∣∣
Γrest

= 0

1.2 Weak Formulation of Poisson’s Equation

Let us first describe a physical problem which leads to Poisson’s equation.
Consider a thin plate with constant thermal conductivity. Figure 2 shows
the geometry of such a plate described by the domain Ω ⊂ R

2.

temperatue T in Ω

T |∂Ω = g

Figure 2: Temperate on a plate.

Assume that the boundary of the plate is maintained at temperature

T |∂Ω = g.

Now, the Laplace’s equation is governing the heat conduction within the
plate (see [17]):

△T = 0, where

△T :=
∂2T

∂x2
+
∂2T

∂y2
.

Assume that w ∈ C2(Ω̄) is a function such that w|∂Ω = g. Furthermore,
assume T ∈ C2(Ω̄). Then, u = T − w ∈ C2(Ω̄) satisfies Poisson’s equation
with homogeneous Dirichlet boundary conditions

−△u = f, (3)

u|∂Ω = 0, (4)
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where f := △w. For the mathematical analysis, it is more helpful to for-
mulate this equation in a suitable Hilbert space. To this end, we multiply
equation 3 by a test function ϕ ∈ C̃1

0(Ω) and integrate over Ω

−
∫

Ω
△uϕ dz =

∫

Ω
fϕ dz.

Now, Green’s formula yields
∫

Ω
∇u∇ϕ dz =

∫

Ω
fϕ dz. (5)

By a continuity argument this equation holds for every function ϕ ∈ H1
0 (Ω).

The left hand side of equation 12 is the bilinear form defined by 93. This
shows that the Sobolev space H1

0 (Ω) is the right Hilbert space for the de-
scription of Poisson’s equation. Furthermore, the mapping

H1
0 (Ω) → R, v 7→

∫

Ω
fv dz

is contained in the dual space (H1
0 (Ω))′, since Lemma 5 implies

∣∣∣∣
∫

Ω
fv dz

∣∣∣∣ ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) ≤ c |v|H1 .

These considerations lead to the following weak formulation of Poisson’s
equation:

Problem 1 (Poisson’s equation). Assume that f ∈ L2(Ω). Find u ∈ H1
0 (Ω)

such that
∫

Ω
∇u∇v dz =

∫

Ω
fv dz for every v ∈ H1

0 (Ω). (6)

Theorem 10 guarantees the existence and uniqueness of the solution of
this weak equation.

1.3 Finite-Difference-Discretization of Poisson’s Equation

Assume Ω =]0, 1[2 and that an exact solution of (P) exists. We are looking
for an approximate solution uh of (P) on a grid Ωh of meshsize h. Choose
h = 1

m
where m ∈ N.

Ωh =
{
(ih, jh)

∣∣i, j = 1, . . . ,m− 1
}

Ωh =
{
(ih, jh)

∣∣i, j = 0, . . . ,m
}

Discretization by Finite Differences:
Idea: Replace second derivative by difference quotient.
Let ex = (1, 0) and ey = (1, 0),

−∆u(z) =

(
−∂

2u

∂x2
− ∂2u

∂y2

)
(z) = f(z) for z ∈ Ωh
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−uh(z + hex) − 2uh(z) + uh(z − hex)

h2

−uh(z + hey) − 2uh(z) + uh(z − hey)

h2
= f(z)

and u(z) = g(z)

≈ = for z ∈ Ωh\Ωh

uh(z) = g(z)

This leads to a linear equation system Lh Uh = Fh where Uh = (uh(z))z∈Ωh
,

Lh is |Ωh| × |Ωh| matrix. The discretization can be described by the stencil




− 1
h2

− 1
h2

4
h2 − 1

h2

− 1
h2


 =




m−1,1 m0,1 m1,1

m−1,0 m0,0 m1,0

m−1,−1 m0,−1 m1,−1




X X X X

X X X X

X X X X

X X X X

Let us abbreviate Ui,j := uh(ih, jh) and fi,j := f(ih, jh). Then, in case
of g = 0, the matrix equation LhUh = Fh is equivalent to:

1∑

k,l=−1

mklUi+k,j+l = fi,j

1.4 FD Discretization for Convection-Diffusion

Let Ω,Ωh as above.

−∆u+ b
du

dx
= f

Assume that b is constant.

1. Discretization by central difference:

du

dx
(z) ≈ uh(z + hex) − uh(z − hex)

2h
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This leads to the stencil



− 1
h2

− 1
h2 − b

2h
4
h2 − 1

h2 + b
2h

− 1
h2




→ unstable for large b.

2. Upwind discretization:

du

dx
(z) ≈ uh(z) − uh(z − hex)

h

This leads to the stencil



− 1
h2

− 1
h2 − b

h
4
h2 + b

h
− 1

h2

− 1
h2




1.5 Irreducible and Diagonal Dominant Matrices

Definition 1. A n× n matrix A is called strong diagonal dominant, if

|aii| >
∑

i6=j

|aij| 1 ≤ i ≤ n (7)

A is called weak diagonal dominant, if there exists at least one i such that
(7) holds and such that

|aii| ≥
∑

i6=j

|aij | 1 ≤ i ≤ n

Definition 2. A is called reducible, if there exists a subset J ⊂ {1, 2, . . . , n},
such that

aij = 0 for all i 6∈ J, j ∈ J

A not reducible matrix is called irreducible.

Remark. An reducible matrix has the form
(
A11 A12

0 A22

)

→ The equation system separates in two parts.

Example:
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1. Poisson FD:
diagonal: aii = 4

h2

non-diagonal: aij =

{
− 1

h2 if i is N,S,W,O of j
0 else

• A is not strong diagonal dominant, but weak diagonal dominant.
To see this, consider a point i such that j is N of i. Then

aij =

{
− 1

h2 if i is S,W,O of j
0 else

• A is irreducible.
Proof: If A is reducible, then, {1, 2, ..., n} is the union of two
different sets of colored points, where one set is J . Then, there
is a point j ∈ J such that one of the points i=N,W,S,E is not
contained in J , but i is contained in {1, 2, ..., n}. This implies
aj,i 6= 0. ⇒ contradiction.

2. Convection-Diffusion-Equation

• centered difference

|aii| =
4

h2

∑

i6=j

|aij | =
4

h2
2 · 1

h2
+

(
1

h2
+

b

2h

)
+

∣∣∣∣
1

h2
− b

2h

∣∣∣∣

= 3
1

h2
+

b

2h
+

∣∣∣∣
1

h2
− b

2h

∣∣∣∣

Thus, |aii| ≥
∑

i6=j |aij |, if and only if 1
h2 − b

2h
≤ 0.

This shows |aii| ≥
∑

i6=j |aij |, if and only if h < 2
b

• upwind

|aii| =
4

h2
+
b

h
≥

4

h2
+
b

h
≥

∑

i6=j

|aij | for all h, b > 0

• Conclusion
central: A is weak diagonal dominant if and only if h < 2

b
.

upwind: A is weak diagonal dominant.
A is irreducible in both cases.
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1.6 FE (Finite Element) Discretization

Definition 3. T = {T1, . . . , TM} is a conform triangulation of Ω if

• Ω =
⋃M

i=1 Ti, Ti is triangle or square

• Ti ∩ Tj is either

– empty or

– one common corner or

– one common edge.

Remark.

• Let us write Th, if the diameter hT of every element T ∈ Th is less or
equal h:

hT ≤ h.

• A family of triangulations {Th} is called quasi-uniform, if there exists
a constant ρ > 0 such that the radius ρT of the largest inner ball of
every triangle T ∈ Th satisfies

ρT > ρh.

Definition 4. • Let Th be a triangulation of Ω. Then, let Vh be the
space of linear finite elements defined as follows:

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v
∣∣
T

is linear for every T ∈ TH

}

0
V h = Vh ∩H1

0 (Ω)

v
∣∣
T

is linear means that v
∣∣
T
(x, y) = a+ bx+ cy.

• Let Ω =]0, 1[, h = 1
m

and

Th =

{
[ih, (i + 1)h] × [jh, (j + 1)h]

∣∣∣∣i, j = 0, . . . ,m− 1

}

The space of bilinear finite elements on Ω is defined as follows

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v
∣∣
T

is bilinear for every T ∈ TH

}

v
∣∣
T

is bilinear means that v
∣∣
T
(x, y) = a+ bx+ cy + dxy.
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• Let Vh be the space of linear or bilinear finite elements on Th and Nh

the set of corners of Th. Then, define the nodal basis function vp ∈ Vh

at the point p by:

vp(x) =

{
1 if x = p
0 if x 6= p

for x ∈ Nh

Observe that

Vh = span

{
vp

∣∣∣∣ p ∈ Nh

}

This means that every function uh ∈ Vh can be represented as

uh =
∑

p∈Nh

λpvp

Finite Element Discretization of Poisson’s equation:

−∆u = f

u
∣∣
δΩ

= 0

Thus, for every vh ∈
0
V h, we get:

−∆u vh = f vh

⇓∫

Ω
∇u ∇vh d(x, y) +

∫

Γ

∂u

∂~n
vh d(x, y) =

∫

Ω
f vh d(x, y)

⇓∫

Ω
∇u ∇vh d(x, y) =

∫

Ω
f vh d(x, y) ∀vh ∈

0
V h

FE Discretization: Find uh ∈
0
V h such that

∫

Ω
∇u ∇vh d(x, y) =

∫

Ω
f vh d(x, y) ∀vh ∈

0
V h (8)

Stiffness matrix.

ap.q :=

∫

Ω
∇vp ∇vq d(x, y), fq :=

∫

Ω
f vq d(x, y)

A := (ap,q)
p,q∈

0
Nh

,
0
Nh:= Nh ∩ Ω

uh =
∑

p∈
0
Nh

λp vp
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Then, (8) implies

∑

p∈
0

Nh

λp

∫

Ω
∇vp ∇vq d(x, y) =

∫

Ω
f vq d(x, y) for all q ∈

0
Nh

⇓
∑

p∈
0
Nh

λp ap,q = fq ∀q ∈
0
Nh

⇓

A Uh = Fh where
Uh = (λp)

p∈
0

Nh

Fh = (fq)
q∈

0
Nh

The matrix A is called the stiffness matrix of the FE discretization.
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1.7 Discretization Error and Algebraic Error

Let || · || be a suitable norm. Then, ||Uh − U || is called discretization error,
with respect to this norm.

Example 1. Poisson on a square

• FD, u ∈ C4(Ω), then

||Uh − U ||L∞(Ωh) = O(h2)

• FE, u ∈ H2(Ω), then

||Uh − U ||L2(Ω) = O(h2)

||Uh − U ||H1(Ω) = O(h)

Problem. The solution uh cannot be calculated exactly, since Lh (or
A) is a very large matrix and

A Uh = Fh.

Therefore, we need iterative solvers if n > 10.000 (or n > 100.000). By such
an iterative solver, we get an approximation ũh of uh. ||ũh − uh|| is called
algebraic error.

1.8 Basic Theory

Let A be a non singular n× n matrix and b a vector, b ∈ R
n.

Problem:
Find x ∈ R

n such that A x = b.
A linear iterative method to solve this equation system is:
Algorithm:

Let x0 be the start guess. Then
xk+1 := Cxk + d

Here x must be a fixed point of x := Cx+ d.
Theorem 1. xk converges to x for every start vector x0 if and only if

ρ(C) < 1

Here ρ(C) is the spectral radius of C,

ρ(C) = max
{
|λ|
∣∣λ is eigenvalue of C

}

(Observe the eigenvalues may be complex.)
Furthermore, the following convergence result holds:

||xk − x|| ≤ ||Ck|| ||x0 − x|| (9)
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If C is a normal matrix, then

||xk − x||2 ≤ (ρ(C))k ||x0 − x||2 (10)

There exist start vectors x0, such that the equal sign holds in the above
inequality.

1.9 Aim of a Multigrid Algorithm

Let us assume that the linear equation system comes from the discretization
of a partial differential equation. The the iteration method depends on the
meshsize h. The aim is to construct a (linear) iterative method such

• that the computational amount of one iteration is proportional to the
number of unknowns and

• such that

ρh(C) < ρ < 1

where ρ is a fixed constant.

1.10 Jacobi and Gauss-Seidel Iteration

The Jacobi-iteration is a
”
one-step“ method. The Gauss-Seidel-iteration is

a successive relaxation method.

1.10.1 Ideas of Both Methods

Relaxation of the i-th unknown xi:
Correct xold

i by xnew
i such that the i-th equation of the equation system

A · x = b

is correct.
Jacobi-iteration:

”
Calculate the relaxations simultaneously for all i = 1, . . . , n“

This means: If xold = xk, then
let xk+1 = xnew

Gauss-Seidel-iteration:

”
Calculate relaxation for i = 1, . . . , n and use the new values“

This means: xold,1 = xk

Iterate for i = 1, . . . , n:
Calculate xnew,i by relaxation of the i-th com-

ponent

15



Put xold,i+1 = xnew,i

xk+1 = xnew,n

Teh iteration matrix of the Gauss-Seidel iteration is

CGS = (D − L)−1R

and the iteration matrix of the Jacobi iteration is

CGS = D−1(L+R)

Remark.• Jacobi-iteration is independent of the numbering of the grid points

• The convergence rate of the Gauss-Seidel iteration depends on the
numbering of the grid points

16



Example 2. Model problem, FD for Poisson

W

N

M E

S
unew

M =
1

4

(
uold

N + uold
S + uold

E + uold
W

)
+ fM

red-black Gauss-Seidel

A four color Gauss-Seidel-relaxation is used for a 8-point stencil

−1 −1 −1
−1 8 −1
−1 −1 −1

- better relaxation property
- after relaxation of one color all equations at those
points are correct

Relaxation for the Convection-Diffusion:
A convection-diffusion problem is a so-called singular perturbed problem.
To see this write the convection-diffusion problem in the form:

−ǫ∆u+
∂u

∂x
= f̃ , ǫ > 0

ǫ→ 0 is the difficult case.
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(Hackbusch’s) rule for relaxing singular per-
turbed problems:
Construct the iteration such that it is an exact
solver for ǫ = 0

For ǫ = 0 we get the stencil (for upwind FD):



0
− 1

h
1
h

0
0




Thus a Gauss-Seidel relaxation with a numbering of the grid points from
left to right leads to an exact solver

1 2 3

4 5 6

7 8 9

This can be done also for more complicated convection directions. Ex-
ception: Circles!

1.11 Convergence Rate of Jacobi and Gauss-Seidel Iteration

1.11.1 Analysis of the Convergence of the Jacobi Method

Let us consider Poisson’s equation on a unit square. Let Ax = b the corre-
sponding linear system and

A = D − L−R,

where D is the diagonal matrix.
Then, the iteration matrix of the Jacobi method is Cj = D−1(L+R). I

case of the model problem Poisson’s equation, we get

A = D−L−R =⇒ Cj = D−1(D−A) = −D−1A+E+E−h2

4
A = E−h2

4
Lh

(11)

Let eνµ be the eigenfunctions of A and λνµ the corresponding eigenvalues.
This is

eνµ =
(

sin(νπhi) sin(µπhj)
)

i,j=1,...,m−1

Then, we get

CJeνµ =

(
1 − h2

4
λνµ

)
eνµ. (12)
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Here λν,µ are the eigenvalues

λν,µ =
4

h2

(
sin2

(
πνh

2

)
+ sin2

(
πµh

2

))

for ν, µ = 1 . . . (m− 1), where h = 1
m

. Thus, the iteration matrix Cj has the
eigenvalues

(ρJ)νµ = 1 − sin2

(
πνh

2

)
− sin2

(
πµh

2

)
(13)

Here, J denotes the Jacobi method. In case of ν = µ we have,

(ρJ )νν = 1−sin2

(
πνh

2

)
−sin2

(
πνh

2

)
= 1−2 sin2

(
πνh

2

)
= cos(πνh) (14)

The following graph depicts the eigenvalues (ρJ)νν with respect to the pa-
rameter πνh in (14).

-1

-0.5

 0

 0.5

 1

π/2 π

ρ

π(νh)

The eigenvalues ρνµ of the matrix C describe how the algebraic error

xk − x =
∑

cνµeνµ

is reduced by one iteration, since

xk+1 − x =
∑

(cνµρνµ)eνµ.

=⇒ Bad convergence for high and low frequencies.

=⇒ Good convergence for middle frequencies.

In particular, one can show that the spectral radius of the iteration ma-
trix is

ρ(C) = 1 −O(h2) (15)
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1.11.2 Iteration Method with Damping Parameter

Let us assume that xk −→ xk+1 is an iteration. The iteration can be written
as xk −→ xk + (xk+1 − xk). The term (xk+1 − xk) can be treated as a
correction term. Now a damped iteration is xk −→ ω(xk+1 − xk), where

• ω is called the damping factor or the relaxation parameter and ω ∈
]0, 2[.

• ω > 1 is called over relaxation.

• ω < 1 is called under relaxation.

