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1 Linear Equation Systems in the Numerical So-
lution of PDE’s

1.1 Examples of PDE’s
1. Heat Equation

STEBASy

/

hom. plate

Let us assume that there is a heat source f in the interior of the plate
and that the temperature at the boundary is given by g. Question:
What is the temperature inside of the plate?

Poisson Problem (P)

Let Q C R™ open, bounded, f € C(Q), g € C(6Q).

Find u € C?(Q) such that

—Au = f on(

”‘59 =9
0? 0?
h A = —+—
where 972 + 8y2

2. Poisson’s equation with pure Neumann boundary conditions

Poisson Problem (P) with pure Neumann boundary conditions

Let Q C R™ an open and bounded domain and f € C(2) such that
Jou d(z,y) =0 . Find u € C*(Q) such that

—Au = f onQ
/u d(z,y) = 0.
Q

3. Let © C R? be an open domain. An anisotropic elliptic differential
equation is an equation of the form

L(u) = —divAgradu+cu=f on QCR? where (1)
A= (e el @pt e b,
a1 G2



and with suitable boundary conditions. Here, A(z,y) is a symmetric
positive semidefinite matrix and ¢(z,y) is non-negative for almost ev-
ery (z,y) € Q. An additional assumption to the coefficients, described
at the end of this section, guarantees that the stiffness matrix exists.

Anisotropic differential equations appear in several situations. For
example equation (1) can describe a diffusion process with variable
coefficients. Another example can be constructed by Poisson equation
on a domain with a small hole (see [8]).

radius r
, m

—Au=f L(u) = f
Figure 1: Transformation of a domain with a hole

Let us explain this example in more detail. Assume that the discretiza-
tion grid is a tensor product grid as in Figure 22 .The bilinear finite
element discretization on this grid has an equivalent formulation on
the unit square. By the transformation of the curvilinear bounded
domain onto the unit square one obtains an anisotropic elliptic differ-
ential equation on the unit square. If the radius r of the hole tends to
zero, then the coefficients of this anisotropic elliptic equation become
singular. For example they can tend to the following coefficients

A:<g‘1 2) (2)

. Convection-Diffusion-Problem
Find u € C%(Q) such that

—Au+5~Vu+c = on €

SIS

u‘m

where b € (C(Q)*, f,ceC(Q)

—~



5. Navier-Stokes-Equation
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6. Laser simulation

mirror 1 mirror 2
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'y =Tp, Uy,
Find v € C?(Q), A € C such that

~Au—k*u = lu
u!FM =0
ou s 1
. =0 (or boundary condition third kind)
Ot [Ty et

We apply the ansatz

u = uTe—zkz + ulezkz
where k is an average value of k.

This leads to the equivalent eigenvalue problem:



Find u,, u;, A such that

—Au, + 2ik Our + (B = Eu, = Iy
—Auy — 2ik % + (B =k = My
aur aul .
ur + il =0, 9 oaly = °
aur aul
- =—= =0
on Ir rest on Ir rest

1.2 Weak Formulation of Poisson’s Equation

Let us first describe a physical problem which leads to Poisson’s equation.
Consider a thin plate with constant thermal conductivity. Figure 2 shows
the geometry of such a plate described by the domain  C R2.

Tlon =g

temperatue 1" in

Figure 2: Temperate on a plate.
Assume that the boundary of the plate is maintained at temperature
Tloa = g.

Now, the Laplace’s equation is governing the heat conduction within the
plate (see [17]):

AT = 0, where
o*T 9T
AT = — +—.
0x? + oy?

Assume that w € C?() is a function such that w|sg = g. Furthermore,
assume T € C2(Q). Then, u = T — w € C%(Q) satisfies Poisson’s equation
with homogeneous Dirichlet boundary conditions

—Au = f, (3)
ulpo = 0, (4)



where f := Aw. For the mathematical analysis, it is more helpful to for-
mulate this equation in a suitable Hilbert space. To this end, we multiply
equation 3 by a test function ¢ € C}(£2) and integrate over

—/Augpdz:/fgpdz.
Q Q

Now, Green’s formula yields

/Q VuVe ds = /Q o dz. (5)

By a continuity argument this equation holds for every function ¢ € H, é(Q)
The left hand side of equation 12 is the bilinear form defined by 93. This
shows that the Sobolev space H&(Q) is the right Hilbert space for the de-
scription of Poisson’s equation. Furthermore, the mapping

HY(Q) — R, vr—>/fv dz
Q

is contained in the dual space (HE(f2))’, since Lemma 5 implies

‘/vadz

These considerations lead to the following weak formulation of Poisson’s
equation:

Problem 1 (Poisson’s equation). Assume that f € L*(Q). Findu € H}(Q)
such that

/ VuVv dz = / fvdz  for every ve HY(Q). (6)
Q Q

< Nl vz < clolm

Theorem 10 guarantees the existence and uniqueness of the solution of
this weak equation.

1.3 Finite-Difference-Discretization of Poisson’s Equation

Assume  =]0,1[? and that an exact solution of (P) exists. We are looking
for an approximate solution up, of (P) on a grid €, of meshsize h. Choose
hz%wheremGN.

Q, = {(ih,jh)|i,j=1,...,m—1}
Q. = {(ih,jh)|i,j =0,...,m}
Discretization by Finite Differences:

Idea: Replace second derivative by difference quotient.
Let e; = (1,0) and e, = (1,0),

2 2
—Au(z) = <—% - g—yg) (2) = f(z) for z € Qy

7



up(z + heg) — 2up(2) + up(z — hey)

h2
e rhe) Z2uE) tuleZha) g
and u(z) = g(2)
~ = for z € Qp\Q
up(z) = g(2)

This leads to a linear equation system Ly U, = F} where U, = (uh(z))zeﬂh,
Ly, is |Qp] x |Qp] matrix. The discretization can be described by the stencil

1
_F m-11 ™Mol M1
1 1
2 R T2 = m—-10 Moo MM10
1
72 m-i1,—-1 Mo,—-1 M1,-1

X X X X

Let us abbreviate U; j := up(ih, jh) and f; j := f(ih,jh). Then, in case
of g = 0, the matrix equation L,Uy = F}, is equivalent to:

1

> mulUipkjri = fi
k=1

1.4 FD Discretization for Convection-Diffusion

Let Q,Qy as above.