SOR(Successive Over Relaxation) method is obtained by performing
the Gauss-Seidel method with over relaxation. But SOR has disadvantages
for e.g like,

• It is very difficult to find ω for certain class of problems.

1.11.3 Damped Jacobi Method

The Jacobi method with relaxation parameter ω = 1 is

xk+1
Jacobi = D−1(L+R)xk

Jacobi +D−1b (16)

The Jacobi method with damping parameter ω is

xk+1
ω = xk

ω + ω(D−1(L+R)xk
ω +D−1b− xk

ω)

=
{
E(1 − ω) + ωD−1(L+R)

}
xk

ω + ωD−1b (17)

=⇒ Cω = E(1 − ω) + ωD−1(L+R) (18)

This is the iteration matrix of the damped Jacobi method.

1.11.4 Analysis of the Damped Jacobi method

The iteration matrix of the damped Jacobi method can be written as

CJ,ω = E(1 − ω) + wD−1(D −A) = E − ωD−1A = E − ω
h2

4
A (19)

Furthermore, by (18), the iteration matrix of the damped Jacobi method is

CJ,ω = [E + ωCj − ωE] = (1 − ω)E + ωCj (20)

where Cj is the iteration matrix of the Jacobi method. The eigenvalues of
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the iteration matrix of the Jacobi method are

(ρJ)ν,µ = 1 −
[
sin2

(
πνh

2

)
+ sin2

(
πµh

2

)]

Thus, the eigenvalues of the iteration matrix of the damped Jacobi method
are

(ρJ,ω)
ν,µ

= 1 − ω

[
sin2

(
πνh

2

)
+ sin2

(
πµh

2

)]
(21)

Now, for ν = µ, we have

(ρJ,ω)
ν,ν

= 1 − 2ω

[
sin2

(
πνh

2

)]
(22)

Thus, if ω = 1
2

(ρJ,ω)
ν,ν

= 1 −
[
sin2

(
πνh

2

)]
(23)

The following graph depicts the eigenvalues (ρJ,ω)
νν

with respect to the
parameter πνh in (23).

-1

-0.5

 0

 0.5

 1

π/2 π

ρ

π(νh)

This shows that the damped Jacobi method with ω = 1
2 has the proper-

ties

• Bad convergence for low frequencies.

• Good convergence for high frequencies.

The Gauss–Seidel method has similar properties as the damped Jacobi
method with ω = 1

2 .
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1.11.5 Heuristic approach

x x x

x x x x

x x x x

x x xA

B

By single step methods we require O(
√
n) = O(h−1) operations for a cor-

rection in B due to a change in A. The idea is to achieve faster correction
by using a coarser grid.
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2 Classical Multigrid Algorithm

2.1 Multigrid algorithm on a Simple Structured Grid

2.1.1 Multigrid

Figure 3: l=3 Figure 4: l=2 Figure 5: l=1

The classical multigrid algorithm is described in [9], [10], [6], [7] or [18].
Let l be the number of levels such that lmax ∈ N and

ml = 2l

nl = (ml − 1)2

hl = 2−l

for l = 1 . . . lmax.
Let us assume that a PDE (e.g. Poisson’s equation) is given. Discretize

this equation by the grids Ωl := Ωhl
where l = 1, . . . , lmax. This leads to the

discrete matrix equations

Alxl = bl (24)

where bl, xl ∈ Sl and Sl = R
nl . The matrix Al is an invertible matrix of

order nl × nl.
Let an iterative solution for (24) be given as

xl
k+1 = Cl

relaxxl
k +Nlbl = Sl,bl

(xk
l ) (25)

2.1.2 Idea of Multigrid Algorithm

Let x̃l be an approximate solution for (24). The algebraic ẽl is defined as

ẽl = xl − x̃l. (26)

Now ẽl has to be calculated in order to find xl. The following residual
equation is valid for ẽl,

Alẽl = rl (27)
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where rl is called the residual and is given by

rl = bl −Alx̃l (28)

The aim is to find an approximate solution of the residual equation by
solving the equation approximately on a course grid Ωl−1. To this end, we
need the following matrix operators

• Restriction operator

I l−1
l : Sl 7→ Sl−1

• Prolongation operator

I l
l−1 : Sl−1 7→ Sl
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2.1.3 Two–grid Multigrid Algorithm

Two–grid Multigrid algorithm with parameters v1 and v2
Let xk

l be an approximate solution of (24) and v1 and v2 the parameters of
pre–smoothing and post–smoothing.

1. Step 1 (Pre–smoothing)

xk,1
l = S v1

l,bl
xk

l (29)

2. Step 2 (Coarse grid correction)

Residual calculation :

rl = bl −Alx
k,1
l (30)

Restriction :

rl−1 = I l−1
l rl (31)

Solve on coarse grid:

el−1 = Al−1
−1rl−1 (32)

Prolongation :

el = I l
l−1el−1 (33)

Correction :

xk,2
l = xk,1

l + el (34)

3. Step 3 (Post–smoothing)

xk+1
l = S v2

l,bl
(xk,2

l ) (35)
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2.1.4 Restriction and Prolongation Operators

Figure 6: O–Coarse grid point and X–Fine grid point

Let us abbreviate xi,j = x(ihl−1,jhl−1) and set xi,j = 0 for i = 0 or j = 0
or i = ml−1 or j = ml−1.

2.1.5 Prolongation or Interpolation

The interpolation or prolongation of xi,j given by wi,j = {I l
l−1(x)}(ihl,jhl) is

defined by the following equations

w2i,2j =
1

2
xi,j (36)

w2i+1,2j =
1

4
(xi,j + xi+1,j) (37)

w2i,2j+1 =
1

4
(xi,j + xi,j+1) (38)

w2i+1,2j+1 =
1

8
(xi,j + xi+1,j + xi,j+1 + xi+1,j+1) (39)

2.1.6 Pointwise Restriction

Piecewise restriction is rarely applied and defined by

{İ l−1
l (x)}(ihl−1,jhl−1) = x2i,2j (40)

The quality of this restriction operator is not very good.

2.1.7 Weighted Restriction

Weighted restriction or full weighting is defined by

{I l−1
l (x)}(ihl−1,jhl−1) =

1

8
(x2i+1,2j+1 + x2i−1,2j+1 + x2i+1,2j−1 + x2i−1,2j−1) +

1

4
(x2i+1,2j + x2i−1,2j + x2i,2j+1 + x2i,2j−1) +

1

2
x2i,2j
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Remark

(I l−1
l )

T
= I l

l−1 (41)

2.2 Iteration Matrix of the Two–Grid Multigrid Algorithm

Theorem 1. The iteration matrix of a two–grid Multigrid algorithm is

Ctwo grid
l =

(
Cl

relax
)v2
(
E − I l

l−1(Al−1)
−1I l−1

l Al

)(
Cl

relax
)v1

(42)

Proof

The coarse grid correction is

xl
k,2 = xl

k,1 + I l
l−1(Al−1)

−1I l−1
l (bl −Alxl

k,1)

=
(
E − I l

l−1(Al−1)
−1I l−1

l Al

)
xl

k,1 + I l
l−1(Al−1)

−1I l−1
l bl

Therefore the iteration matrix of the coarse grid correction of the two–
grid Multigrid algorithm is

(
E − I l

l−1(Al−1)
−1I l−1

l Al

)

A short calculation shows that the iteration matrix of two linear iteration
algorithms is the product of the iteration matrices of these algorithms.

2.3 Multigrid Algorithm

Multigrid algorithm MGM(xk
l , bl, l) with parameters (v1,v2,µ)

Let xk
lmax

be an approximate solution of (24). Then,

xk+1
lmax

= MGM(xk
lmax

)

is the approximate solution of (24) by the multigrid algorithm with an
initial vector xk

lmax
. The multigrid algorithm can then be described as

If l = 1 then MGM(xk
l , bl, l) = A−1

l bl

If l > 1 then

Step 1 (v1-pre–smoothing)

xk,1
l = S v1

l,bl
(xk

l )

Step 2 (Coarse grid correction)

Residual : rl = bl −Alx
k,1
l

Restriction : rl−1 = I l−1
l rl

Recursive call:
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e0l−1 = 0

for i = 1 . . . µ

eil−1 = MGM(ei−1
l−1 , rl−1, l − 1)

el−1 = eµl−1

Prolongation : el = I l
l−1el−1

Correction : xk,2
l = xk,1

l + el

Step 3 (v2-post–smoothing)

MGM(xk
l , bl, l) = S v2

l,bl
(xk,2

l )

The algorithm µ = 1 is called V-cycle (see Figure 7). The algorithm µ = 2
is called W-cycle (see Figure 8).
To obtain a good start approximation for a multigrid algorithm, we apply
the F-cycle (see Figure 9).

n1

n1

exact

n2

n2

restriction

restriction prolongation

prolongation

Figure 7: V-cycle

Homework: Describe the multigrid algorithm as a finite state machine,
where every state is smoothing step and an operation is a restriction or
prolongation. Then, the finite state machine of a V-cycle looks like a “V”
and the finite state machine of a W-cycle looks like a “W”.
Let N be the number of unknowns. The computational amount of the
V-cycle and W-cycle is O(N).
The theory of multigrid algorithms shows that there is a constant ρ such
that the convergence rate of the multigrid algorithm satisfies

ρ(CMGM,l) ≤ ρ < 1
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n2 + n1

ex

n1

n1

ex

n2 + n1

n2

Figure 8: W-cycle

independent of l. This shows that the multigrid algorithm on a unit square
for Poisson’s equation is optimal with respect to the asymptotic
computational amount.
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exact

prolongation

prolongation

MG

MG

Figure 9: F-cycle

2.4 Local Mode Analysis of the Multigrid method

2.4.1 1D Model Problem

The local mode analysis is a method to analyze the convergence rate of a
multigrid method. It is not an exact mathematical analysis of the the
multigrid method, but an analysis which gives a rather good hint about
the convergence properties of a multigrid method. To explain this problem,
let us consider the following Poisson’s equation in 1D:

Problem 2. Let f ∈ C([0, 1]). Find u ∈ cC2([0, 1]) such that

−△u = f on [0, 1].

To solve this problem let us apply the multigrid method with damped
Jacobi iteration as a smoother.
But, obviously, the local mode analysis can also be applied for more
complicated PDE’s and multigrid algorithms in 2D and 3D. But the local
mode analysis cannot be applied for every multigrid algorithm as
FE-discretizations on unstructured grids.

2.4.2 Extension of Operators

A multigrid algorithm consists of several parameters that have to be
properly tuned such that the algorithm converges rapidly.The parameters
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are,

µ : recursion parameter.

ν1, ν2 : smoothing parameter.

Sl,bl
: choice of smoother.

I l
l−1 : choice of the prolongation operator.

I l−1
l : choice of the restriction operator

Al for l < lmax : choice of the stiffness matrix on the courser grid.

(Almax
is determined by the discretisation.)

To simplify the analysis of the convergence of the two–grid method we omit
the boundary conditions and study all operators on an infinite dimensional
grid!
Instead of the finite grid

Ωd
h :=

{
(j1h, j2h, . . . , jdh) | j1, j2, . . . , jd ∈

{
0, . . . ,

1

h

}}
(43)

we apply an infinite grid

∞
Ω

d

h := {(j1h, j2h, . . . , jdh) | j1, j2, . . . , jd ∈ Z} (44)

The operators Al, I
l−1
l , Sl,bl

have to be extended to the infinite
dimensional grid in a suitable manner.

Remark

• The operators Al etc. are stencil operators, e.g a nine point stencil.

• The operators Al etc. depend on the spatial coordinates.

Therefore, we define the operators on the infinite grid as follows:

Let Qd
h be a stencil operator on the grid Ωd

h. Furthermore, let
x0 be an interior point of the grid Ωd

h. Now, define the stencil

operator
∞
Q

d

h to be the operator with stencil S(x0) for every

grid point x ∈
∞
Ω

d

h .

Example
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Let d = 1. The stiffness matrix obtained by the finite difference
discretization of the operator − d2

dx2 on the grid Ω1
h is

A1

h =




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




1

h2
(45)

Now, the operator on the corresponding infinite grid
∞
A

1

h is:

∞
A

1

h =




. . .
. . .

. . .

−1 2 −1
. . .

. . .
. . .




1

h2
(46)

which implies

∞
A

1

h(u)(x) = (−u(x− h) + 2u(x) − u(x+ h))
1

h2
∀x ∈

∞
Ω

1

h (47)

By the extension of the above operators on the infinite dimensional grid,

we can construct a two–grid method on the infinite dimensional grid
∞
Ω

d

h.
To analyze the convergence of the two–grid method, we need to know the
iteration matrix of the method. By Lemma 3, the iteration matrix for the
two–grid method is

(
Crelax

h

)ν2
(
Eh − Ih

H(AH)−1IH
h Ah

)(
Crelax

h

)ν1

,where H = 2h. (48)

where,

Crelax
h : iteration matrix of the smoothening step.

Eh : extended unit matrix.

Ih
H : extended prolongation operator.

IH
h : extended Restriction operator.

Ah, AH : extended stiffness matrices on the coarser grid.

For reasons of simplicity, let us write Ah instead of
∞
A h.

Example: Operators for the model problem
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The operators for d=1 are as follows.

Ah =




. . .
. . .

. . .

−1 2 −1
. . .

. . .
. . .




1

h2
(49)

AH =




. . .
. . .

. . .

−1 2 −1
. . .

. . .
. . .




1

4h2
(50)

IH
h =




. . .

1 2 1
1 2 1

. . .




1

4

(
or factor

1

2
√

2

)
(51)

Ih
H =




. . .

1
2
1 1

2
1

. . .




1

2

(
or factor

1

2
√

2

)
(52)

Crelax
h =




. . .
. . .

. . .
1
2ω 1 − ω 1

2ω
. . .

. . .
. . .


 (53)

ω= 1
2=




. . .
. . .

. . .
1
4

1
2

1
4

. . .
. . .

. . .




We allow these operators to act on the following functional spaces.

Vh := span

{
exp
(
iθ
x

h

)

x∈
∞
Ω

d

h

| − π ≤ θ ≤ π

}
(54)

VH := span

{
exp
(
iθ
x

H

)

x∈
∞
Ω

d

H

| − π ≤ θ ≤ π

}
(55)
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For reasons of simplicity, let us restrict ourselves to the 1–D case.

The harmonic frequency of exp
(
iθ x

h

)
is exp

(
iθ̃ x

h

)
where,

θ̃ := θ − π for θ ≥ 0

θ̃ := θ + π for θ < 0

2.4.3 Local Mode Analysis of the Smoother

Definition 5. Let us assume that the functions exp
(
iθ x

h

)
are the

eigenfunctions of the iteration matrix C of the smoother Swith eigenvalues
µ(θ). This means

C exp
(
iθ
x

h

)
= µ(θ) exp

(
iθ
x

h

)

Then, let us define the smoothening factor of S by

µ̄ := max
π
2
≤|Θ|≤π

|µ(Θ)|

Figure 10 depicts the local mode analysis of the Jacobi smoother with
relaxation parameter ω = 1

2 and ω = 1 for the 1D model problem. The
corresponding smoothing factors are 0.5 and 1. This shows that the Jacobi
iteration without relaxation ( ω = 1 ) is not suitable for a multigrid
method.

Figure 10: Local mode analysis of the Jacobi iteration

2.4.4 Local Mode Analysis of the Restriction and Prolongation

The local mode analysis of the restriction of the 1D-model problem shows
(see Figure 11)

IH
h exp(iΘ

x

h
) = cos2(

Θ

2
) exp(i2Θ

x

H
).
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Figure 11: Local mode analysis of the restriction

The local mode analysis of the prolongation of the 1D-model problem
shows (see Figure 12)

Ih
H exp(iΘ

x

H
) = cos2(

Θ

4
) exp(i

Θ

2

x

h
) + sin2(

Θ

4
) exp(i

(̃
Θ

2

)
x

h
). (56)

To prove Equation (56), observe that

Ih
H exp(iΘ

x

H
) = exp(iΘ2

x
h
) if x = h2k ∈ ΩH

Ih
H exp(iΘ

x

H
) = 1

2

(
exp(iΘx−h

H
) + exp(iΘx+h

H
)
)

= exp(iΘ2
x
h
) cos(Θ

2 ) if x = h(2k + 1) ∈ ΩH + h

Furthermore, observe that

exp(i

(̃
Θ

2

)
x

h
) = exp(i

(
Θ
2 − π

)
2k)

= exp(iΘ2
x
h
) if x = h2k ∈ ΩH

exp(i

(̃
Θ

2

)
x

h
) = exp(i

(
Θ
2 − π

)
(2k + 1))

= − exp(iΘ2
x
h
) if x = h(2k + 1) ∈ ΩH + h

Using the formulas

cos2(φ) + sin2(φ) = 1

cos2(φ) − sin2(φ) = cos(2φ)

completes the prove of (56).
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low frequency part high frequency part

Figure 12: Local mode analysis of the prolongation

2.4.5 Local Mode Analysis of the Two-Grid-Algorithm

Let consider the 1D model problem. The the two-grid iteration matrix is:

Ctwo−grid
h

(
Crelax

h

)ν2
(
Eh − Ih

H(AH)−1IH
h Ah

)(
Crelax

h

)ν1

(57)

The local mode analysis of the two-grid iteration can be described by a
matrix. In case of the 1D model problem, this is a 2 × 2 matrix

M(Θ) =

(
m11 m12

m21 m22

)
such that:

Ctwo−grid
h (exp(iΘ

x

h
)) = m11 exp(iΘ

x

h
) +m21 exp(iΘ̃

x

h
)

Ctwo−grid
h (exp(iΘ̃

x

h
)) = m21 exp(iΘ

x

h
) +m22 exp(iΘ̃

x

h
).

The matrix M(Θ) is called two grid amplification matrix.

Definition 6. The asymptotic two-grid convergence rate is

λ̄ := ρ(Ctwo−grid
h ) = max

|Θ|≤π
2

ρ(M(Θ)).

In case of the 1D model problem, we obtain

M(Θ) =

(
scν1+ν2 −ccν1sν2

−ssν2cν1 csν1+ν2

)
,

where s = sin2(Θ
2 ) and c = cos2(Θ

2 ) . A short calculation shows

ρ(M(Θ)) =
p+ q +

√
(p + q)2 + 8pq

2
,

where p = csν1+ν2 and q = scν1+ν2.
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Example 3. ν1 + ν2 = ν = 2. Then, we get

ρ(M(Θ)) = max
|Θ|≤π

2

sin2(Θ)(1 +

√
1 + 2 sin2(Θ))

A numerical calculation shows the asymptotic two-grid convergence rate is

λ̄ ≈ 0.3415

Since the smoothening factor is µ̄ = 0.5 we obtain

µ̄2 < λ̄ < µ̄.

Additionally, one can show that

λ̄
3
2
ν=2 < λ̄ν=3

This shows, that the choice ν = 2 is an optimal choice.

2.5 Multigrid Algorithm for Finite Elements

2.5.1 Sequence of Subgrids and Subspaces

Let τh1 · · · , τhlmax
be a sequence of quasi-uniform subdivisions of a polygon

domain Ω, where hl = 2−l. Let

• Ω̊hl
= Ω̊l be the set of interior grid points of τh.

• Ωhl
= Ωl be the set of all grid points of τh.

Obviously,

Ωl−1 ⊂ Ωl.

Furthermore, let us assume, that Vhl
is a finite element space on the grid

Ωhl
= Ωl such that

Vhl
⊂ Vhl+1

(This means V2h ⊂ Vh).

Example 4. Let us assume that τhl
is a triangulation. Then, let

Vhl
⊂ H1(Ω) be the finite element space of linear finite elements on τhl

.
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Every triangle is divided into four triangles

Let a(u, v) be a symmetric positive definite bilinear form on Vhlmax
.

Furthermore, let f ∈ V ′
hlmax

.

Example 5. An example is

a(u, v) =

∫

Ω
∇u∇v + uv d(x, y)

and f(v) =
∫
Ω f̃vd.

We want to solve the problem

Find uhlmax
∈ Vhlmax

such that

a(uhlmax
, vh) = f(vh) ∀ vh ∈ Vhlmax

. (58)

( In case of the above example, this problem is equivalent to
−△u+ u = f̃ , ∂u

∂~n

∣∣
∂Ω

= 0.)
To this end, let us study the problems

Find uhl
∈ Vhl

such that

a(uhl
, vh) = fl(vh) ∀ vh ∈ Vhl

(59)

for every l = 0, · · · , lmax

where fl is a suitable coarse grid right hand side.
Remark: In case of Dirichlet boundary conditions, one has to replace the
space Vhl

by the space V̊hl
:= Vhl

∩H1
0 (Ω).

2.5.2 The Nodal Basis

Let (vk
l )

k∈Ωhl

be the nodal basis for Vhl
.

(In case of Dirichlet boundary conditions consider (vk
l )

k∈Ω̊hl

)

Now (59) can be defined in matrix form as follows:

Alxl = bl (60)

38



where

Al = (akj)kj∈Ωhl

, akj = a(vk
l , v

j
l ) (61)

xl = (xk
l )k∈Ωhl

(62)

bl = (bkl )k∈Ωhl

(63)

and the solution vector uhl
is given by

uhl
=
∑

k ∈ Ωhl
xk

l v
k
l (64)

2.5.3 Prolongation Operator for Finite Elements

The natural inclusion is the prolongation operator

u ∈ Vhi

↓
u ∈ Vhi+1

To implement this operator, we have to describe this operator in a matrix
form.

By Vhi
⊂ Vhi+1

, there are coefficients γk′

k such that

vk′

i =
∑

k

γk′

k v
k
i+1 (65)

Thus, we get

uhi
=

∑

k′

xk′

i v
k′

i =
∑

k′

∑

k

γk′

k v
k
i+1x

k′

i (66)

=
∑

k

(
∑

k′

γk′

k x
k′

i

)
vk
i+1 (67)

Now the matrix version of the prolongation operator is

Ii+1
i

(
xk′

i

)
k′

=
(∑

k′ γk′

k x
k′

i

)
k

⇓
Ii+1
i = (γk′

k )(k,k′)
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2.5.4 Restriction Operator for Finite Elements

Observe that Fi ∈ (Vhi
)′.

This means that Fi : Vhi
−→ R is a linear mapping. The natural inclusion

is the restriction operator.

Fi+1 ∈ (Vhi+1
)′

↓
Fi ∈ (Vhi

)′

Fi(w) := Fi+1(w) ∀ w ∈ Vhi

The matrix version of the restriction operator can be obtained as follows

bk
′

i = Fi(v
k′

i ) =
∑

k

γk′

k Fi(v
k
i+1) (68)

=
∑

k

γk′

k b
k
i+1 (69)

Ii
i+1 =

(
γk′

k

)
(k′,k)

(70)

3 Subspace Correction Methods

3.1 Multiplicative Subspace Correction Methods

Let us assume that V is a finite dimensional Hilbert space and that

a : V × V → R

is a positive definite bilinear form. Furthermore, assume that f ∈ V ′.

Problem 3. Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V.

We want to find an iterative method to solve this problem. To this end, let
V1, ..., Vm be subspaces of V such that

V =

m∑

i=1

Vi.

Definition 7. A correction in the direction of the subspace Vi is defined as
follows. Let uold be an old approximation of 5. Then, let unew = uold +w
be the solution of

a(uold + w, v) = f(v) ∀v ∈ Vi

such that w ∈ Vi. Define

unew = SVi
(uold)

40



A multiplicative subspace correction for solving Problem 5 is

SV1 ◦ SV2 ◦ ... ◦ SVlmax
.

Example 6 (Gauss-Seidel Iteration). Consider the space Vh of bilinear
finite elements on a grid of size h. Color the points according to Figure 13.
Define the spaces spanned by the nodal points corresponding to these colors
by Vr,h, Vb,h, Vg,h, Vy,h. Then,

SVr,h
◦ SVb,h

◦ SVg,h
◦ SVy,h

is the classical Gauss-Seidel iteration. Observe that

Vh = Vr,h ⊕ Vb,h ⊕ Vg,h ⊕ Vy,h.

is a direct sum.

Figure 13: Four colors of Gauss-Seidel iteration
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Example 7 (Classical Multigrid Algorithm). Construct the spaces Vh and
Vr,h, Vb,h, Vg,h, Vy,h according to Example 6.
Then, the multigrid algorithm can be described as a subspace correction
method. For example the V-cycle with one pre-smoothing is

SVr,h1
◦ SVb,h1

◦ SVg,h1
◦ SVy,h1

◦
SVr,h2

◦ SVb,h2
◦ SVg,h2

◦ SVy,h2
◦

◦ ...

◦ ...

SVr,hlmax
◦ SVb,hlmax

◦ SVg,hlmax
◦ SVy,hlmax

The general multigrid algorithm can be described as follows:

Multigrid algorithm as a subspace correction method

If l = 1 then perform Gauss-Seidel iterations:
MGM(uk

l , fl, l) = (SVr,h
◦ SVb,h

◦ SVg,h
◦ SVy,h

)ν1+ν2(uk
l )

If l > 1 then

Step 1 (ν1-pre–smoothing)

uk,1
l = (SVr,h

◦ SVb,h
◦ SVg,h

◦ SVy,h
)ν1(uk

l )

Step 2 (Coarse grid correction)

Define: Residual : fl−1(v) := fl(v) − a(uk,1
l , v) for all v ∈ Vl−1.

Recursive call:

e0l−1 = 0

for i = 1 . . . µ

eil−1 = MGM(ei−1
l−1 , fl−1, l − 1)

el−1 = eµl−1

Prolongation : el = I l
l−1el−1

Correction : uk,2
l = uk,1

l + el

Step 3 (ν2-post–smoothing)

MGM(xk
l , bl, l) = (SVr,h

◦ SVb,h
◦ SVg,h

◦ SVy,h
)ν2(uk

l )

Example 8 (Multigrid Algorithm with Relaxation on a Complementary
Space). Construct the spaces Vh and Vr,h, Vb,h, Vg,h, Vy,h according to
Example 6 such that

Vg,hl
= Vhl−1

.
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Then, the spaces

Vg,h1 ⊕
Vr,h1 ⊕ Vb,h1 ⊕ Vy,h1 ⊕
Vr,h2 ⊕ Vb,h2 ⊕ Vy,h2

⊕ ...

⊕ ...

Vr,hlmax
⊕ Vb,hlmax

⊕ Vy,hlmax
.

form a direct sum. The corresponding subspace correction method is the
V-cycle with one pre-smoothing and without relaxation at the coarser grid
points, but with a relaxation on a complementary space. The
complementary spaces are

Wl := Vr,hl
⊕ Vb,hl

⊕ Vy,hl
.

Example 9 (Multigrid Algorithm on a Complementary Space). Define the
spaces Vhl

=: Vl and Wl according to Example 8. Then,

Vl = Vl−1 ⊕Wl

is a direct sum. The subspace correction method corresponding to this
construction is:

SV1 ◦ SW2 ◦ SW3 ◦ ... ◦ SWlmax
.

In Section 4, we will see that the convergence rate of this multigrid
algorithm depends on the angle between Wl and Vl−1.

3.2 Multigrid Algorithm with Hierarchical Surplus

The classical multigrid requires one storage for every multigrid level at
every grid point for each variable. This means for every variable

• 1 storage at the grid points Ωlmax\Ωlmax−1.

• 2 storages at the grid points Ωlmax\Ωlmax−1\Ωlmax−2.

• 3 storages at the grid points Ωlmax\Ωlmax−1\Ωlmax−2\Ωlmax−3.

• ...

Using a “hierarchical surplus”, one can implement a multigrid algorithm
such that O(1) storages are needed at every grid point. There are two
advantages of this approach:

• Extension of the classical multigrid algorithm for non-linear PDE’s.
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• Implementation of multigrid algorithms on adaptive grids.

To explain this kind of multigrid algorithm, let us define the interpolation
operator Il by

Il : Vlmax → Vl

Il(u)(x) = u(x) ∀x ∈ Ωhl

The hierarchical surplus is defined as

Hl : Vl → Vl

Hl(u) = u− Il−1(u).

Observe that

Il(u)(x) = 0 ∀x ∈ Ωhl−1

This implies, that we can store

Hl(ul), for l = 1, ..., lmax .

by only 1 storage for every grid point.
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Multigrid algorithm with Hierarchical Surplus
(here only V-cycle)

If l = 1 then MGM(uk
1 , f1, 1) = uk,3

1 = uh1

If l > 1 then

Step 1 (ν1-pre–smoothing)

uk,1
l = S v1

l,fl
(uk

l )

Step 2 (Coarse grid correction)

Store hierarchical surplus: wl := H(uk,1
l ).

Coarse right hand side:

fl−1(v) := fl(v) − a(wl, v) ∀v ∈ Vl−1.

Recursive call: uk,3
l−1 = MGM(uk,1

l , fl−1, l − 1)

Correction : uk,2
l = uk,3

l−1 +wl

Step 3 (ν2-post–smoothing)

MGM(xk
l , fl, l) = uk,3

l = S v2
l,bl

(uk,2
l )

In this algorithm, the variables uk,i
l and wl can be stored by only 1 storage

for every grid point.

3.3 A Multigrid Algorithm for Non-Linear Problems

In this section, we explain a multigrid algorithm for non-linear problems as
an extension of a subspace correction method. The multigrid algorithm is
equivalent to the full approximation scheme in [6].
Let us assume that

a : V × V × V → R

(w;u, v) 7→ a(w;u, v).

is a function such that

(u, v) 7→ a(w;u, v)

is a positive definite bilinear form for every w ∈ V . We want to solve the
problem:

Problem 4. Find u ∈ V such that

a(u;u, v) = f(v) ∀v ∈ V
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Assumptions to guarantee existence of a solution of this problem are
described in [14]

Example 10. The thermal conductivity of certain materials depends on
the temperature. This property of the material can be modeled by the
following “non-linear” form:

(w;u, v) 7→ a(w;u, v) =

∫

Ω
∇u
(

1 +
1

w2 + 1

)
∇v d(x, y)

On every grid Ωl, we can define a coarse grid equation. Let ul ∈ Vl be the
solution of

a(ul;ul, vl) = fl(vl) ∀vl ∈ Vl.

To derive a multigrid algorithm for a non-linear problem, let us first
consider a two-grid problem. Let uold

l be an approximation on the fine
grid. By a coarse grid correction, we want to obtain a new approximation
unew

l . To this end, we want to find an approximation êl−1 ∈ Vl−1 of the
exact coarse grid correction el−1 ∈ Vl−1, which is defined by:

a(uold
l + el−1;u

old
l + el−1, vl−1) = fl(vl−1) ∀vl−1 ∈ Vl−1.

This coarse grid equation, which defines êl−1 must satisfy two conditions

• If el−1 = 0, then there exists a êl−1 such that êl−1 = 0.

• The term unew
l−1 in the non-linear form a(unew

l−1 ; ...) must be a coarse
grid approximation of ul.

If el−1 is small, then an approximation of el−1 can be found by:

a(uold
l ;uold

l + ẽl−1, vl−1) = fl(vl−1) ∀vl−1 ∈ Vl−1,

where ẽl−1 ∈ Vl−1. This equation is equivalent to

a(uold
l ; ẽl−1, vl−1) = fl(vl−1)−a(uold

l ;uold
l , vl−1) =: r(vl−1) ∀vl−1 ∈ Vl−1.

Decompose uold
l by

uold
l = wl + Il(u

old
l ) = wl + uold

l−1.

Then, an approximation of the above equation is ˜̃el−1 ∈ Vl−1

a(uold
l−1; ˜̃el−1, vl−1) = r(vl−1) ∀vl−1 ∈ Vl−1

and equivalent to this equation

a(uold
l−1; ˜̃el−1 + uold

l−1, vl−1) = r(vl−1) + a(uold
l−1;u

old
l−1, vl−1)

=: fl−1(vl−1) ∀vl−1 ∈ Vl−1.
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Thus, we can define the following coarse grid equation

a(unew
l−1 ;unew

l−1 , vl−1) = fl−1(vl−1) ∀vl−1 ∈ Vl−1,

where unew
l−1 is an approximation of ˜̃el−1 + uold

l−1. Now, define

êl−1 := unew
l−1 − uold

l−1.

One can see that the above coarse grid equation describes the non-linearity
of the equation. Furthermore, the following lemma holds:

Lemma 1. If el−1 = 0, then êl−1 = 0.

Proof. If el−1 = 0, then rl−1 = 0. By the positive definiteness of
a(uold

l−1; ·, ·), we get ˜̃el−1 = 0. This implies unew
l−1 = uold

l−1. Thus, êl−1 = 0.

From the above equations we see that

f(vl−1) = r(vl−1) + a(uold
l−1;u

old
l−1, vl−1)

= f(vl−1) − a(uold
l ;uold

l , vl−1) + a(uold
l−1;u

old
l−1, vl−1)

and

unew
l = uold

l + unew
l−1 − uold

l−1

= unew
l−1 +Hl(u

old
l ).
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Multigrid algorithm for non-linear problems
(here only V-cycle)

If l = 1 then MGM(uk
1 , f1, 1) = uk,3

1 = uh1

If l > 1 then

Step 1 (ν1-pre–smoothing)

uk,1
l = S v1

l,fl
(uk

l )

Step 2 (Coarse grid correction)

Store hierarchical surplus: wl := H(uk,1
l ).

Coarse right hand side:

fl−1(vl−1) := fl(vl−1) −
a(uk,1

l ;uk,1
l , vl−1) + a(Il−1(u

k,1
l ); Il−1(u

k,1
l ), vl−1)

∀vl−1 ∈ Vl−1.