—Au+bd—u =f
dz

Assume that b is constant.
1. Discretization by central difference:

d_u(z) _up(z+ hey) —up(z — hey)
dz "~ 2h




This leads to the stencil

=
Sl
R
|
=
+
Sl

— unstable for large b.

2. Upwind discretization:

du, . up(z) —up(z — hey)
4= h
This leads to the stencil

1.5 Irreducible and Diagonal Dominant Matrices
Definition 1. A n x n matriz A is called strong diagonal dominant, if
lazi| > las] 1<i<n (7)
i#]
A is called weak diagonal dominant, if there exists at least one i such that
(7) holds and such that

!aii\EZ!azj! l<i<n
i#j
Definition 2. A is called reducible, if there exists a subset J C {1,2,...,n},

such that
a;; =0 foralli g J jeJ

A not reducible matriz is called irreducible.

Remark. An reducible matrix has the form
A Agp

— The equation system separates in two parts.

Example:



1. Poisson FD:
diagonal: i = %
1 ep s .
I ) ) e if 7 is N,S,W,0 of j
non-diagonal:  a;; { 0 else
e A is not strong diagonal dominant, but weak diagonal dominant.
To see this, consider a point ¢ such that j is N of ¢. Then

0 :{ —2&  ifiis S,W,0 of j

0 else

e A is irreducible.
Proof: If A is reducible, then, {1,2,...,n} is the union of two
different sets of colored points, where one set is J. Then, there
is a point j € J such that one of the points i=N,W,S,E is not
contained in J, but i is contained in {1,2,...,n}. This implies
a;; # 0. = contradiction.

2. Convection-Diffusion-Equation

e centered difference

4
|aii| = ﬁ
Z’a’ — iz.i+ i_|_i _|_i_i
£ L 2T p2 h? ~ 2h h?  2h
i#j
~ Th? " 2h  |h?2 2R

Thus, |asi| > >, ,; lai;l, if and only if ﬁlg — % <0.
h <

This shows |ai| = >, ., [ai;, if and only if 2
e upwind
| | — i + 9
“@il = T
>
4 b
72 +- = Z|aij| for all h,b > 0

7]

e Conclusion
central: A is weak diagonal dominant if and only if h < %.
upwind: A is weak diagonal dominant.
A is irreducible in both cases.

10



1.6 FE (Finite Element) Discretization

Definition 3. 7 = {T4,...,Tx} is a conform triangulation of Q if
o« O = Uf\il T, T; is triangle or square
o T;NTj is either

— empty or
— one common corner or

— one common edge.

Remark.

e Let us write 7}, if the diameter hp of every element T € 7, is less or
equal h:

hr < h.

e A family of triangulations {7} is called quasi-uniform, if there exists
a constant p > 0 such that the radius pr of the largest inner ball of
every triangle T € 7}, satisfies

pr > ph.

Definition 4. e Let Ty, be a triangulation of Q2. Then, let V}, be the
space of linear finite elements defined as follows:

Vi = {UGCO(Q)

’U‘T is linear for every T € TH}
0 1
Vi = VyNH, (Q)

U|T is linear means that U|T(aj,y) =a+bx+cy.

o Let Q=]0,1[, h =L and

Th = {[ih, (1 + 1)h] x [jh, (j + 1)A]

i,ij,...,m—l}
The space of bilinear finite elements on § is defined as follows

Vi = {v e C'(Q)

v|T is bilinear for every T € TH}

U|T 1s bilinear means that U|T(x, y) = a+ bx + cy + dxy.

11



e Let V), be the space of linear or bilinear finite elements on T;, and Ny,
the set of corners of Ty,. Then, define the nodal basis function v, € Vj,
at the point p by:

vp(a:):{ (1) gi;g for x € N,

Observe that

pGNh}

This means that every function up € Vi, can be represented as

up = Z ApUp

peEN}

Vi, = span {vp

Finite Element Discretization of Poisson’s equation:

-Au = f
ulyg = 0
0
Thus, for every vy €V, we get:

—Auvy, = foup

J
ou
Vu Vo dGeg) + [ G day) = [ fonday)
Q r On Q

J

0
/ Vu Vo d(z,y) = / fond(ey) Yo eV
Q Q

0
FE Discretization: Find uj; €V}, such that
0
[ vuvodey = [ foday)  voevy ®)
Q Q

Stiffness matrix.

apq = /Qva Vg d(z,y), fq = /vaq d(z,y)

0
A = (ap,q) 0 Nip=N,NQ
P,qENH
up = Z Ap Up
PGA(}h

12



Then, (8) implies

0
Z )\p/ Vo, Vg, d(z,y) = / [ vg d(z,y) for all ¢ €N,
« o Q

PEN,
\
0
S Mapg = o Vg eN;,
pE/\(/)’h
\
Up = ()‘p) 0
AU, = Fy where PENR
Fp = (fq) 0
qeEN},

The matrix A is called the stiffness matrix of the FE discretization.

13



1.7 Discretization Error and Algebraic Error

Let || - || be a suitable norm. Then, ||U, — U]| is called discretization error,
with respect to this norm.