Recursive call: uk,3
l−1 = MGM(uk,1

l , fl−1, l − 1)

Correction : uk,2
l = uk,3

l−1 +wl

Step 3 (ν2-post–smoothing)

MGM(xk
l , fl, l) = uk,3

l = S v2
l,bl

(uk,2
l )

Remark 1. This algorithm coincides with the multigrid algorithm with
hierarchical surplus in section 3.2, if a is a bilinear form. This means that
a is independent of the first parameter:

a(w1;u, v) = a(w2;u, v) ∀w1, w2.

3.4 A Multigrid Algorithm on Adaptive Grids

In this section, we explain a multigrid algorithm on adaptive discretization
grids.
Let us first explain an adaptive discretization for finite elements. To this
end, let

Vh1 ⊂ Vh2 ⊂ ... ⊂ Vhmax

be a sequence of finite element spaces Vhi
with respect to the meshsize hi.

Furthermore, let Ωhi
be the discretization grid corresponding to Vhi

and
(vhi

p )p∈Ωhi
the set of nodal basis functions, such that

Vhi
= span

{
vhi
p

∣∣ p ∈ Ωhi

}
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To obtain an adaptive discretization, choose a sequence

Ω1,Ω2, ...,Ωmax

such that

Ωl ⊂ Ωhl
.

Then, let us define the spaces

Vi = span

{
vhi
p

∣∣ p ∈ Ωi

}

Vadaptive = span

max⋃

i=1

Vi.

The adaptive discretization is defined by:

Problem 5 (Adaptive Discretization). Find u ∈ Vladaptive
such that

a(u, v) = f(v) ∀v ∈ Vladaptive
.

An iterative solver for this linear equation system is the multigrid
algorithm with hierarchical surplus in section 3.2. A Gauss-Seidel iteration
can be constructed by the subspaces

Vr,i := Vr,hi
∩Vi Vb,i := Vb,hi

∩Vi Vg,i := Vg,hi
∩Vi Vy,i := Vy,hi

∩Vi.

The difficulty in an efficient implementation of this multigrid algorithm is
the implementation of

• the Gauss-Seidel relaxation (or the implementation of stencil
operators) and

• the interpolation and restriction operators.

To avoid this problem, we construct a grid Ω̃i ⊃ Ωi, Ω̃i ⊂ Ωhi
, with

hanging nodes and we permit only subgrids Ωi with a certain refinement
property. First, let us define the neighbor points Ni(p) on level i for a grid
point p ∈ Ωhi

. Ni(p) is the set of points of Ωhi
, which is needed to apply a

stencil operator at the point p. Now, define

Ω̃i :=
⋃

p∈Ωi

Ni(p)

Using this grid Ω̃i, we can perform a Gauss-Seidel iteration on Ωi by
treating the points Ω̃i\Ωi as points with inhomogeneous Dirichlet
boundary conditions.
For the implementation of efficient interpolation operators, we assume that
the following refinement property holds:
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Refinement Property
For every p ∈ Ω̃i\Ωhi−1

the following equation is satisfied:

Ni(p) ∩ Ωhi−1
⊂ Ωi−1.

Figure 14 shows an adaptive grid with two levels and hanging nodes.

boundary points

hanging nodes

fine grid points

coarse grid points

Figure 14: Adaptive grid.
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4 Analysis of Multigrid Algorithms on a
Complementary Space

See [3], [4], [11], [1] and [2] for further literature.

4.1 Analysis for a Symmetric Bilinear Form

Let V1 ⊂ V2 ⊂ ... ⊂ Vn be a sequence of vector spaces and let a be a
symmetric positive bilinear form

a : Vn × Vn ∈ R.

Then, Vn is a Hilbert space with scalar product a, which induces the norm
‖ · ‖. For fi ∈ V ′

i consider the problem

Problem 6. Find ui ∈ Vi such that

a(ui, v) = fi(v) ∀v ∈ Vi. (71)

Furthermore, let us assume that Wi is a subspace of Vi such that we
obtain the direct sum

Vi = Wi ⊕ Vi−1.

Such subspaces Wi are called complementary subspaces. A simple
construction of a complementary subspaces Wi can be a obtained by the
hierarchical construction as in Example 8 and 9.
The corresponding subspace correction method with recursion parameter µ
can be described as follows:

Algorithm 1 (Multilevel cycle with exact subspace correction (i, (µk))).
Let ui,1,0 ∈ Vi be an approximate solution of equation (71).
If i = 1, let ui,µi,3 be the exact solution of equation (71).
Otherwise, perform the following steps.

1. A priori exact subspace correction:
Find w′

i ∈ Wi such that a(ui,1,0 + w′
i, wi) = fi(wi) ∀wi ∈ Wi.

Let ui,1,1 = ui,1,0 + w′
i

For µ = 1, . . . , µi, do:
BEGIN
2. Coarse-grid correction:

Define fi−1 ∈ V ′
i−1 by:

fi−1(vi−1) = fi(vi−1) − a(ui,µ,1, vi−1) ∀ vi−1 ∈ Vi−1.
Let ũi−1 ∈ Vi−1 be the approximate solution of equation (71) obtained by
Multilevel cycle with exact subspace correction (i− 1, (µk), ν) and
initial approximation ui−1,1,0 = 0 (ũi−1 = ui−1,µi−1,3).
Let ui,µ,2 = ui,µ,1 + ũi−1.
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3. A posteriori exact subspace correction:
Find w′

i ∈ Wi such that a(ui,µ,2 + w′
i, wi) = fi(wi) ∀wi ∈ Wi.

Let ui,µ,3 = ui,µ,2 +w′
i.

Let ui,µ+1,1 = ui,µ,3.
END

Return ui,µi,3.

In case of a direct splitting Vi = Wi ⊕ Vi−1, the equation system on Wi

usually is much easier to solve than the equation system on the complete
space Vi. Therefore, we assume that there exists a fast iterative solver
Si,sm for the linear equation system on Wi. This means, that Si,sm is a
linear iterative solver for solving the problem

Problem 7.

a(ui, v) = gi(v) ∀v ∈ Vi. (72)

for a given g ∈ V ′
i , such that the the convergence rate of Si,sm does not

depend on the number of unknowns. This is stated in the following
assumption:

Assumption A: Assume that there are constants 0 < Csm and
0 ≤ ρsm < 1 independent of i such that

‖(Ci,sm)ν(w)‖ ≤ Csmρ
ν
sm‖w‖ ∀w ∈ Wi, 2 ≤ i ≤ n.

The convergence rate of the whole multilevel algorithm can be estimated
by the constant Csm, if the spaces Wi are a-orthogonal. This follows by the
observation that, in this case, a correction in the direction of Wi does not
influence the correction in the direction of another subspace Wj. This
leads to the conjecture that the convergence rate of the multilevel
algorithm depends on the angle between the coarse-grid space Vi−1 and the
complementary space Wi. By (92) this implies that the convergence of the
multilevel algorithm depends on the strengthened Cauchy-Schwarz
inequality between Vi−1 and Wi. The aim of this section is to study the
convergence rate of the multilevel algorithm with respect to the constant

γ(Vi−1,Wi).

To this end, let us assume the following:

Assumption B: Assume that there is a constant 0 ≤ γ < 1
such that

γ(Vi−1,Wi) = sup
v∈Vi−1,w∈Wi

a(v,w)

‖v‖ ‖w‖ ≤ γ, 2 ≤ i ≤ n.
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α
α

v′i−1

w′
i

ui − ûi,µ,2

Rv′i−1

λ′w′
i

Rwi

Figure 15: The vectors v′i−1, w
′
i, ui − ûi,µ,2, and ui − ûi,µ,2 + λ′ w′

i.

In case of the hierarchical construction and bilinear finite elements, one

can prove γ =
√

3
8 for Poisson’s equation.

Our proof of convergence of the multilevel cycle involves several steps. The
first step is to analyze the two-grid algorithm with exact coarse-grid
correction and exact subspace correction on Wi. An exact subspace
correction can be obtained, if ρsm = 0;

Theorem 2 (Two-grid convergence with exact subspace correction).
Assume 2 ≤ i ≤ n and let fi ∈ V ′

i be given. Assume that ui,µ,1 ∈ Vi,
ũi−1 ∈ Vi−1, and w̃i ∈ Wi, such that

a(ui,µ,1, wi) = fi(wi) for every wi ∈ Wi,

a(ui,µ,1 + ũi−1, vi−1) = fi(vi−1) for every vi−1 ∈ Vi−1, and

a(ui,µ,1 + ũi−1 + w̃i, wi) = fi(wi) for every wi ∈ Wi.

Define

ûi,µ,2 = ui,µ,1 + ũi−1 and ûi,µ,3 = ui,µ,1 + ũi−1 + w̃i.

Note that ûi,µ,3 is the solution of the two-grid algorithm with an exact
subspace correction corresponding to the spaces Vi and Vi−1. For this
algorithm, we obtain

‖ui − ûi,µ,3‖ ≤ γ2‖ui − ui,µ,1‖.

Proof. First, we prove

‖ui − ûi,µ,3‖ ≤ γ‖ui − ûi,µ,2‖.

Let us write ui − ûi,µ,2 = v′i−1 + w′
i where v′i−1 ∈ Vi−1 and w′

i ∈ Wi.
Obviously, it is

‖ui − ûi,µ,3‖ = min
wi∈Wi

‖ui − (ûi,µ,2 +wi)‖ ≤ min
λ∈R

‖ui − (ûi,µ,2−λw′
i)‖. (73)
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Let λ′ ∈ R such that

min
λ∈R

‖ui − ûi,µ,2 + λw′
i‖ = ‖ui − ûi,µ,2 + λ′ w′

i‖. (74)

The vectors v′i−1 and w′
i span a 2-dimensional Hilbert space with scalar

product 〈 · , · 〉.
Therefore, (74) is equivalent to

a(ui − ûi,µ,2 + λ′ w′
i, w

′
i) = 0.

This means that ui − ûi,µ,2 + λ′ w′
i is orthogonal to w′

i. By equation (71),
we get

a(ui − ûi,µ,2, v
′
i−1) = 0.

This means that ui − ûi,µ,2 is orthogonal to v′i−1. Figure 15 depicts this
geometric behavior of the vectors v′i−1, w

′
i, ui − ûi,µ,2, and ui − ûi,µ,2 +λ′w′

i.
One can see that the angle α between −v′i−1 and w′

i is the angle between
ui − ûi,µ,2 and ui − ûi,µ,2 + λ′ w′

i. Therefore, by assumption B, we get

‖ui−ûi,µ,2+λ
′ w′

i‖ = cos(α)‖ui−ûi,µ,2‖ =
〈−w′

i, v
′
i−1〉

‖w′
i‖ ‖v′i−1‖

‖ui−ûi,µ,2‖ ≤ γ‖ui−ûi,µ,2‖.

Thus by (74) and (73), we obtain

‖ui − ûi,µ,3‖ ≤ γ‖ui − ûi,µ,2‖. (75)

Analogously, we get

‖ui − ûi,µ,2‖ ≤ γ‖ui − ui,µ,1‖.

The last two inequalities complete the proof. q.e.d.

Now, we generalize this theorem for the case of a recursive coarse-grid
correction and exact subspace correction (Algorithm 1).

Theorem 3 (Convergence of the multilevel cycle with exact subspace
correction).
Assume that ρsm = 0 and let ui be the solution of equation (71). Define

ρi = sup
ui−ui,1,0∈Vi

‖ui − ui,µi,3‖
‖ui − ui,1,0‖

, 1 ≤ i ≤ n,

which is the sharp convergence factor bound for the multilevel cycle with
exact subspace correction. Then the following recursion formula holds:

ρi ≤ (γ2 + ρi−1(1 − γ2))µi , 2 ≤ i ≤ n,

ρ1 = 0.
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Proof. Assume 1 ≤ µ ≤ µi. Let ûi,µ,2 be the result of the exact coarse-grid
correction in Step 2 of the multilevel cycle. Furthermore, let ûi,µ,3 be the
result of the exact subspace correction in Step 3 using the exact
coarse-grid correction ûi,µ,2. This means

a(ûi,µ,3, wi) = fi(wi) for every wi ∈ Wi and

ûi,µ,3 − ûi,µ,2 = ŵi ∈ Wi.

Let us introduce the following auxiliary function

waux := (1 − ρi−1)(ûi,µ,3 − ûi,µ,2).

Obviously, it is waux ∈ Wi. Therefore, we get

‖ui,µ,3 − ui‖ = min
w∈Wi

‖(ui,µ,2 + w) − ui‖ ≤ (76)

≤ ‖(ui,µ,2 + waux) − ui‖ ≤
≤ ‖ρi−1(ûi,µ,2 − ui) + ui,µ,2 − ûi,µ,2‖ + (1 − ρi−1)‖ûi,µ,3 − ui‖.

ρi−1(ûi,µ,2 − ui) is orthogonal to ui,µ,2 − ûi,µ,2 ∈ Vi−1. By Phytagoras’
Theorem, we get

ρ2
i−1‖ûi,µ,2−ui‖2+‖ui,µ,2−ûi,µ,2‖2 = ‖ρi−1(ûi,µ,2−ui)+ui,µ,2−ûi,µ,2‖2. (77)

Furthermore, ûi,µ,2 − ui is orthogonal to ui,µ,1 − ûi,µ,2 ∈ Vi−1. This implies

‖ûi,µ,2 − ui‖2 + ‖ui,µ,1 − ûi,µ,2‖2 = ‖ui,µ,1 − ui‖2. (78)

By Theorem 2, we obtain

‖ui − ûi,µ,3‖ ≤ γ2‖ui,µ,1 − ui‖. (79)

By the error reduction of the coarse-grid correction, we get

‖ui,µ,2 − ûi,µ,2‖ ≤ ρi−1‖ui,µ,1 − ûi,µ,2‖. (80)

By (76), (77), (78), (79), and (80), we obtain

‖ui,µ,3 − ui‖ ≤ (ρi−1 + (1 − ρi−1)γ
2) ‖ui,µ,1 − ui‖ ≤ (81)

≤ (γ2 + ρi−1(1 − γ2)) ‖ui,µ,1 − ui‖.

This implies

‖ui,µi,3 − ui‖ ≤ (γ2 + ρi−1(1 − γ2))µi ‖ui,1,1 − ui‖.

Obviously, it is

‖ui,1,1 − ui‖ ≤ ‖ui,1,0 − ui‖.
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This completes the proof. q.e.d.

In practical application, it is important to choose µi as small as possible.
Therefore, let us put

ρ1 = 0 and (82)

ρi = (γ2 + ρi−1(1 − γ2))µi .

For fixed γ and fixed (µk)k∈N it is simple to calculate the limit limi→∞ ρi

numerically and to decide if the limit is smaller than 1 or not. We did this
for several recursion parameters (µk)k∈N. Table The result of this analysis
is shown in table 1.
In case of a constant recursion parameter (µk)k∈N one can find an explicit
formula, which indicates if the the limit limi→∞ ρi is smaller than 1 or not.
Lemma 2 states this formula and Table 2 shows some results of this
formula.

Lemma 2. Assume that (µi) = µ ∈ N \ {1} and

γ < γµ :=

√
1 − 1

µ
.

Then, the equation
(
γ2 + ρ(1 − γ2)

)µ
= ρ has a solution ρ ∈ [0, 1[. The

elements of the sequence (82) are contained in the interval [0, ρ].

Proof. Let us first prove that the equation
(
γ2 + ρ(1 − γ2)

)µ
= ρ has one

solution 0 ≤ ρ < 1. A short calculation shows

(
γ2 + ρ(1 − γ2)

)µ − ρ =
(
1 + (ρ− 1)(1 − γ2)

)µ − ρ =

= (1 − ρ) p(ρ, γ), where

p(ρ, γ) = 1 −
µ∑

k=1

(µ
k

)
(ρ− 1)k−1(1 − γ2)k.

Since 0 ≤ γ < γµ, the polynomial p(ρ, γ) has the properties

p(1, γ) = 1 − µ(1 − γ2) < 0 and

p(0, γ) = 1 +

µ∑

k=1

(µ
k

)
(−1)k(1 − γ2)k = (1 − (1 − γ2))µ ≥ 0.

Thus, by the continuity of the function p(ρ, γ), there is a 0 ≤ ρ < 1 such
that p(ρ, γ) = 0. This implies

(
γ2 + ρ(1 − γ2)

)µ
= ρ. By induction we get

that ρi ∈ [0, ρ]. q.e.d.
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(µi) 1 + 1
10 1 + 1

8 1 + 1
6 1 + 1

4 1 + 1
2

γ(µi) 0.2587 0.2880 0.33030 0.39887 0.54119

Table 1: If γ < γ(µi), then there is a ρ < 1 such that ρi < ρ for every i.

µ 2 3 4 5 6 7 8

γµ =
√

µ−1
µ

0.70710 0.81650 0.86602 0.89443 0.91287 0.92582 0.93541

Table 2: If γ < γµ, then there is a ρ < 1 such that ρi < ρ for every i.

Example 11 (W-cycle µ = 2.). The equation
(
γ2 + ρ(1 − γ2)

)2
= ρ has

the solution

ρ =
γ4

(γ2 − 1)2
. (83)

For the hierarchical construction it is γ =
√

3
8 (see Table ??). This leads

to ρi ≤ ρ = 9
25 = 0.36.

Theorem 3 can be extended to the case of approximate subspace
corrections that satisfy assumption A (see Algorithm ??). This gives
Theorem 4 the proof of which can be found in [12]

Theorem 4 (Convergence of the multilevel cycle with an approximate
subspace correction). Let

ρi = sup
ui−ui,1,0∈Vi

‖ui − ui,µi,3‖
‖ui − ui,1,0‖

be the convergence rate of the general cycle with ν smoothing operations.
Then, for every ǫ > 0, there exists a number νǫ which depends only on ǫ, γ,
µi, Csm, and ρsm such that:

If ρi−1 ≤ 1, then the following recursion formula holds

ρi ≤ (γ2 + ρi−1(1 − γ2))µi + ǫ,

ρ1 = 0,

for every ν ≥ νǫ.

Furthermore, the following inequality holds:

ρi ≤ θµi,1 + θµi,2 + θµi,3
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where

θµ,1 = (γ2 + ρi−1(1 − γ2)) (θµ−1,1 + θµ−1,2),

θµ,2 = (γ + ρi−1(1 − γ)) θµ−1,3, and

θµ,3 = Csmρ
ν
sm

√
1 + ρ2

i−1(θµ−1,1 + θµ−1,2 + θµ−1,3)

for µ = 2, . . . , µi and

θ1,1 = (γ2 + ρi−1(1 − γ2)),

θ1,2 = Csmρ
ν
sm(γ + ρi−1(1 − γ)), and

θ1,3 = Csmρ
ν
sm

√
(γ + Csmρν

sm(1 − γ))2 + ρ2
i−1(Csmρν

sm + 1)2.

4.2 Result for a Non-Symmetric Bilinear Forms

To obtain a robust estimation of the convergence rate of the multilevel
algorithm in case of non-symmetric bilinear forms, we have to estimate the
convergence rate of the multilevel algorithm in a norm which includes the
non-symmetric part of a. A natural norm with this property is the
operator norm of a. For the definition of this norm we need a Hilbert space
Therefore, let us assume that Vn is a Hilbert space with scalar product
〈·, ·〉 and norm ‖ · ‖. Then, we can define the following semi-norms on Vn

‖u‖Vi
:= sup

vi∈Vi

a(u, vi)

‖vi‖
for u ∈ Vn and

‖u‖Wi
:= sup

wi∈Wi

a(u,wi)

‖wi‖
for u ∈ Vn.

Obviously, ‖ · ‖Vi
is a norm on Vi and ‖ · ‖Wi

is a norm on Wi. These
norms contain the non-symmetric part of a. The scalar product 〈 · , · 〉 on
V can be defined in different ways. Often, one can construct this scalar
product with the help of the symmetric part of a. But, we do not have to
specify the scalar product 〈 · , · 〉 for the general theory in this section.

Assumption A: Assume that there are constants Csm > 0 and
ρsm ∈ [0, 1), independent of i, such that

‖(Bi)
ν(w)‖Wi

≤ Csmρ
ν
sm‖w‖Wi

∀w ∈ Wi, 2 ≤ i ≤ n.

The second assumption is the strengthened Cauchy-Schwarz inequality in
the Hilbert space V:

Assumption B: Assume that there is a constant 0 ≤ γ̃ < 1
such that

γ(Vi−1,Wi) = sup
v∈Vi−1,w∈Wi

〈v,w〉
‖v‖ ‖w‖ ≤ γ̃, 2 ≤ i ≤ n.
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The third assumption must involve the bilinear form a. It is something like
a generalization of the strengthened Cauchy-Schwarz inequality for
nonsymmetric bilinear forms.

Assumption C: Assume that there is a constant 0 < γ < 1
such that

‖v‖Wi
≤ γ‖v‖Vi−1 ∀ v ∈ Vi−1, 2 ≤ i ≤ n,

‖w‖Vi−1 ≤ γ‖w‖Wi
∀w ∈ Wi, 2 ≤ i ≤ n.

Using these assumptions one can prove (see [13]):

Theorem 5 (Convergence of the multilevel cycle). Let

ρi = sup
ui−ui,1,0∈Vi

‖ui − ui,µi,3‖Vi

‖ui − ui,1,0‖Vi

, 1 ≤ i ≤ n,

which is the sharp convergence factor bound for the general cycle with ν
approximate subspace corrections. Then, for every ǫ > 0, there exists a
number νǫ that depends only on ǫ, γ, γ̃, Csm, and ρsm such that the
following holds:

If ρi−1 ≤ 1, then

ρi ≤
√

1 + γ2

1 − γ̃
((1 + γ2)ρi−1 + γ2)µi + ǫ, 2 ≤ i ≤ n,

ρ1 = 0,

for every ν ≥ νǫ.

It is important to choose (µi) as small as possible. Table 3 helps to choose
(µi) for constant (µi) = µ. If one chooses γ = γ̃ < γµ, then the convergence
rate of the multilevel cycle is smaller than the value ρµ in Table 3.

µ 2 3 4 5 6 7 8

γµ 0.395 0.518 0.591 0.642 0.680 0.710 0.734

ρµ 0.122 0.104 0.0732 0.0612 0.0527 0.0487 0.0442

Table 3: For a non-symmetric bilinear form a choose the smallest µ such
that γ < γµ and γ̃ < γµ. Then, the convergence rate of the multi-level cycle
is smaller than ρµ.
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4.3 Analysis of the Strengthened Cauchy-Schwarz
Inequality

4.3.1 Introduction

Consider a finite element space Vn and a symmetric positive definite
bilinear form

a : Vn × Vn → R.

Then, Vn is a Hilbert space with scalar product a. Assume that Vn−1 is a
coarse subspace of Vn. We are looking for a complementary space Wn such
that the multilevel cycle 1 is a fast iterative solver. The theory in section
4.1 and 4.2 shows that we need a complementary space Wn spanned by
functions with a small support and such that the constant in the
strengthened Cauchy-Schwarz inequality

γ(Vn−1,Wn, a) := sup
u∈Vn−1,v∈Wn

|a(u, v)|√
a(u, u)

√
a(v, v)

is small. To solve this problem, we first try to construct suitable
complementary spaces in one dimension (see section 4.3.3 and ...). Then,
simple tensor product constructions will lead to a construction for the
two-dimensional case.
The simplest way to construct a complementary space is to use the
hierarchical basis. Let us explain this by a 1-dimensional example. Let
Vn ⊂ H1

0 (]0, 1[) be the space of piecewise linear functions of meshsize
h = 2−n and vn

p the corresponding nodal basis functions. Then, we get

Whier
n := spanR

{
vn
p = vp

∣∣ p ∈ Ωn\Ωn−1

}
.

Obviously, this construction leads to the direct sum

Vn =Vn−1 ⊕Whier
n .

Let us calculate the constant in the strengthened Cauchy-Schwarz
inequality with respect to the H1- and L2-bilinear forms

∫ 1

0

∂u

∂x

∂v

∂x
dx and

∫ 1

0
uv dx.

By Theorem ??, vp, p ∈ Ωn is an orthogonal basis of Vn and vp, p ∈ Ωn−1 is

an orthogonal basis of Vn−1. This implies

γ(Vn−1,W
hier
n ,H1) := sup

u∈Vn−1,v∈Whier
n

∫ 1
0

∂u
∂x

∂v
∂x

dx

|u|H1 |v|H1

= 0,
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where |v|2
H1 :=

∫ 1
0

(
∂v
∂x

)2
dx. This certainly is the optimal construction of a

complementary space with respect to the H1-bilinear form. Unfortunately,
the hierarchical basis is not H1-orthogonal in two dimensions.
Now, let us study the constant in the strengthened Cauchy-Schwarz
inequality with respect to the L2 bilinear form. Let us do this in several
steps.

Figure 16: The functions x, 1 − x, and v 1
2
.

Step 1. Localization.
Consider the basis functions x, 1 − x, and v 1

2
in Figure 16. Let us assume

that we can prove

∥∥(cL(1−x)+cRx)
∥∥2

L2(]0,1[)
+
∥∥bMv 1

2

∥∥2

L2(]0,1[)
≤ K

∥∥(cL(1−x)+cRx)+bMv 1
2

∥∥2

L2(]0,1[)

(84)

for every parameter cL, cR, bM ∈ R, where K > 1 is a fixed constant. Then,
this implies

∥∥u
∥∥2

L2(]ih,(i+1)h[)
+
∥∥v
∥∥2

L2(]ih,(i+1)h[)
≤ K

∥∥u+ v
∥∥2

L2(]ih,(i+1)h[)

for every u ∈Vn−1, v ∈Whier
n , and i = 0, · · · , 2n − 1, where h = 2−n.

Summing up these inequalities yields

∥∥u
∥∥2

L2(]0,1[)
+
∥∥v
∥∥2

L2(]0,1[)
≤ K

∥∥u+ v
∥∥2

L2(]0,1[)

for every u ∈Vn−1, v ∈Whier
n . Now, we can apply Lemma 3. This gives

γ(Vn−1,W
hier
n , L2) ≤ 1 −K−1.

Therefore, it is enough to prove (84).

Step 2. Algebraic analysis.
A short calculation shows that (84) is equivalent to

1

3

(
c2L + c2R + cLcR + b2M

)
≤ K

1

3

(
c2L + c2R + cLcR + b2M

)
+K

1

2

(
cL + cR

)
bM .
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This equation is equivalent to

0 ≤ c2L + c2R + cLcR + b2M +
K

K − 1

3

2

(
cL + cR

)
bM .

Of course, this equation should hold for the special case cL = cR = c. This
leads to the inequality

0 ≤ 3c2 + b2M + 2
K

K − 1

3

2
cbM .

This inequality is correct if

√
3

4
=
K − 1

K
= 1 −K−1, (85)

since then

0 ≤ 3c2 + b2M + 2
K

K − 1

3

2
cbM =

(√
3c+ bM

)2
.

Therefore, we choose K such that (85) holds. Then, we get

0 ≤ 1

4
(cL−cR)2 +

(√
3
1

2
(cL − cR) + bM

)2

= c2L+c2R+cLcR+b2M+
K

K − 1

3

2

(
cL+cR

)
bM

and (84) is proved for this choice of K.
Combining Step 1. - 2. shows that

γ(Vn−1,W
hier
n , L2) := sup

u∈Vn−1,v∈Whier
n

∫ 1
0 uv dx

‖u‖L2‖v‖L2

≤
√

3

4
≈ 0.86603.

Summarizing the above estimations, we state the following

Proposition 1 (Hierarchical basis in 1D).

γ(Vn−1,W
hier
n ,H1) = sup

u∈Vn−1,v∈Whier
n

∫ 1
0

∂u
∂x

∂v
∂x

dx

|u|H1 |v|H1

= 0,

γ(Vn−1,W
hier
n , L2) = sup

u∈Vn−1,v∈Whier
n

∫ 1
0 uv dx

‖u‖L2‖v‖L2

≤
√

3

4
≈ 0.86603.

In several applications, the constant 0.86603 is a too large constant for
obtaining a fast multilevel algorithm. In section 4.3.3 - 4.3.5, we show how
to construct complementary spaces Wn spanned by functions with a small
support and such that the constant in the strengthened Cauchy-Schwarz
inequality is smaller than 0.4 for the H1 and L2-bilinear form. In the next
section, we explain how to estimate the strengthened Cauchy-Schwarz
inequality for the hierarchical basis in 2D.
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4.3.2 Hierarchical Decomposition

In this section, we study the constant in the strengthened Cauchy-Schwarz
inequality for the hierarchical construction Example 9 in two dimensions.
For reasons of simplicity, let Ω be the unit square ]0, 1[2. But, the results
in this sections also hold for a polygonal domain such that the corners of Ω
are contained in Z × Z and such that the boundary of Ω is the union of
vertical and horizontal lines. Let Vn,n be the space of piecewise bilinear

functions with meshsize h = 2−n on Ω. Recall that Vn,n is the space of
piecewise bilinear functions of meshsize h = 2−n in x- and y-direction and

that Whier
n,n is the space defined by

Whier
n,n := spanR

{
vn
(p,q)

∣∣ (p, q) ∈ Ωn × Ωn\Ωn−1 × Ωn−1

}
.

Observe, that the space Whier
n,n can be described in the following way

Whier
n,n :=

{
u ∈Vn,n

∣∣∣ u(p) = 0 for p ∈ Ωn−1 × Ωn−1

}
if n > 1 and

Whier
1,1 := V1,1.

Let

a :Vn,n ×Vn,n → R

be a symmetric positive definite bilinear form. The aim of this section is to
estimate the constant in the strengthened Cauchy-Schwarz inequality

γ(Vn−1,n−1,W
hier
n,n , a) := max

v∈Vn−1,n−1,w∈Whier
n,n

a(v,w)√
a(v, v)

√
a(w,w)

,

where we write 0
0 := 0. The result of our analysis is printed in Table 4.

First, we explain our analysis in general. Assume that a is one of the
bilinear forms

a(u, v) =

∫

Ω
〈∇u,∇v〉 d(x, y),

a(u, v) =

∫

Ω

∂u

∂(cosφ, sin φ)

∂v

∂(cos φ, sinφ)
d(x, y), where 0 ≤ φ ≤ 2π, or

a(u, v) =

∫

Ω
u v d(x, y).

Here, we abbreviate

∂w

∂(cos φ, sinφ)
:=

∂w

∂x
cosφ+

∂w

∂y
sinφ.
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a(u, v) γ(Hier, n, a) ≤

∫
Ω〈∇u,∇v〉 d(x, y)

√
3
8 ≈ 0.612372

∫
Ω

∂u
∂(cos φ,sinφ)

∂v
∂(cos φ,sinφ) d(x, y)

√
3
4 ≈ 0.866025

∫
Ω u v d(x, y)

√
15
16 ≈ 0.968246

Table 4: Constant in the strengthened Cauchy-Schwarz inequality for the
hierarchical decomposition.

Figure 17: Wsquare is the space of piecewise bilinear functions on a grid of
meshsize 1

2 which are zero at the coarse grid points (above white points).

γ(Vn−1,n−1,W
hier
n,n , a) := max

v∈Vn−1,n−1,w∈Whier
n,n

a(v,w)√
a(v, v)

√
a(w,w)

,

Step 1. Localization.
Define

Ωsquare := ]0, 1[2,

Vsquare :=
{
u
∣∣∣ u is bilinear on Ωsquare

}

= span

{
xy, (1 − x)y, x(1 − y), (1 − x)(1 − y)

}
, and

Wsquare :=
{
u ∈ C(Ω̄square)

∣∣∣ u(0, 0) = u(1, 0) = u(0, 1) = u(1, 1) = 0 and u is bilinear

on the subdomains ]0, 0.5[2, ]0.5, 1.0[2, ]0, 0.5[×]0.5, 1.0[, ]0.5, 1.0[×]0, 0.5[
}
.

The grid points corresponding to the space Wsquare are depicted in Figure
17. Let asquare be the bilinear a, but replace the integral by the integral
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over the domain Ωsquare. Let ‖ · ‖ be the semi-norm induced by the bilinear
form a or asquare. Assume that K > 1 is a constant such that

‖v‖2 + ‖w‖2 ≤ K‖v+w‖2 for every v ∈ Vsquare and w ∈Wsquare. (86)

Then, this inequality holds on every cell of the grid Ωn × Ωn. Summing up
these inequalities gives

‖v‖2 + ‖w‖2 ≤ K‖v + w‖2 for every v ∈ Vn−1,n−1 and w ∈Whier
n,n .

By Lemma 3, we obtain

γ(Vn−1,n−1,W
hier
n,n , a) ≤ K − 1

K
.

Step 2. Analysis of the matrix equation.
Let w1, w2, w3, and w4 be a basis of Vsquare and let w5, w6, w7, w8, and w9

be a basis of Wsquare. Let A = (ai,j)1≤i,j≤9 be the matrix of the bilinear
form asquare with respect to the basis {w1, w1, · · · , w9}. Now, let B be the
block diagonal matrix of A:

B =





a11 a12 a13 a14 0 0 0 0 0
a21 a22 a23 a24 0 0 0 0 0
a31 a32 a33 a34 0 0 0 0 0
a41 a42 a43 a44 0 0 0 0 0
0 0 0 0 a55 a56 a57 a58 a59

0 0 0 0 a65 a66 a67 a68 a69

0 0 0 0 a75 a76 a77 a78 a79

0 0 0 0 a85 a86 a87 a88 a89

0 0 0 0 a95 a96 a97 a98 a99





.