Example 1. Poisson on a square
e FD, u e C4Q), then
Uk = Ull () = O(h?)

o FE, u € H*(Q), then
UL = Ullr2@ = O(h?)
WU = Ullgi) = O(h)

Problem. The solution u;, cannot be calculated exactly, since Lj (or
A) is a very large matrix and

AUy, = Fy,.

Therefore, we need iterative solvers if n > 10.000 (or n > 100.000). By such
an iterative solver, we get an approximation ay of up. ||an — upl| is called
algebraic error.

1.8 Basic Theory

Let A be a non singular n x n matrix and b a vector, b € R"™.
Problem:
Find x € R™ such that A z = b.
A linear iterative method to solve this equation system is:
Algorithm:
Let 2% be the start guess. Then
o= CzF 4+ d

Here z must be a fixed point of z := Cz + d.
Theorem 1. z* converges to x for every start vector z¥ if and only if

p(C) <1
Here p(C) is the spectral radius of C,
p(C) = max{|/\||)\ is eigenvalue of C'}

(Observe the eigenvalues may be complex.)
Furthermore, the following convergence result holds:

[la* — 2l < [IC¥] ]2 — =] (9)

14



If C' is a normal matrix, then
[[% = 2|2 < (p(C)* [ — 2| (10)

There exist start vectors z°, such that the equal sign holds in the above
inequality.

1.9 Aim of a Multigrid Algorithm

Let us assume that the linear equation system comes from the discretization
of a partial differential equation. The the iteration method depends on the
meshsize h. The aim is to construct a (linear) iterative method such

e that the computational amount of one iteration is proportional to the
number of unknowns and

e such that
pr(C) <p<1

where p is a fixed constant.

1.10 Jacobi and Gauss-Seidel Iteration

The Jacobi-iteration is a ,,one-step*“ method. The Gauss-Seidel-iteration is
a successive relaxation method.

1.10.1 Ideas of Both Methods

Relaxation of the i-th unknown x;:
Correct 29! by x*" such that the i-th equation of the equation system

A-x=b
is correct.
Jacobi-iteration:
,,Calculate the relaxations simultaneously for all ¢ =1,...,n"
This means: If 294 = 2% then
let l,k-i—l — phew
Gauss-Seidel-iteration:
,,Calculate relaxation for ¢ = 1,...,n and use the new values*
This means: goldl = gk
Iterate for i = 1,...,n:

Calculate 2™ by relaxation of the i-th com-
ponent

15



Put xold,i-{—l —_ xnew,i
xk—l—l

— gphew,n

Teh iteration matrix of the Gauss-Seidel iteration is
Cas=(D—L)"'R
and the iteration matrix of the Jacobi iteration is
Cas = D' (L + R)
Regmarkiteration is independent of the numbering of the grid points

e The convergence rate of the Gauss-Seidel iteration depends on the
numbering of the grid points

16



Example 2. Model problem, FD for Poisson

N
v M e X
ynew _ L <uold 4 oold | qeld uold) + fur

>é X X M 4 N S E w

X X X

X X X

X X X red-black Gauss-Seidel
X X X

A four color Gauss-Seidel-relaxation is used for a 8-point stencil

=9 19 e
O—A O—A -1 8 -1
-1 -1 -1
- better relaxation property
X—0O X—O - after relaxation of one color all equations at those
| \ | | points are correct
O—A O—A

Relaxation for the Convection-Diffusion:
A convection-diffusion problem is a so-called singular perturbed problem.
To see this write the convection-diffusion problem in the form:

—eAu—l—@:f , €>0
ox

€ — 0 is the difficult case.

17



(Hackbusch’s) rule for relaxing singular per-
turbed problems:
Construct the iteration such that it is an exact

solver for e =0
For € = 0 we get the stencil (for upwind FD):

|
=
OO
o

Thus a Gauss-Seidel relaxation with a numbering of the grid points from
left to right leads to an exact solver

1 2 3
4 5 6
7T 8 9

This can be done also for more complicated convection directions. Ex-
ception: Circles!

1.11 Convergence Rate of Jacobi and Gauss-Seidel Iteration

1.11.1 Analysis of the Convergence of the Jacobi Method

Let us consider Poisson’s equation on a unit square. Let Az = b the corre-
sponding linear system and

A=D-L-R,

where D is the diagonal matrix.
Then, the iteration matrix of the Jacobi method is C; = D™Y(L + R). 1
case of the model problem Poisson’s equation, we get

2 2
14:D—L—R:¢Cy:[f%D—A%:—D4A+E+E—%+L:E—%Lh
(11)

Let e, be the eigenfunctions of A and A, the corresponding eigenvalues.
This is
evy = (sin(mrhz’) sin(,mrhj))

i7j:17“'7m_1

Then, we get
h2
Crepy = (1 - X)\V“> eup- (12)

18



Here A, ,, are the eigenvalues

4 h h
Mp = ( (7) + sin? (%»

for v, =1...(m—1), where h = L. Thus, the iteration matrix C; has the
eigenvalues

(p2) =1 =i (T ) < sn (720 (13

Here, J denotes the Jacobi method. In case of v = u we have,

(ps),, = 1—sin? <%Vh> —sin? <7T—;h> = 1-2sin? <%Vh> = cos(nvh) (14)

The following graph depicts the eigenvalues (pys),, with respect to the pa-
rameter mvh in (14).

0.5 4

-0.54

T2 B

n(vh)

The eigenvalues p,,, of the matrix C' describe how the algebraic error

F— = E Coplup

is reduced by one iteration, since

R Z(Cuupvu)euu'

= Bad convergence for high and low frequencies.
= Good convergence for middle frequencies.

In particular, one can show that the spectral radius of the iteration ma-
trix is

p(C)=1-0(r?) (15)

19



1.11.2 Iteration Method with Damping Parameter

k+1

Let us assume that ¥ — = is an iteration. The iteration can be written
k

as xF — 2F + (21 — 2F). The term (2zFT! — 2¥) can be treated as a

correction term. Now a damped iteration is 2% — w(z**! — 2*), where

e w is called the damping factor or the relaxation parameter and w €
]0,2[.

e w > 1 is called over relaxation.

e w < 1 is called under relaxation.