Furthermore, put CK := K A− B. Then, inequality (86) is equivalent to
CK is a positive semi-definite matrix.

This is equivalent to
CK has no negative eigenvalues.

Let PK(x) := det(E x − CK) be the characteristic polynomial of CK .
Then, inequality (86) is equivalent to

The roots of PK(x) are not negative.
Therefore, we have to solve the following algebraic problem:

Find the minimal real number K > 1 such that the roots of
PK(x) are not negative.

Step 3. Analysis of the characteristic polynomial.
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The characteristic polynomial PK(x) has the following form

PK(x) = p0(K) + p1(K)x+ p2(K)x2 + · · · + p9(K)x9

where pi(K) are polynomials. Let s ∈ N0 be the maximal number such
that p0(K) = p1(K) = · · · = ps−1(K) = 0. Then ps(K) is the product of all
roots of PK(x) which are not zero for every K. We suppose that the
optimal value of K is such that PK(x) has s or more zero roots. This leads
to the ansatz

Ansatz:
Find the roots K1,K2, . . . ,Kl of the polynomial ps(K).
Find the minimal Kj > 1 such that the roots of PKj

(x) are not
negative.

For each of our bilinear forms this ansatz succeeded. Therefore, we get

γ(Vn−1,n−1,W
hier
n,n , a) ≤ Kj − 1

Kj
.

We calculated the value Kj with the help of a algebra manipulation
program. The polynomials PK(x) are very long expressions. Therefore, we
do not want to write them down here. But let us explain the calculation of
Kj for two bilinear forms in more detail.
Example 1: a(u, v) =

∫
Ω〈∇u,∇v〉 d(x, y).

For this bilinear form we get s = 1 and

p1(K) = −81

64
(K − 1)4(8 − 16K + 5K2)2.

This leads to Kj = 2
5 (4 +

√
6) and

γ(Vn−1,n−1,W
hier
n,n , a) ≤ 3 + 2

√
6

8 + 2
√

6
=

√
3

8
.

Example 2: a(u, v) =
∫
Ω

∂u
∂(cos φ,sinφ)

∂v
∂(cos φ,sinφ) d(x, y). For this bilinear

form we get s = 2. The problem of this bilinear form is that p2(K) depends
on φ. But, Kj = 2(2 +

√
3) is a root of p2(K) for every φ. Therefore, we

analyze the polynomial Qφ(x) = PKj
(x)x−3. We have to show that all

roots of Qφ(x) are non-negative for every φ ∈ R. By symmetry, it is enough
to study Qφ(x) for 0 ≤ φ ≤ π

4 . One can show that the roots of Qφ(π
4 ) are

greater than 1 and that the roots of Qφ(0) are non-negative. Now, we use
the continuity of the roots with respect to φ. If there is a 0 < φn ≤ π

4 such
that Qφn

(x) has a negative root, then there must be a φn ≤ φ0 ≤ π
4 such

that Qφ0(x) has a zero root. This implies Qφ0(0) = 0. But it is

Qφ(0) =
1

4
(1351 + 780

√
3)(4 − cos(4φ)) sin2(2φ) > 0 for 0 < φ ≤ π

4 .
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Therefore, we get

γ(Vn−1,n−1,W
hier
n,n , a) ≤ 3 + 2

√
3

4 + 2
√

3
=

√
3

4
.

for every φ.

4.3.3 Prewavelets

In several applications, the hierarchical construction leads to a too large
constant γ. A smaller canstant can be obtained by prewavelets. Let us
explain these functions in one dimension. The prewavelet functions are a
basis of the L2-orthogonal complement space. This spaceWn ⊂Vn is
defined by

Wn :=

{
w ∈Vn

∣∣∣∣
∫ 1

0
wv dx = 0 for every v ∈Vn−1

}
.

Then, we obtain the following L2-orthogonal direct sum

Vn =Wn ⊕L2Vn−1.

A prewavelet is a function which induces by shifting a basis of the space
Wn. The boundary makes it difficult to define a shifting in the spaceWn.
Therefore, we first define prewavelet functions for a related space. Let
V̄n ⊂ C(R) be the space of 2-periodic and piecewise linear functions on a
uniform grid of meshsize h = 2−n, where n ∈ N. Figure 18 shows an
example of a function in V̄n restricted on the interval [−1, 1]. By
2-periodicity, every function w ∈ V̄n is uniquely defined by its values on the
interval [−1, 1] and has the property w(−1) = w(1).
V̄n is an L2- and H1-Hilbert space with respect the standard inner
products

∫ 1
−1w v dx and

∫ 1
−1w v + ∂w

∂x
∂v
∂x

dx, respectively. The
corresponding respective norms are ‖ · ‖L2 and ‖ · ‖H1 . The semi-norm

| · |H1 on V̄n is defined by |w|2
H1 :=

∫ 1
−1

(
∂w
∂x

)2
dx. Now let W̄n ⊂ V̄n be

the L2-orthogonal complement space of V̄n−1 for n ≥ 2. This is the space

W̄n :=

{
w ∈ V̄n

∣∣∣∣
∫ 1

−1
wv dx = 0 for every v ∈ V̄n−1

}
.

Now, we can define the prewavelet functions. Let ψM be the function

1

1
10

−3
5

3
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Furthermore, we define the function ϕ̄n,k ∈ W̄n by

ϕ̄n,k(x) :=

{
ψM (x 2n−1 − k + 2) if 0 ≤ x 2n−1 − k + 2 ≤ 3,

0 elsewhere
,

where k = +
− 1, . . . , +

− 2n−1. The functions ϕ̄n,k, k = +
− 1, . . . , +

− 2n−1 form
a basis of W̄n.
Now, we can define the prewavelet functions inWn. Observe that the
functions ϕ̄n,k

∣∣
]0,1[

are contained inWn if k = 2, . . . , 2n−1 − 1. To construct

a prewavelet function near the boundary with Dirichlet boundary
condition, we observe that

(ϕ̄n,1 − ϕ̄n,−1)
∣∣
]0,1[

∈Wn.

These considerations lead to the following construction. Define the
function ψD

L by:

1
10

9
10

−3
5

2

Now, define the functions ϕn,k by

ϕn,1(x) := ψD
L (x 2n−1),

ϕn,k(x) := ψM (x 2n−1 − k + 2) for k = 2, . . . 2n−1 − 1,

ϕn,2n−1(x) := ψD
L ((1 − x) 2n−1).

Obviously, the constant in the strengthened Cauchy-Schwarz inequality
between Vn−1 and Wn is

γ(Vn−1,Wn, L
2) := max

v∈Vn−1,w∈Wn

∫ 1
0 vw dx

‖v‖L2‖w‖L2

= 0

with respect to the L2-bilinear form. Now, we want to estimate the
constant γ with respect to the H1-bilinear form. This is the constant

γ(Vn−1,Wn,H
1) := max

v∈Vn−1,w∈Wn

∫ 1
0

∂v
∂x

∂w
∂x
dx

|v|H1 |w|H1

,

where |v|2
H1 :=

∫ 1
0

(
∂v
∂x

)2
dx.
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1h-1 -h

Figure 18: Example of a function in
V̄n.

1h-1 -h

Figure 19: Symmetric extension ũ.

Theorem 6. The following estimate holds:

γ(Vn−1,Wn,H
1) ≤

√
3

19
≈ 0.39736.

Proof. Step 1. Remove boundary conditions.
Define the constant

γ(V̄n−1, W̄n,H
1) := max

v∈V̄n−1,w∈W̄n

∫ 1
−1

∂v
∂x

∂w
∂x
dx

|v|H1(]−1,1[)|w|H1(]−1,1[)

where |v|2
H1(]−1,1[) :=

∫ 1
−1

(
∂v
∂x

)2
dx. Furthermore, define the symmetric

extension operator ˜ : Vn → V̄n by (see Figure 19)

ũ(x) = −ũ(−x) = u(x) ∀ 0 ≤ x ≤ 1, u ∈ Vn.

Then, it is enough to prove

γ(V̄n−1, W̄n,H
1) ≤

√
3

19
, (87)

since

γ(Vn−1,Wn,H
1) = max

v∈Vn−1,w∈Wn

∫ 1
0

∂v
∂x

∂w
∂x
dx

|v|H1 |w|H1

= max
v∈Vn−1,w∈Wn

∫ 1
−1

∂ṽ
∂x

∂w̃
∂x
dx

|ṽ|H1(]−1,1[)|w̃|H1(]−1,1[)

≤ γ(V̄n−1, W̄n,H
1).

Step 2. Localization.
The set of nodal points of the space V̄n is

Ω̄n :=
{
p = k 2−n | k = −2n + 1, · · · , 2n

}
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and the nodal basis function vn
p ∈ V̄n at the nodal point p ∈ Ω̄n is defined

by

vn
p (k 2−n) =

{
0 if p 6= k 2−n

1 if p = k 2−n ,

where k = −2n + 1, · · · , 2n. The set of functions vn−1
p , p ∈ Ω̄n−1 is a basis

of V̄n−1. Recall that the functions ϕ̄n,k, k = +
− 1, . . . , +

− 2n−1 form a basis
of W̄n.
Assume that v ∈ V̄n−1 and w ∈ W̄n. There are real values bk and ck such
that

v =
2n−1∑

k=−2n−1+1

ckv
n−1
k2−(n−1) and w =

2n−1∑

k=1

(bkϕ̄n,k + b−kϕ̄n,−k) .

After some calculation, one obtains

K|v + w|2H1 −
(
|v|2H1 + |w|2H1

)
=

=
1

50h

2n−1∑

k=−2n−1+1

256 b2k(K − 1) + 25 (b2k−1 + b2k+1)(K − 1) +

25 (ck+1 − ck)
2(K − 1) + 128 bk(bk−1 + bk+1)(K − 1) +

30 (ck − ck+1)(bk+1 − bk−1)K + 14 bk−1bk+1(K − 1).

Now, we see that contrary to the hiererchical basis, prewavelets do not
naturally lead to pure local equations. Therefore, we introduce a real
parameter β, to obtain local problems. Then, we get

K|v + w|2H1 −
(
|v|2H1 + |w|2H1

)
=

=
1

50h

2n−1∑

k=−2n−1+1

(256 − 2β) b2k(K − 1) + (25 + β) (b2k−1 + b2k+1)(K − 1) +

25 (ck+1 − ck)
2(K − 1) + 128 bk(bk−1 + bk+1)(K − 1) +

30 (ck − ck+1)(bk+1 − bk−1)K + 14 bk−1bk+1(K − 1).

Assume that we can prove for suitable fixed parameters β and K > 1:

0 ≤ Ψβ,K(b−, b, b+, c, c+), (88)

for every b−, b, b+, c, c+ ∈ R, where

Ψβ,K(b−, b, b+, c, c+) := (256 − 2β) b2(K − 1) + (25 + β) (b2− + b2+)(K − 1) +

25 (c+ − c)2(K − 1) + 128 b(b− + b+)(K − 1) +

30 (c − c+)(b+ − b−)K + 14 b−b+(K − 1).
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Then, this implies

0 ≤ K|v + w|2H1 −
(
|v|2H1 + |w|2H1

)
.

Now, we can apply Lemma 3. This gives

γ(V̄n−1, W̄n,H
1) ≤ 1 −K−1.

Therefore, it is enough to study (88).
Step 3. Algebraic analysis.
To find suitable parameters β and K, one has to study the case c = −c+
and b+ = −b− in more detail. Then, by using an algebra manipulation
program, we found that the choice

K =
1

16
(19 +

√
57) and β =

12(45 + 7
√

57)

11 +
√

57

leads to

0 ≤
(√

αb+
128

2

K − 1√
α

(b− + b+)

)2

+

(
(c− c+)

√
25(K − 1) +

30K

2

1√
25(K − 1)

(b+ − b−)

)2

= Ψβ,K(b−, b, b+, c, c+),

where α = 2(3+
√

57)3

3(11+
√

57)
.

Combining Step 1. - 3. shows that

γ(Vn−1,Wn,H
1) ≤ γ(V̄n−1, W̄n,H

1) ≤ 3 +
√

57

19 +
√

57
=

√
3

19
≈ 0.39736.

q.e.d.

4.3.4 Generalized Prewavelets

The prewavelets in section 4.3.3 lead to L2-orthogonal spacesWn and Vn.
We showed that the constant in the strengthened Cauchy-Schwarz
inequality between these subspaces of the Hilbert space H1(]0, 1[) is
smaller than

√
3

19
≈ 0.39736.

In several applications (e.g. anisotropic PDE’s) it is not necessary that the

spaceWn is L2-orthogonal to the space Vn−1. Furthermore, the large

71



support of the prewavelet functions increases the computational amount of
a corresponding multilevel algorithm. Therefore, we construct a spaceW

′

n

which is spanned by functions with a smaller support and which exactly
has the properties we need. These properties are

• W ′

n is a subspace of Vn such that

Vn =W
′

n ⊕Vn−1.

• The constant in the strengthened Cauchy-Schwarz inequality is as
small as possible in the Hilbert space L2(]0, 1[) and in the Hilbert
space H1(]0, 1[). This means that

max
(
γ(Vn−1,W

′

n,H
1) , γ(Vn−1,W

′

n, L
2)
)

is as small as possible, where

γ(Vn−1,W
′

n ,H
1) := max

v∈Vn−1,w∈W ′

n

∫ 1
0

∂v
∂x

∂w
∂x
dx

|v|H1 |w|H1

and

γ(Vn−1,W
′

n, L
2) := max

v∈Vn−1,w∈W ′

n

∫ 1
0 vw dx

‖v‖L2‖w‖L2

.

• W ′

n is spanned by functions with a small support.

These considerations lead to the following construction of the spaceW
′

n.
LetW

′

n be the space spanned by the functions ϕ′
n,1, . . . , ϕ

′
n,2n−1 :

W
′

n := spanR

{
ϕ′

n,k | k = 1, · · · , 2n−1
}

where

ϕ′
n,1(x) := ψ′

L(x 2n−1),

ϕ′
n,k(x) := ψ′

M (x 2n−1 − k + 2) for k = 2, . . . 2n−1 − 1, and

ϕ′
n,2n−1(x) := ψ′

L((1 − x) 2n−1).

and where ψ′
L and ψ′

M are the following functions:

λ λ

1

32

1

3
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By the construction of the spaceW
′

n, we get the direct sum

Vn =W
′

n ⊕Vn−1.

Let us call the functions ϕ′
n,k generalized prewavelets. The support of these

functions is smaller than the support of the prewavelets. Therefore, the
evaluation of the generalized prewavelets cost less computational time than
the evaluation of the prewavelets. Generalized prewavelets lead to a smaller
constant in the strengthened Cauchy-Schwarz inequality than prewavelets,
if the parameter λ is chosen in an optimal way. Figure 20 depicts an nearly
sharp estimation of the constants γ(Vn−1,W

′

n,H1) and γ(Vn−1,W
′

n, L2). The
optimal parameter λ is at the intersections in two graphs in Figure 20. A
detailed analysis of the constants γ(Vn−1,W

′

n,H1) and γ(Vn−1,W
′

n, L2) leads
two the following theorem the proof of which can be found in ... .

Theorem 7. Put the parameter

λopt = −0.442736

for the generalized prewavelets. Then, the following estimates hold

γ(Vn−1,W
′

n,H
1) ≤ λopt

λopt − 1
≤ 0.30688 and γ(Vn−1,W

′

n, L
2) ≤ λopt

λopt − 1
≤ 0.30688.

-0.5 -0.4 -0.3 -0.2 -0.1
λ

0.2

0.4

0.6

0.8

γ

Figure 20: Estimation of the constants in strengthened Cauchy-Schwarz
inequality for spaces spanned by generalized prewavelets
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Figure 21: Semi-coarsening of a grid.

4.3.5 2D-Splittings by Prewavelets and Generalized Prewavelets

Let us recall the tensor product construction of two subspaces
V,W ⊂ H1(]0, 1[)

V ⊗W := spanR

{
v(x) · w(y) | v ∈ V and w ∈W

}
⊂ H1(]0, 1[2).

Now, consider the fine-grid space

Vn :=Vn ⊗Vm,

where m,n > 1 are two parameters.
There are two ways to construct a coarse-grid space Vn−1 of Vn:

• Semi-coarsening. (See Figure 21). Now, m is a fixed parameter and n

is the parameter indicating the level. Thus, define Vsemi
n−1 :=Vn−1 ⊗Vm.

• 2-directional coarsening. (See Figure 2.1.1). Now, let n = m be

parameter indicating the level. Define Vn−1 :=Vn−1 ⊗Vn−1.

Let us first study the case of semi-coarsening. The complementary space
Wn can be constructed by prewavelets or generalized prewavelets:

• Prewavelets. Define Wsemi
n :=Wn ⊗ Vm.