SOR(Successive Over Relaxation) method is obtained by performing
the Gauss-Seidel method with over relaxation. But SOR has disadvantages
for e.g like,

e [t is very difficult to find w for certain class of problems.

1.11.3 Damped Jacobi Method
The Jacobi method with relaxation parameter w =1 is
xﬁ?:clobi = D_I(L + R)xﬁacobi + D_lb (16)

The Jacobi method with damping parameter w is

gt = gk L (DY 4 R)2F + Db — 2F)
= {BEQl-w)+wD YL+R)}a¥+wD " (17)
— C,=E(1l-w)+wD YL+R) (18)

This is the iteration matrix of the damped Jacobi method.

1.11.4 Analysis of the Damped Jacobi method

The iteration matrix of the damped Jacobi method can be written as

2
Cro=E(l-w)+wD (D-A)=E—-wD'A=FE - w%A (19)

Furthermore, by (18), the iteration matrix of the damped Jacobi method is
Cjow=[F+wC;—wE]=(1-w)E+wCj (20)

where C} is the iteration matrix of the Jacobi method. The eigenvalues of

20



the iteration matrix of the Jacobi method are

- () (2

Thus, the eigenvalues of the iteration matrix of the damped Jacobi method

are
h h
(Prw),, =1-w [sin2 <%> + sin? <%>] (21)

Now, for v = u, we have

(Prduy =1~ 20 fsin? (1) (22)

Thus, if w = %

(0, = 1 - [sm2 (”Th)] (23)

The following graph depicts the eigenvalues (pj.),, With respect to the

parameter mvh in (23).

v

0.5 4

-0.54

T2 T

n(vh)

This shows that the damped Jacobi method with w = % has the proper-
ties

e Bad convergence for low frequencies.
e Good convergence for high frequencies.

The Gauss—Seidel method has similar properties as the damped Jacobi
method with w = %

21



1.11.5 Heuristic approach

X X X B
X X X X
X X X X
A X X X

By single step methods we require O(y/n) = O(h™!) operations for a cor-
rection in B due to a change in A. The idea is to achieve faster correction
by using a coarser grid.

22



2 Classical Multigrid Algorithm

2.1 Multigrid algorithm on a Simple Structured Grid
2.1.1 Multigrid

O O OO0 O0OO0O0

O O OO0 O0OO0O0 O (e} (e}

O O OO0 O0O0O0

O O O O O O O o ] ] o

O O OO0 O0O0O0

O O OO0 O0O0O0 O O O

O O OO0 O0OO0O0

Figure 3: 1=3 Figure 4: 1=2 Figure 5: 1=1

The classical multigrid algorithm is described in [9], [10], [6], [7] or [18].
Let [ be the number of levels such that {,,, € N and

forl=1...1huz-

Let us assume that a PDE (e.g. Poisson’s equation) is given. Discretize
this equation by the grids € := €, where [ = 1,...,l,4;. This leads to the
discrete matrix equations

Alxl = bl (24)

where by, x; € S; and S; = R™. The matrix A; is an invertible matrix of
order n; X n;.
Let an iterative solution for (24) be given as

ﬂjlk+1 = C[Telaml'lk + Ny = Su,l (ﬂjf) (25)

2.1.2 Idea of Multigrid Algorithm

Let Z; be an approximate solution for (24). The algebraic €; is defined as
a =X — fl. (26)

Now ¢; has to be calculated in order to find x;. The following residual
equation is valid for ¢,

Alévl =T (27)

23



where 7; is called the residual and is given by

r, = bl — Alfl (28)

The aim is to find an approximate solution of the residual equation by
solving the equation approximately on a course grid €2;_;. To this end, we
need the following matrix operators

e Restriction operator

Il =1, S;— S_1

e Prolongation operator

Ill—l : Sl_l i Sl

24



2.1.3 Two—grid Multigrid Algorithm

Two—grid Multigrid algorithm with parameters v; and vy

Let xf be an approximate solution of (24) and v; and v the parameters of
pre—smoothing and post—smoothing.

1. Step 1 (Pre-smoothing)

k1 k
T =S (29)

2. Step 2 (Coarse grid correction)

Residual calculation :

r=0b— All’f’l (30)
Restriction :
ri_1 = Il l_lT‘l (31)

Solve on coarse grid:

ero1 = A1 (32)
Prolongation :

e =1I_1e11 (33)
Correction :

:L"f’2 = xf’l +e (34)

3. Step 3 (Post—smoothing)

k2
:L"fJrl = Sl’gf (x,7) (35)
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2.1.4 Restriction and Prolongation Operators

X X X X X X X
X O X 0O X O X
X X X X X X X
X O X 0O X O X
X X X X X X X
X O X O X O X
X X X X X X X

Figure 6: O—Coarse grid point and X—Fine grid point

Let us abbreviate x;; = x(p, | ju—1) and set z; j =0fori=0o0rj=0
or ¢t=my_10r j=my_1.
2.1.5 Prolongation or Interpolation

The interpolation or prolongation of z; ; given by w; ; = {Ill_1(37)}(ihl,jhl) is
defined by the following equations

W2i,25 = %wzg (36)
1

W2i4+1,25 = Z(xi,j + Tit1,5) (37)

W24,25+1 = Z(ﬂfi,j + 25 j41) (38)

Wit1,2j+1 = %(xi,j +@ip1j 2+ Tig1j41) (39)

2.1.6 Pointwise Restriction

Piecewise restriction is rarely applied and defined by

{171 @) Y ahy gy = 2025 (40)

The quality of this restriction operator is not very good.

2.1.7 'Weighted Restriction
Weighted restriction or full weighting is defined by

1

{1, l_l(x)}(ihl,l,jhl,l) = g(x2i+1,2j+1 + T2i—1,2j+1 + T2i4+1,2j—1 + T2i—1,2j—1) +

1
Z(x2i+172j + X9 _125 + T2i,2j41 + T2i2j-1) +

1

§$2i,2j
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Remark

(,"h"

== Ill_l (41)

2.2 TIteration Matrix of the Two—Grid Multigrid Algorithm

Theorem 1. The iteration matriz of a two—grid Multigrid algorithm is

v1

Cltwo-grid _ <Clrelax) v2 (E B Ill_l(Al—l)_IIl l_lAl) <Clrelax) (42)

Proof

The coarse grid correction is
wlk’2 = wlk’l + Ill_l(Al_l)_lfl l_l(bl — Alwlk’l)
= (B 1) T T A @ () T

Therefore the iteration matrix of the coarse grid correction of the two—
grid Multigrid algorithm is

(-1t 1)

A short calculation shows that the iteration matrix of two linear iteration
algorithms is the product of the iteration matrices of these algorithms.

2.3 Multigrid Algorithm
Multigrid algorithm MGM(acf,bl,l) with parameters (vq,v2,u)

Let zf  be an approximate solution of (24). Then,

is the approximate solution of (24) by the multigrid algorithm with an
initial vector z¥ The multigrid algorithm can then be described as

lmaz*
If | = 1 then MGM (zF,b,1) = A7 ',
If I > 1 then
Step 1 (vi-pre-smoothing)
)t = Sipy (x7)
Step 2 (Coarse grid correction)

Residual : r; = b, — Alazf’l

Restriction : r;_1 = I =l

Recursive call:
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0

€—1 =
fori=1...u

ef_l = MGM(e?j,n_l,l -1)
e-1 =€,

Prolongation : ¢; = Ill_lel_l

. k,2 k1
Correction : x;”" = ;" + ¢

Step 3 (ve-post—smoothing)

MGM(Z’;C, bi, l) = Sl,z? (xifﬂ)

The algorithm g =1 is called V-cycle (see Figure 7). The algorithm p = 2
is called W-cycle (see Figure 8).

To obtain a good start approximation for a multigrid algorithm, we apply
the F-cycle (see Figure 9).

restriction prolongation

restriction prolongation

Figure 7: V-cycle

Homework: Describe the multigrid algorithm as a finite state machine,
where every state is smoothing step and an operation is a restriction or
prolongation. Then, the finite state machine of a V-cycle looks like a “V”
and the finite state machine of a W-cycle looks like a “W?”.

Let N be the number of unknowns. The computational amount of the
V-cycle and W-cycle is O(N).

The theory of multigrid algorithms shows that there is a constant p such
that the convergence rate of the multigrid algorithm satisfies

p(Cramy) <p <1
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(> 1
ORNO

Figure 8: W-cycle

independent of {. This shows that the multigrid algorithm on a unit square
for Poisson’s equation is optimal with respect to the asymptotic
computational amount.
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prolongation

prolongation
@

2.4 Local Mode Analysis of the Multigrid method
2.4.1 1D Model Problem

Figure 9: F-cycle

The local mode analysis is a method to analyze the convergence rate of a
multigrid method. It is not an exact mathematical analysis of the the
multigrid method, but an analysis which gives a rather good hint about
the convergence properties of a multigrid method. To explain this problem,
let us consider the following Poisson’s equation in 1D:

Problem 2. Let f € C([0,1]). Find u € cC?([0,1]) such that
—Au=f on [0,1].

To solve this problem let us apply the multigrid method with damped
Jacobi iteration as a smoother.

But, obviously, the local mode analysis can also be applied for more
complicated PDE’s and multigrid algorithms in 2D and 3D. But the local
mode analysis cannot be applied for every multigrid algorithm as
FE-discretizations on unstructured grids.

2.4.2 Extension of Operators

A multigrid algorithm consists of several parameters that have to be
properly tuned such that the algorithm converges rapidly.The parameters
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are,

1 . recursion parameter.
V1,0 : smoothing parameter.
Sy, : choice of smoother.
1 ll—l : choice of the prolongation operator.
I ll_l . choice of the restriction operator
A; for [ <lmer : choice of the stiffness matrix on the courser grid.

(A;,,,.is determined by the discretisation.)

To simplify the analysis of the convergence of the two—grid method we omit
the boundary conditions and study all operators on an infinite dimensional
grid!

Instead of the finite grid

L . o . 1
Q;il = {(]1h7]2h7"'7]dh) | ]17]27“‘7]6[6{07“‘7%}} (43)

we apply an infinite grid

[0.9]

d
Q i =A{01h,g2h, ..., dah) | di,J2,--.,Ja €L} (44)

The operators A, I ll_l, S1.p, have to be extended to the infinite
dimensional grid in a suitable manner.

Remark

e The operators A; etc. are stencil operators, e.g a nine point stencil.

e The operators A; etc. depend on the spatial coordinates.

Therefore, we define the operators on the infinite grid as follows:

Let QZ be a stencil operator on the grid Qﬁi. Furthermore, let
xo be an interior point of the grid QZ. Now, define the stencil

oo d
operator () ; to be the operator with stencil S(z) for every

. . 0
grid point x € Q , .