• Generalized prewavelets. Define W ′ semi
n :=W ′

n ⊗ Vm, where we choose
λ = λopt = −0.442736.

Let b(y) ≥ 0 be a non-negative function such that the following integrals
exist. The constants in the strengthened Cauchy-Schwarz inequality are
printed in Table 5 and Table 6 for some bilinear forms. Let us prove the
estimate

γ(Vsemi
n−1 ,Wsemi

n , a) ≤
√

3

19
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a(u, v) γ(Vsemi
n−1 ,Wsemi

n , a) ≤

∫
Ω〈∇u,∇v〉 d(x, y)

√
3
19 ≈ 0.39736

∫
Ω b(y)

∂u
∂x

∂v
∂x

d(x, y)
√

3
19 ≈ 0.39736

∫
Ω b(y)

∂u
∂y

∂v
∂y

d(x, y) 0

∫
Ω b(y)u v d(x, y) 0

Table 5: Constant in the strengthened
Cauchy-Schwarz inequality for semi-
coarsening and prewavelets.

a(u, v) γ(Vsemi
n−1 ,W ′ semi

n , a) ≤

∫
Ω〈∇u,∇v〉 d(x, y) 0.30688

∫
Ω b(y)

∂u
∂x

∂v
∂x

d(x, y) 0.30688

∫
Ω b(y)

∂u
∂y

∂v
∂y
d(x, y) 0.30688

∫
Ω b(y)u v d(x, y) 0.30688

Table 6: Constant in the strengthened
Cauchy-Schwarz inequality for semi-
coarsening and generalized prewavelets.

for a(u, v) =
∫
Ω b(y)

∂u
∂x

∂v
∂x

d(x, y). Let u ∈ Vn and v ∈ Wsemi
n . Observe, that

by the tensor product construction, the functions

x→ u(x, y) and x→ v(x, y)

are contained in Vn−1 andWn, respectively for every fixed y ∈ [0, 1]. By
Theorem 6, we get

∣∣∣∣
∫ 1

0

∂u

∂x
(x, y)

∂v

∂x
(x, y) dx

∣∣∣∣ ≤
√

3

19

√∫ 1

0

(
∂u

∂x

)2

(x, y) dx

√∫ 1

0

(
∂v

∂x

)2

(x, y) dx

for every fixed y ∈ [0, 1]. Thus, we obtain

∣∣∣∣
∫

Ω
b(y)

∂u

∂x

∂v

∂x
d(x, y)

∣∣∣∣ ≤
∫ 1

0
b(y)

∣∣∣∣
∫ 1

0

∂u

∂x

∂v

∂x
dx

∣∣∣∣ dy

≤
∫ 1

0
b(y)

√
3

19

√∫ 1

0

(
∂u

∂x

)2

dx

√∫ 1

0

(
∂v

∂x

)2

dx dy

≤
√

3

19

√∫

Ω
b(y)

(
∂u

∂x

)2

d(x, y)

√∫

Ω
b(y)

(
∂v

∂x

)2

d(x, y).

The other estimates in Table 5 and Table 6 can be proved in the same way.
Now, let us study the case of a 2-directional coarsening. Assume that
n = m. Then, it is Vn =Vn ⊗Vn and Vn−1 =Vn−1 ⊗Vn−1. The
complementary space Wn can be constructed by prewavelets or generalized
prewavelets:
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• Prewavelets. Define Wn := (Wn ⊗Vn) + (Vn ⊗Wn). We can write Wn

in two possible ways as a direct sum:

Wn := (Wn ⊗Vn) ⊕ (Vn−1 ⊗Wn) = (Wn ⊗Vn−1) ⊕ (Vn ⊗Wn). (89)

• Generalized prewavelets. Define W ′
n := (W ′

n ⊗Vn) + (V ′
n ⊗Wn), where

we choose λ = λopt = −0.442736. We can write W ′
n in two possible

ways as a direct sum:

W ′
n = (W ′

n ⊗Vn) ⊕ (Vn−1 ⊗W ′
n) = (W ′

n ⊗Vn−1) ⊕ (Vn ⊗W ′
n). (90)

Let us prove the first equation in (89). The other equations in (90) and

(89) follow by the same arguments. By Vn =Vn−1 ⊕Wn, we get

Wn = (Wn ⊗Vn) + (Vn ⊗Wn) = (Wn ⊗Vn−1) + (Wn ⊗Wn) + (Vn−1 ⊗Wn).

By a dimension argument, the last sum in this equation must be a direct
sum. Therefore, we get

Wn = (Wn ⊗Vn−1)⊕ (Wn ⊗Wn)⊕ (Vn−1 ⊗Wn) = (Wn ⊗Vn)⊕ (Vn−1 ⊗Wn).

This shows the first equation in (89).

a(u, v) γ(Vn−1,Wn, a) ≤

∫
Ω〈∇u,∇v〉 d(x, y)

√
3
19 ≈ 0.39736

∫
Ω

∂u
∂x

∂v
∂x

d(x, y)
√

3
19 ≈ 0.39736

∫
Ω

∂u
∂y

∂v
∂y

d(x, y)
√

3
19 ≈ 0.39736

∫
Ω u v d(x, y) 0

Table 7: Constant in the strengthened
Cauchy-Schwarz inequality for prewavelets.

a(u, v) γ(Vn−1,W ′
n, a) ≤

∫
Ω〈∇u,∇v〉 d(x, y) 0.31a

∫
Ω

∂u
∂x

∂v
∂x

d(x, y) 0.38 a

∫
Ω

∂u
∂y

∂v
∂y

d(x, y) 0.38a

∫
Ω u v d(x, y) 0.30a

Table 8: Constant in the strengthened
Cauchy-Schwarz inequality for general-
ized prewavelets.

a

numerical result

The constants in the strengthened Cauchy-Schwarz inequality of the above
splittings are printed in Table 7 and Table 8 for some bilinear forms. Let
us prove the estimate

γ(Vn−1,Wn, a) ≤
√

3

19
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for a(u, v) =
∫
Ω

∂u
∂x

∂v
∂x

d(x, y). Assume that u ∈ Vn−1 and v = vc + vf ∈ Wn,

where vc ∈Wn ⊗Vn−1 and vf ∈Vn ⊗Wn. By Theorem 6, we get
∣∣∣∣
∫

Ω

∂u

∂x

∂v

∂x
d(x, y)

∣∣∣∣ =

∣∣∣∣
∫

Ω

∂u

∂x

∂vc

∂x
d(x, y)

∣∣∣∣

≤
√

3

19

√∫

Ω

(
∂u

∂x

)2

d(x, y)

√∫

Ω

(
∂vc

∂x

)2

d(x, y)

≤
√

3

19

√∫

Ω

(
∂u

∂x

)2

d(x, y)

√∫

Ω

(
∂v

∂x

)2

d(x, y).

The other estimates of Table 7 follow in the same way.
For the implementation a multilevel algorithm based on the space W ′

n it is
necessary to find basis functions of W ′

n which support is as small as
possible. To this end, we define the space

W
even

n = spanR

{
vn
p

∣∣∣ p ∈ Ωn−1

}
.

A short calculation shows the following idendity

Vn = W ′
n ⊕W even

n .

This leads to the splitting

W ′
n =

(
W ′

n ⊗W even

n

)
⊕ (W ′

n ⊗W ′
n) ⊕

(
W

even

n ⊗W ′
n

)
.

Using the natural basis of the spacesW ′
n andW

even

n gives a natural tensor
product construction for a basis of Wn. This basis consists of functions
with a small support.

4.4 Anisotropic Elliptic Differential Equation

Consider the anisotropic differential equation in section 1.1. Assume that
the coefficients in the bilinear form

L(u) := −divA gradu+ cu = f on Ω ⊂ R
2, where

are constant and are of the following form:

A =

(
a1,1 0
0 a2,2

)
∈ (L1

loc(Ω))2×2, c ∈ L1
loc(Ω).

Then, the local mode analysis and the analysis of multigrid algorithms on
a complementary space show, that a fast convergence rate can be obtained
by the following choice of the coarse grid:
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• a1,1

hx
<<

a2,2

hy
semi-coarsening in y-direction,

• a1,1

hx
≈ a2,2

hy
coarsening in xy-direction,

• a1,1

hx
>>

a2,2

hy
semi-coarsening in x-direction.

4.5 PDE’s with Jumping Coefficients

Assume that a(u, v) is a bilinear form with jumping coefficients. In
general, the entries of the stiffness matrix a(vh

p , v
h
q ) cannot be computed

exactly. Then, numerical integration formulas have to be applied. The
question is how to obtain the the coarse grid stiffness matrix. One choice is
to calculate the stiffness matrix on the coarse grid by numerical integration
formulas. This can lead to a very poor approximation of the stiffness
matrix on the coarse grid, since the coarse grid integration formulas are of
very low order. To understand this, consider a variable coefficient with a
large jump on a very small domain. In such situations, a numerical
integration of the stiffness matrix on the coarse grid can lead to a failure of
the multigrid algorithm. A stable approach is to compute the coarse grid
stiffness matrix A2h by a restriction of the the fine grid stiffness matrix Ah

according

A2h = I2h
h A2hI

h
2h. (91)

In case of a symmetric positive definite bilinear form a(u, v), the stiffness
matrix Ah is symmetric positive definite, too, if the integration formulas
are accurate enough (This is simple to obtain in general). Then, a
multiplicative subspace correction method will converge, since it is a
minimizing algorithm. Nevertheless the convergence rate my be very poor.
To understand this, consider the following 1D example

aǫ(u, v) =

∫ 0.25

0
ǫu′v′dx+

∫ 0.5

0.25
u′v′dx+

∫ 1

0.5
ǫu′v′dx.

Furthermore, let

• v0.25 be the nodal basis function for linear elements of mesh size 0.25
and

• v0.5 be the nodal basis function for linear elements of mesh size 0.5.

Now, consider

γǫ :=
|aǫ(v0.25, v0.5)|
‖v0.25‖‖v0.5‖

.

Observe that

γ1 = 0 and lim
ǫ→0

γǫ = 1.
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This implies, that a subspace correction method leads to a very poor
convergence in case of the above bilinear form aǫ(u, v). The same hold for
the classical multigrid algorithm. To improve the convergence one can
improve the restriction prolongation operator or one can improve the
smoothing. The smoothing can be improved by a block smoothing of
neighbor points near the discontinuity.

4.6 PDE’s with a Convection Term

Consider the convection-diffusion problem

−△u+~b∇u+ cu = f

with suitable boundary conditions and a stable discretization. This can be
an upwind discretization of the convection term ~b∇u or a streamline
diffusion discretization in case of finite elements. Unfortunately, the
restriction of the stiffness matrix as in (91) leads to non-stable
discretization of the convection term in case of a standard coarsening.
There are three ways to avoid this problem:

• Let A2h be the coarse grid discretization matrix (not very good
convergence).

• Coarse orthogonal to the streamlines.

• Construct suitable restriction and prolongation operators.

In Section 5, we explain a suitable multigrid algorithm for convection
diffusion problems.

4.7 Consequence for PDE’s with a Kernel

Let a : V × V → R be a symmetric bilinear form on a Hilbert space V and
f ∈ V ′.

Definition 8. The kernel of a is defined by

kern(a) := {u ∈ V | a(u, v) = 0 ∀v ∈ V }.

Now, let us consider the problem

Problem 8. Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V .

If kern(a) 6= {0}, then Problem 8 has no unique solution. Furthermore,

Problem 8 has no solution, if f
∣∣∣
kern(a)

6= 0.
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To obtain a solution, we have to assume

f
∣∣∣
kern(a)

= 0.

Furthermore, let us define the quotient space

Va := V/kern(a)

and let is define

ā : Va × Va → R

ā([u], [v]) = a(u, v)

Here, u ∈ V is a representant of [u] ∈ Va. Then, the following problem has
a unique solution, if Va is a finite dimensional vector space:

Problem 9. Find u ∈ Va such that

ā(u, v) = f(v) ∀v ∈ V .

Example 12. Consider the Poisson’s equation withe pure Neumann
boundary conditions:

−△u = f on Ω

∂u

∂~n

∣∣∣
∂Ω

= 0 on ∂Ω.

The bilinear form of the corresponding weak formulation is

a(u, v) =

∫

Ω
∇u∇v d.

The local kernel of a is

kern(a) = R

the subspace of constant functions. Thus, there is a unique solution, if and
only if

∫
Ω d = 0.

Example 13. Let E > 0 and 0 < ν < 1
2 . Define the symmetric derivative

ǫij :=
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)

Du :=




ǫ11
ǫ22
ǫ33
ǫ12
ǫ13
ǫ23



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and the matrix

C−1 =
1

E




1 −ν −ν
−ν 1 −ν 0
−ν −ν 1

1 + ν
0 1 + ν

1 + ν



,

where E and ν are physical constants. The bilinear form corresponding to
the problem of linear elasticity is

a : (H1(Ω))3 × (H1(Ω))3 → R

(u, v) 7→
∫

Ω
(Du)T CDv d(x, y, z)

The local kernel of this bilinear form is a 6-dimensional space of the ridged
body modes:

kern(a) = span








1
0
0


 ,




0
1
0


 ,




0
0
1


 ,




y
−x
0


 ,




0
z
−y


 ,




−z
0
x





 .

Let us assume, we want to construct a subspace correction method with a
complementary space. This method is based on a decomposition

Va,i = Va,i−1 +Wa,i.

Here, the quotient spaces Va,i, Va,i−1, and Wa,i are based on a
decomposition

Vi = Vi−1 ⊕Wi

such that

Va,i =
{
[u]
∣∣ u ∈ Vi

}
, Va,i−1 =

{
[u]
∣∣ u ∈ Vi−1

}
, Wi =

{
[u]
∣∣ u ∈Wi

}
.

Theorem 8. If the constant

γ = sup
v∈Va,i−1,w∈Wa,i

ā(v,w)

‖v‖ ‖w‖

of the strengthened Cauchy-Schwarz inequality between Va,i−1 and Wa,i is
smaller than 1, then

kern(a) ⊂Wi or kern(a) ⊂ Vi−1 .
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Proof. Let us assume that kern(a) 6⊂Wi and kern(a) 6⊂ Vi−1. This means,
there are vectors 0 6= w ∈Wi and 0 6= v ∈ Vi−1 such that

v + w ∈ kern(a).

This implies

[v] = −[w]

and

ā([v], [w])

‖[v]‖ ‖[w]‖ = 1

Thus, we get γ = 1.

In case of the Examples 12 and 13, it is very difficult to obtain that
kern(a) ⊂Wi for a certain i and such that the corresponding iterative
solver is an efficient solver. Thus, one has to construct the coarse grid
spaces V1 ⊂ V2 ⊂ ... ⊂ Vlmax such that

kern(a) ⊂ V1.

Thus, in case of Example 12, the constant functions must be conained in
V1 and in case of Example 13 the space of ridged body modes.

5 Algebraic Multigrid

5.1 General Description of AMG

Let A be a n× n matrix and let b ∈ R
n. We want to solve the following

problem:

Find x1 ∈ R
|Ω0| such that

Ax = b.

Define

A1 := A and b1 = b.

Furthermore, let us denote

Ω1 = {1, 2, ..., n}

to be the finest grid. An algebraic multigrid constructs a sequence of
coarser grids

Ωm ⊂ Ωm−1 ⊂ ... ⊂ Ω1
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and a restriction and prolongation operator

Ik
k+1 : R

|Ωk| → R
|Ωk+1|,

Ik+1
k : R

|Ωk+1| → R
|Ωk|

Ik
k+1 = (Ik+1

k )T

Then, define

Ak+1 = Ik+1
k Ak+1I

k
k+1.

Using a relaxation method Sl,bl
(like the Gauss-Seidel relaxation) leads to

the following AMG (algebraic multigrid):

AGM(xk
l , bl, l)

If l = m, then AMG(xk
m, bm,m) = A−1

m bm

If l < m, then

Step 1 (v1-pre–smoothing)

xk,1
l = S v1

l,bl
(xk

l )

Step 2 (Coarse grid correction)

Residual : rl = bl −Alx
k,1
l

Restriction : rl+1 = I l+1
l rl

Recursive call:

e0l+1 = 0

for i = 1 . . . µ

eil+1 = AGM(ei+1
l+1 , rl+1, l + 1)

el+1 = eµl+1

Prolongation : el = I l
l+1el+1

Correction : xk,2
l = xk,1

l + el

Step 3 (v2-post–smoothing)

AGM(xk
l , bl, l) = S v2

l,bl
(xk,2

l )

5.2 Coarse Grid Construction of AMG

The original AMG by [16] is based on matrices which are weak diagonal
dominant. These matrices have property

∑

i6j
|aij| ≤ aii.