Example
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Let d = 1. The stiffness matrix obtained by the finite difference

discretization of the operator —% on the grid Q,ll is
2 -1
-1 2 -1
-1 2 -1 1
Ay = y 72 (45)
-1 2 -1

o 1
Now, the operator on the corresponding infinite grid A , is:

. 1 * . . '- 1
which implies
oo 1 1 oo 1
A p(u)(z) = (—u(z — h) + 2u(z) — u(z + h)) 72 Vee Q, (47)

By the extension of the above operators on the infinite dimensional grid,

we can construct a two—grid method on the infinite dimensional grid O B
To analyze the convergence of the two—grid method, we need to know the
iteration matrix of the method. By Lemma 3, the iteration matrix for the
two—grid method is

(o;;@law)”z <Eh (A Ah> (cgem)”,where H=2h (48)

where,
C’};d‘”’ iteration matrix of the smoothening step.
E;, extended unit matrix.
1 ?I extended prolongation operator.
1 }ff extended Restriction operator.
A, Ag extended stiffness matrices on the coarser grid.

o
For reasons of simplicity, let us write Ay, instead of A .

Example: Operators for the model problem
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The operators for d=1 are as follows.

. . ‘. 1
Ay = —1 2 —1 3
1
Ag = ~1 2 —1 —
H 4h2
1 21 1 1
" = Z t _
Ff 191 1 <or factor W)
1
2
1 1
I = 11 — or factor ——
" 5 2 < d 2\/§>
1
C’flel‘” = %w 1—w %w

N[ —
=

=

We allow these operators to act on the following functional spaces.

T
Vi, = span 10— 00 —r<0<
h p {ewp(z h)me 5 Z | <0< 77}
x
Vi = span 10— 00 — <0<
H p {&Tp(l H>m€ 8 : | <0< 77}
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For reasons of simplicity, let us restrict ourselves to the 1-D case.
The harmonic frequency of exp (29%) is exp (Zé%) where,

™

= f—7 for 6>0
7 = f+7 for <0

2.4.3 Local Mode Analysis of the Smoother

Definition 5. Let us assume that the functions exp (19%) are the
eigenfunctions of the iteration matrix C of the smoother Swith eigenvalues
w(0). This means

Cexp (z@%) = 1(0) exp (z@%)

Then, let us define the smoothening factor of S by

A= ma ln(O)]
Figure 10 depicts the local mode analysis of the Jacobi smoother with
relaxation parameter w = % and w = 1 for the 1D model problem. The
corresponding smoothing factors are 0.5 and 1. This shows that the Jacobi
iteration without relaxation ( w = 1) is not suitable for a multigrid
method.

Figure 10: Local mode analysis of the Jacobi iteration

2.4.4 Local Mode Analysis of the Restriction and Prolongation

The local mode analysis of the restriction of the 1D-model problem shows
(see Figure 11)

H oxp(i0%) = cos?(2) exp(i20-L
I;; exp(z@h) = cos”( 5 )exp(z2®H).
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L L
[} 8.5 1 1.5

L
2.5 3

Figure 11: Local mode analysis of the restriction

The local mode analysis of the prolongation of the 1D-model problem

shows (see Figure 12)

b exp(i0-2) = cos2(D) exp(i2F) + sin(D) exp(i (2 ) 2
IHeXp(z@H)—COS( )eXp(ZZh)—I-SlH( )exp(z(2 h).

4

To prove Equation (56), observe that

1 (56)

if £ = h2k € Qg

II}_‘I exp(i@%) = exp(i%%)
Iiexp(i®) = 4 (exp(iOTF) + exp(iO%H))
- exp(i%%)cos(%)

Furthermore, observe that

()5

Using the formulas

cos(¢) +sin’(¢) =
cos?(¢) — sin’(¢) =

completes the prove of (56).
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low frequency part high frequency part

Figure 12: Local mode analysis of the prolongation

2.4.5 Local Mode Analysis of the Two-Grid-Algorithm

Let consider the 1D model problem. The the two-grid iteration matrix is:

v

Czwo—grid <C}7;elam) V2 <Eh _ I]@(AH)_II;IL{Ah) <C}7;elam) (57)

The local mode analysis of the two-grid iteration can be described by a
matrix. In case of the 1D model problem, this is a 2 x 2 matrix

M(©) = < le 212 > such that:
21 22
C;flwo—grid(exp(i@%)) = mn eXp(i@%) + ma1 eXP(ié%)
Cflwo_grid(eXp(ié%)) = Mmoo eXp(Z@%) + ma9 eXp(Zé%)

The matrix M (©) is called two grid amplification matrix.

Definition 6. The asymptotic two-grid convergence rate is

X = p(CPo79m4) — max p(M(O)).

i
In case of the 1D model problem, we obtain

M(O) — scvitry2 —ccP1lgv?
( ) - —g5¥2c1 csljl—l—ljz ’

where s = sin2(%) and ¢ = cos2(%) . A short calculation shows

_ptatVp+a)?+38pg
2 )

p(M(©))

where p = ¢s¥1™2 and ¢ = sc"1 2,
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Example 3. vy + 15 = v = 2. Then, we get

p(M(0)) = max sin?(0)(1 4 /1 + 2sin?(0))

le|<3
A numerical calculation shows the asymptotic two-grid convergence rate is
A =2 0.3415
Since the smoothening factor is i = 0.5 we obtain
2 < X< [
Additionally, one can show that
_3 _

This shows, that the choice v = 2 is an optimal choice.

2.5 Multigrid Algorithm for Finite Elements
2.5.1 Sequence of Subgrids and Subspaces

Let 4, -+, 7, . be a sequence of quasi-uniform subdivisions of a polygon
domain Q, where h; = 27%. Let

° flhl = fll be the set of interior grid points of 7p,.
o (1, = be the set of all grid points of 7,.
Obviously,
Q1 C Q.

Furthermore, let us assume, that V},, is a finite element space on the grid
Qp, = such that

Viy € Vi, (This means Vo, C V3).

Example 4. Let us assume that 1y, is a triangulation. Then, let
Vi, C HY(Q) be the finite element space of linear finite elements on Thy -
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Every triangle is divided into four triangles

Let a(u,v) be a symmetric positive definite bilinear form on Vj,, .

Furthermore, let f €V .

Example 5. An example is

a(u,v) = / VuVv +uv d(z,y)
Q

and f(v) = [, fod.
We want to solve the problem

Find Up, € thmaz such that
a(uhlmaz,fuh) = f(’l)h) YV oy € Vhlmaz’

( In case of the above example, this problem is equivalent to
—Au+u=f, %‘aﬂ =0.)
To this end, let us study the problems

Find uy, € V},, such that

a(uhl,vh) = fl(vh) Y Vp € Vhl
for every [ =0, - , ljaz

where f; is a suitable coarse grid right hand side.

Remark: In case of Dirichlet boundary conditions, one has to replace the

space Vj, by the space f/hl =Vp, N HE(Q).

2.5.2 The Nodal Basis

Let (Ulk)keflhl be the nodal basis for Vj,.

(In case of Dirichlet boundary conditions consider (vf) red, )
l

Now (59) can be defined in matrix form as follows:

Az = b
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where

A = (ar))yjeq, - ok = alvf,v]) (61)
Ty = ($?)keﬂhl (62)
b = (bf)keghl (63)

and the solution vector uy, is given by
= Z k€ Qpxfof (64)

2.5.3 Prolongation Operator for Finite Elements

The natural inclusion is the prolongation operator

u € Vhi
1
u € VhiJr1

To implement this operator, we have to describe this operator in a matrix
form.

By Vi, C Vh,.,, there are coefficients ’y,'i/ such that

ka Vi (65)

Thus, we get

up, = me/vf/ ZZ% qu_lx (66)
o
- 2Tkt (1)

Now the matrix version of the prolongation operator is

1), = (Seakel),

¢

Iz-i—l (7k )(k,k’)
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2.5.4 Restriction Operator for Finite Elements

Observe that F; € (V3,)".
This means that F; : Vj,, — R is a linear mapping. The natural inclusion
is the restriction operator.

Fi-i-l € (Vhi+1),

!
Foe (W)
Fi(w) = F(w) YV weV,

The matrix version of the restriction operator can be obtained as follows

o= FOF) =Y W Ek,) (68)
k
= > vk, (69)
k
7 o k'
i1 = (7’“)(19/,1@) (70)

3 Subspace Correction Methods

3.1 Multiplicative Subspace Correction Methods
Let us assume that V is a finite dimensional Hilbert space and that
a:VxV —=R
is a positive definite bilinear form. Furthermore, assume that f € V.
Problem 3. Find u € V such that
a(u,v) = f(v) YveV.

We want to find an iterative method to solve this problem. To this end, let
V1, ..., Vi be subspaces of V' such that

oS
i=1

Definition 7. A correction in the direction of the subspace V; is defined as
follows. Let ugq be an old approximation of 5. Then, let tpew = Uglg + W
be the solution of

a(uod +w,v) = f(v) YveV,
such that w € V;. Define

Unew = SVL (uold)

40



A multiplicative subspace correction for solving Problem 5 is
Sy, 08y, 0...08y .

Example 6 (Gauss-Seidel Iteration). Consider the space Vi, of bilinear
finite elements on a grid of size h. Color the points according to Figure 13.
Define the spaces spanned by the nodal points corresponding to these colors
by Ven, Vo, Vgn, Vyn. Then,

SVr,h o va,h ° SVg,h o SVy,h
1s the classical Gauss-Seidel iteration. Observe that
Vi=Veh® Vo, ®Vyn ® Viyp-

is a direct sum.

Figure 13: Four colors of Gauss-Seidel iteration
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Example 7 (Classical Multigrid Algorithm). Construct the spaces Vi, and
Vins Vo, Vg, Vyn according to Example 6.

Then, the multigrid algorithm can be described as a subspace correction
method. For example the V-cycle with one pre-smoothing is

SVr,hl ° va,hl OSVng OSV’y,M ©
SVr,hz ° SVbJLQ © Svg,hz °© Svy,hz ©
o

o

SVT SVb,hlm ax © SVg © SV?J

’hlmax

’hlmax ’hlmax

The general multigrid algorithm can be described as follows:
Multigrid algorithm as a subspace correction method

If Il =1 then perform Gauss-Seidel iterations:
MGM(“?? Ii; l) = (SVT,;L ° va,h o Svg,h © SVy,;L)V1+V2 (uf)

If 1 > 1 then

Step 1 (v1-pre—smoothing)

k1
w" = (Sv,, ©Sv,, oSy, , oSy, )" (uf)

!
Step 2 (Coarse grid correction)

Define: Residual : f_1(v) := fi(v) — a(uf’l,v) for allv e Vj_y.
Recursive call:
0

€1~
fori=1...u

e, =MGM(e[ 1, fi-1,1— 1)
e-1 =€,

Prolongation : e, = Ill_lel_l

) k1

Correction : u)”" = u;” + ¢

Step 8 (va-post-smoothing)

MGM(va bi, l) = (SVr,h, o SVb,h o SVg,h o SVy,h)VZ (uf)

Example 8 (Multigrid Algorithm with Relaxation on a Complementary
Space). Construct the spaces Vi, and Vi p, Vo n, Vgn, Vyn according to
Ezxample 6 such that

nghl = Vhlﬂ .

42



Then, the spaces

Vo @
Vine © Von & Vyn @®
Vihe @ Vin, @ Vyh,
@
D ..
Vb © Vong. ©Vin,. -

form a direct sum. The corresponding subspace correction method is the
V-cycle with one pre-smoothing and without relaxation at the coarser grid
points, but with a relaxation on a complementary space. The
complementary spaces are

I/I/l = ‘/;nvhl @ ‘/b?hl @ Vyvhl'

Example 9 (Multigrid Algorithm on a Complementary Space). Define the
spaces Vi, =: Vi and Wi according to Example 8. Then,

Vi=Viie W

1s a direct sum. The subspace correction method corresponding to this
construction 1s:

Sv; o Sw, 0 Swy 0.0 8wy -

In Section 4, we will see that the convergence rate of this multigrid
algorithm depends on the angle between W; and V;_q.