In case of a FD discretization of a PDE the entries aij are often negative.
This motivates the following definition:
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Definition 9 (Strong Connections). Let 0 < α < 1 be a small value
(usually α = 0.25).
For each i ∈ Ωk define the set of strong connections by:

Si = {j ∈ Ωk | − aij ≥ αmax
k 6=i

−aik}

Now, we construct the set of coarse grid points by the following algorithm:

Coloring Sweep for Constructing Coarse Grid

1. Assume that the set of fine grid points Ωk is defined.
Now construct the set of coarse grid points C and
the set of fine grid points F as follows:

2. For each i ∈ Ωk, let λi = |Si|
(This is the number of strong connections).

3. Pick i with maximal λi, such that i 6∈ C and i 6∈ F . Put i in C.

4. For each j ∈ Si ∧ j 6∈ C ∧ j 6∈ F , put j in F .
Increment λk for each k ∈ Sj.

5. If Ωk 6= C ∪ F go to 3. .

6. If Ωk = C ∪ F stop and let Ωk+1 = C.

5.3 Interpolation of AMG

To construct an interpolation operator, let us use the notation:

Ni = {j 6= i | aij 6= 0} (neighborhood of i)

Ci = Si ∩C
Ds

i = Si ∩ F
Dw

i =
”
weak“ connections such that:

Ni = Ci ∪Ds
i ∪Dw

i .

Let us define a general interpolation operator as follows

(Ik
k+1)i =

{
vk+1
i if i ∈ C∑

j∈Ci
wijv

k+1
j if i ∈ F.

Assume that (ei) is the algebraic error. To derive an interpolation formula,
we assume the following property of the algebraic error:

aiiei ≈ −
∑

j∈Ni

aijej
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for every i ∈ F . This property is motivated by two facts. First relaxation
leads to na small residuum. Second, an exact correction on a
complementary spanned by the fine grid points leads to the equation

aiiũi = −
∑

j∈Ni

aijũj + bi

for every i ∈ F . Since,

aiiui = −
∑

j∈Ni

aijuj + bi.

the algebraic error ei = ui − ũi satisfies

aiiei = −
∑

j∈Ni

aijej

for every i ∈ F . Thus, we get

aiiei ≈ −∑j∈Ci
aijej coarse strong points

−∑l∈Ds
i
ailel fine strong points

−∑m∈Dw
i
aimem weak points.

In this equation, we replace

• em by ei and

• el =
(∑

j∈Ci
aljej

)
/
∑

j∈Ci
alj .

Thus, we construct the interpolation operator such that:

aiiei = −∑j∈Ci
aijej coarse strong points

−∑l∈Ds
i
ail

(∑
j∈Ci

aljej

)
/
∑

j∈Ci
alj fine strong points

−∑m∈Dw
i
aimei weak points.

This implies

ei =
−∑j∈Ci

(
aij +

∑
l∈Ds

i
ailalj/

∑
k∈Ci

alk

)
ej

aii +
∑

m∈Dw
i
aim
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6 Appendix A: Hilbert spaces

The basic tool in the analysis of partial differential equations is the Hilbert
space.

Definition 10 (Hilbert space). Let H be a real vector space. A bilinear
form 〈·, ·〉 : H×H → R is called scalar product if the following rules hold:

• 〈v,w〉 = 〈w, v〉 if w ∈ H, v ∈ H (symmetric) .

• 〈v, v〉 ≥ 0 for all v ∈ H (positive).

• 〈v, v〉 = 0 only if v = 0 (definite).

H is called a Hilbert space if H is complete with respect to the norm ‖ · ‖
defined by ‖v‖ =

√
〈v, v〉.

The simplest example of a Hilbert space is the finite dimensional Euclidean
vector space R

n, n ∈ N with the Euclidean scalar product

〈
(vi)1≤i≤n, (wi)1≤i≤n

〉
:=

n∑

i=1

viwi.

Another example is the space L2(Ω) of square integrable functions on a
bounded open domain Ω ⊂ R

d, d ∈ N (see [15]). The scalar product on this
space is

〈
v,w

〉
L2 :=

∫

Ω
vw dz for every v,w ∈ H.

An elementary property of a scalar product is stated in the following
theorem.

Theorem 9 (Cauchy Schwarz inequality). Let 〈·, ·〉 be the scalar product
of a Hilbert space H with norm ‖ · ‖. Then, the following inequality holds

〈v,w〉 ≤ ‖v‖ ‖w‖, v, w ∈ H.

Proof. By the binomial formula 〈a− b, a− b〉 = 〈a, a〉 + 〈b, b〉 − 2〈a, b〉, we
get

0 ≤
∥∥∥∥
v

‖v‖ − w

‖w‖

∥∥∥∥
2

=

∥∥∥∥
v

‖v‖

∥∥∥∥
2

+

∥∥∥∥
w

‖w‖

∥∥∥∥
2

− 2

〈
v

‖v‖ ,
w

‖w‖

〉
=

= 2 − 2

〈
v

‖v‖ ,
w

‖w‖

〉
.

This implies

〈v,w〉 ≤ ‖v‖ ‖w‖.
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q.e.d.

By the Cauchy Schwarz inequality, the angle between vectors v,w 6= 0 is
well-defined by

∠(v,w) := arccos
|〈v,w〉|
‖v‖ ‖w‖ ,

since the fraction in this definition is ≤ 1. The angle between two
subspaces V and W of a Hilbert space H is defined by

∠(V,W) := arccos sup
v∈V ,w∈W

〈v,w〉
‖v‖ ‖w‖ .

Let us define the constant

γ(V,W) := sup
v∈V ,w∈W

〈v,w〉
‖v‖ ‖w‖ ,

where we write 0
0 := 0, for simplicity. By the Cauchy Schwarz inequality, it

is γ(V,W) ≤ 1. But for special subspaces the constant γ(V,W) may be
smaller than 1. Then, we call γ(V,W) the constant in the strengthened
Cauchy Schwarz inequality between V and W, since the following
inequality holds

〈v,w〉 ≤ γ(V,W) ‖v‖ ‖w‖, v ∈ V, w ∈ W.

A simple calculation shows that the strengthened Cauchy Schwarz
inequality and the angle between subspaces satisfy the equation

∠(V,W) = arccos(γ(V,W)). (92)

The subspaces V and W of the Hilbert space H are called orthogonal iff
γ(V,W) = 0.

Example 14. Consider the Euclidean Hilbert space H = R
3 with the

subspaces V := (1, 0, 1)R and W := (1, 0, 0)R + (0, 1, 0)R. Now, a simple
calculation shows

γ(V,W) =
1√
2

and ∠(V,W) = 45◦.

In the above example, the calculation of the constant in the strengthened
Cauchy Schwarz inequality is straight forward. But in case of higher
dimensional spaces such a calculation can be more complicated. Then, the
following lemma is very helpful.
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Lemma 3. Let H be a finite dimensional Hilbert space with scalar product
〈 · , · 〉 and norm ‖ · ‖. Furthermore, let V and W be subspaces of H.
Then, the following inequalities are equivalent for constants K > 1

‖v‖2 + ‖w‖2 ≤ K‖v + w‖2, v ∈ V, w ∈ W
m

γ(V,W) ≤ 1 −K−1.

Proof. “⇓” Choose v ∈ V and w ∈ W such that ‖v‖ = ‖w‖ = 1. Then, we
get

‖v‖2 + ‖w‖2 ≤ K‖v + (−w)‖2

⇓
2〈v,w〉K ≤ (K − 1) ‖v‖2 + (K − 1) ‖w‖2

⇓
〈v,w〉 ≤ K − 1

K
‖v‖ ‖w‖.

This shows

γ(V,W ) ≤ 1 −K−1.

“⇑” Choose v ∈ V and w ∈ W. γ(V,W ) ≤ 1 −K−1 implies that

−〈v,w〉 ≤ K − 1

K
‖v‖ ‖w‖.

Therefore, we get

0 ≤ (‖v‖ − ‖w‖)2
⇓

2 ‖v‖ ‖w‖ ≤ ‖v‖2 + ‖w‖2

⇓
−2 〈v,w〉K ≤ (K − 1) ‖v‖2 + (K − 1) ‖w‖2

⇓
‖v‖2 + ‖w‖2 ≤ K‖v + w‖2.

q.e.d.

In chapter ??, we will apply this lemma to finite element spaces.
If different scalar products are given on a vector space, then the
strengthened Cauchy Schwarz with respect to a scalar product a is defined
by

γ(V,W, a) := sup
v∈V ,w∈W

a(v,w)√
a(v, v)

√
a(w,w)

.
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A basic lemma describing the constant γ(V,W, a) for different bilinear
forms is the following:

Lemma 4. Consider two scalar products a and b on the vector space H.
Let λa and λb be positive constants and V and W two subspaces of H.
Then the following inequality holds

γ(V,W, λaa+ λbb) ≤ max (γ(V,W, a), γ(V,W, b)) .

Beweis!!
und
Lemma
spaeter
zitieren!!

For the weak formulation of partial differential equations, we the the dual
space H′ of an Hilbert space H. This space is the set of continuous and
linear functions f : H → R. The dual space is a vector space with norm

‖f ′‖ := sup
v∈H

f(v)

‖v‖ .

The mapping v 7→ 〈w, v〉 is an element of the dual space H′ for every fixed
w ∈ H. Furthermore, every function f ∈ H′ can be written as v 7→ 〈w, v〉.
This is stated in the following theorem.

Theorem 10 (Riesz representation theorem). Let H be a Hilbert space
with scalar product 〈·, ·〉. Then, for every f ∈ H′ exists a unique w ∈ H
such that

〈w, v〉 = f(v) for every v ∈ H.

The proof of this theorem can be found in [15].
Now, let

a : H×H → R

(v,w) 7→ a(v,w)

be a bounded and positive definite bilinear form. This means that a is a
bilinear form and that there are constants c,m > 0 such that

|a(v,w)| ≤ c‖v‖ ‖w‖, a(w,w) ≥ m‖w‖2 for every v,w ∈ H.

The following theorem can be treated as a generalization of Theorem 10.

Theorem 11 (Lax-Milgram). Let a(·, ·) be a bounded and positive definite
bilinear form on the Hilbert space H. Then, for every f ∈ H′ exists a
unique w ∈ H such that

a(w, v) = f(v) for every v ∈ H.

The proof of this theorem can be found in [5].
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7 Appendix B: Sobolev spaces

Consider the piecewise linear function (see Figure 22)

w(x) =





0 for 0 ≤ x and x ≥ 1,
x for 0 ≤ x ≤ 1,

2 − x for 1 ≤ x ≤ 2.

The classical derivative ∂w/∂x of this function is well defined at every
point x ∈ R with the exception of the points x = 0, x = 1 and x = 2.
Therefore, we have to generalize the derivative of a function. Here, it is
helpful that, in our applications, we are only interested in the derivative of
w in the Hilbert space L2(Ω). Therefore, we do not have to define the
derivative of w at every point x ∈ R. The wrong generalization of the
derivative would be to define the derivative just by the classical derivative
with the exception of a finite set of points. If we use such a concept, then
the formula of partial integration would not hold. But in case of a
continuous and piecewise differentiable function, this is the right
generalization of the derivative of a function in the Hilbert space L2(Ω).
Therefore, the generalized derivative or weak derivative of the function in
Figure 22 is the function in Figure 23.

1

1 2

Figure 22: A piecewise linear function w.

1

1 2

Figure 23: Weak derivative ∂w/∂x of w.

On general, we have to define the weak derivative of a function with the
help of the partial integration. For reasons of completeness of our
presentation, we briefly describe this concept.
To this end, let Ω ⊂ R

d be an open and bounded domain and C∞
0 (Ω) the

space of function f such that

• the classical partial derivative

∂α1+···+αdf

∂xα1
1 · · · ∂xαd

d

exists and is continuous and

• there is a closed subset Ω̄0 ⊂ Ω such that f(z) = 0 for every
z ∈ Ω\Ω̄0.
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For the definition of the weak derivative, let us introduce the following
abbreviation.
If α = (α1, · · · , αd) ∈ N

d is a multiindex, then we write

|α| :=

d∑

i=1

αi.

Now, we can define the weak derivative.

Definition 11 (Weak derivative). The function g ∈ L2(Ω) is called the
weak derivative of f ∈ L2(Ω), if the following equation holds

∫

Ω
g ϕdz = (−1)|α|

∫

Ω
f
∂α1+···+αdϕ

∂xα1
1 · · · ∂xαd

d

dz for every ϕ ∈ C∞
0 (Ω).

Then, we write

g =:
∂α1+···+αdf

∂xα1
1 · · · ∂xαd

d

∈ L2(Ω).

The most important tools in the analysis of partial differential equations
are spaces with include the derivative of a function. The Sobolev space is
such a space with an additional Hilbert space structure.

Definition 12 (Sobolev space). Let Ω ⊂ R
d be an open and bounded

domain. The Sobolev space Hm(Ω), m ∈ N is defined by

Hm(Ω) :=

{
f ∈ L2(Ω)

∣∣∣ ∂α1+···+αdf

∂xα1
1 · · · ∂xαd

d

∈ L2(Ω) for every α ∈ N
d with |α| ≤ m

}
.

The scalar product on this space is defined by

〈f, g〉Hm :=

∫

Ω

∑

α∈Nd, |α|≤m

∂α1+···+αdf

∂xα1
1 · · · ∂xαd

d

∂α1+···+αdg

∂xα1
1 · · · ∂xαd

d

dz.

This scalar product induces the norm

‖f‖Hm :=

√√√√
∑

α∈Nd, |α|≤m

∥∥∥∥
∂α1+···+αdf

∂xα1
1 · · · ∂xαd

d

∥∥∥∥
2

L2(Ω)

dz.

Example 15. In one dimension, the Sobolev space H1(]0, 1[) is

H1(]0, 1[) :=

{
f ∈ L2(]0, 1[)

∣∣∣ ∂f
∂x

∈ L2(Ω)

}
.

In case of two dimensions, we obtain

H1(]0, 1[2) :=

{
f ∈ L2(]0, 1[2)

∣∣∣ ∂f
∂x
,
∂f

∂y
∈ L2(Ω)

}
.
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In addition to the Sobolev space H1(Ω), we have to define a Sobolev space
with Dirichlet boundary conditions, which means that the functions in this
space are zero at the boundary of Ω. This is the Sobolev space
H1

0 (Ω) ⊂ H1(Ω). Usually this space is defined by the closure of the space
C∞

0 (Ω). Here, we give an equivalent definition of the space H1
0 (Ω). For our

purpose this definition is more convenient, but it is restricted to polygon
domains.

Definition 13 (Sobolev space with Dirichlet boundary conditions).
1. Let Ω ⊂ R

1 be an interval. Define the space

C̃1
0(Ω) :=

{
v ∈ C(Ω̄)

∣∣ there are intervals I1, · · · , Ik such that ∪k
i=1Ii = Ω,

v|Ii
∈ C1(Īi) for every i = 1, · · · , k, and v|∂Ω = 0

}
.

The Sobolev space H1
0 (Ω), is defined by

H1
0 (Ω) := C̃1

0(Ω)
H1

.

2. Let Ω ⊂ R
2 be an open, bounded and polygon domain. Define the space

C̃1
0(Ω) :=

{
v ∈ C(Ω̄)

∣∣ there are triangles T1, · · · , Tk such that ∪k
i=1Ti = Ω,

v|Ti
∈ C1(T̄i) for every i = 1, · · · , k, and v|∂Ω = 0

}
.

The Sobolev space H1
0 (Ω), is defined by

H1
0 (Ω) := C̃1

0(Ω)
H1

.

Observe that the space H1
0 (Ω) is well defined, since the space C̃1

0(Ω) is a
subspace of H1(Ω).
For the analysis of Poisson’s equations with homogeneous Dirichlet
conditions (see section ??), we need the Sobolev space H1

0 (Ω). This space
can be equipped with another Hilbert space structure. The corresponding
scalar product and norm are

〈f, g〉H1
0

:=

∫

Ω

d∑

i=1

∂f

∂xi

∂g

∂xi
dz =

∫

Ω
∇f∇g dz, (93)

|f |Hm :=

√√√√
∫

Ω

d∑

i=1

∥∥∥∥
∂f

∂xi

∥∥∥∥
2

L2(Ω)

dz =
√

‖∇f‖2
L2(Ω)

dz. (94)

Here, we use the abbreviation

∇w :=

(
∂w

∂x1
, · · · , ∂w

∂xd

)
and ∇w∇v :=

d∑

i=1

∂w

∂xi

∂v

∂xi
.
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Nevertheless, the two Hilbert space structures on H1
0 (Ω) lead to equivalent

norms.

Lemma 5 (Poincaré’s inequality). There is a constant c > 0 which only
depends on the bounded domain Ω such that

c−1|f |H1 ≤ ‖f‖H1 ≤ c|f |H1 for every f ∈ H1
0 (Ω).

The proof of this lemma can be found in [19].
Observe that the bilinear form 〈f, g〉H1

0
is not a scalar product on H1(Ω),

since this bilinear form is not definite for constant functions.
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