3.2 Multigrid Algorithm with Hierarchical Surplus

The classical multigrid requires one storage for every multigrid level at
every grid point for each variable. This means for every variable

e 1 storage at the grid points Q. \Q .. 1.
e 2 storages at the grid points €\ —1\ Q0 —2-
e 3 storages at the grid points €. \ Q.. 1\ Qe —2\ 1 0n—3-

Using a “hierarchical surplus”, one can implement a multigrid algorithm
such that O(1) storages are needed at every grid point. There are two
advantages of this approach:

e Extension of the classical multigrid algorithm for non-linear PDE’s.
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e Implementation of multigrid algorithms on adaptive grids.

To explain this kind of multigrid algorithm, let us define the interpolation
operator I; by

I Vi — Vi
L(u)(z) = u(z) Ve,

The hierarchical surplus is defined as

H:Vi — V
Hi(uw) = u—1I_1(u).

Observe that
Li(u)(x) =0 Vo e
This implies, that we can store
Hi(uy), forl=1,.. lhax -

by only 1 storage for every grid point.
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Multigrid algorithm with Hierarchical Surplus
(here only V-cycle)

If | =1 then MGM (u}, f1,1) = ulf’?’ = up,
If I > 1 then
Step 1 (vi-pre-smoothing)
w' =83 (uf)

lvfl
Step 2 (Coarse grid correction)

Store hierarchical surplus: w; := H (ufl)

Coarse right hand side:
fi-1(v) == fi(v) —a(wy,v) Yve V4.

Recursive call: uff’l = MGM(uf’l, fi—1,1—1)

. k.2 k
Correction : ;" = ulf)l + wy

Step 3 (v2-post—smoothing)

MGM(af, fi,1) = 0" = 832 (u))

In this algorithm, the variables u;” and w; can be stored by only 1 storage
for every grid point.

3.3 A Multigrid Algorithm for Non-Linear Problems

In this section, we explain a multigrid algorithm for non-linear problems as
an extension of a subspace correction method. The multigrid algorithm is
equivalent to the full approximation scheme in [6].

Let us assume that

a:VxVxV — R

(w;u,v) —  alw;u,v).
is a function such that
(u,v) = a(w;u,v)

is a positive definite bilinear form for every w € V. We want to solve the
problem:

Problem 4. Find v € V such that

a(uyu,v) = f(v) YweV
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Assumptions to guarantee existence of a solution of this problem are
described in [14]

Example 10. The thermal conductivity of certain materials depends on
the temperature. This property of the material can be modeled by the
following “non-linear” form:

(w; u,v) — a(w;u,v) = /

1

On every grid €);, we can define a coarse grid equation. Let u; € V; be the
solution of

a(ui;ug,vp) = fily) Yo € V.

To derive a multigrid algorithm for a non-linear problem, let us first
consider a two-grid problem. Let ufld be an approximation on the fine
grid. By a coarse grid correction, we want to obtain a new approximation
u;*". To this end, we want to find an approximation é_; € V;_; of the
exact coarse grid correction e;_1 € V;_1, which is defined by:

1d 1d
a(ui® +e—1;u) " +e—1,v-1) = filvi—1) Yy € Vi1,

This coarse grid equation, which defines é;_1 must satisfy two conditions
e If ¢;_; = 0, then there exists a é,_; such that ¢,_; = 0.

e The term }°Y in the non-linear form a(u;Y;...) must be a coarse

grid approximation of u;.

If ;_1 is small, then an approximation of e;_; can be found by:

a(uf;u + &1, 1) = fillui1) VYoot € Ve,

where €;_1 € V;_1. This equation is equivalent to

a(u;é_1,v-1) = fitvi—) —a(u e v_y) = r(u_1) Yoo € Vieg.
Decompose u}’ld by
u?ld =w; + Il(u}’ld) = w; + u?l_dl.

Then, an approximation of the above equation is ¢,_1 € V_4
Id . 2
a(upZy;€-1,v-1) = r(vi-1) Vu-r € Vi
and equivalent to this equation

Q(U?I_dﬁ él—l + U?ldp Ul—l) = T(Ul—l) + G(U?l_dﬁ U?ldp Ul—l)

= fisi(v—1) Yy € V1.
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Thus, we can define the following coarse grid equation

new,

a(uY;uiY, vi—1) = fici(vi—1) VY1 € Vi,
new

where u;'°Y is an approximation of €_; + u?l_dl. Now, define

5 — 1d
é1—1 == wY —up.

One can see that the above coarse grid equation describes the non-linearity
of the equation. Furthermore, the following lemma holds:

Lemma 1. Ife;_1 =0, then ¢_1 =0.

Proof. If ¢;_1 = 0, then r;_1 = 0. By the positive definiteness of

a(ufl_dl; .,-), we get &_; = 0. This implies upey = ufl_dl. Thus, ¢_1 =0. O

From the above equations we see that

floct) = r(ver) + a(@; uf, vg)
= f(u1) — a@@ a9 v ) + a(ud e )
and
W = uf ey -l

= =Y + Hy(up).

47



Multigrid algorithm for non-linear problems
(here only V-cycle)

If | =1 then MGM (u}, f1,1) = ulf’?’ = Uup,
If I > 1 then
Step 1 (v1-pre-smoothing)
't =8 3 (uf)

Step 2 (Coarse grid correction)

Store hierarchical surplus: w; := H (ufl)

Coarse right hand side:

fici(u-) = filvi—1) —
alu) s upt o) + alli—y (up); Lo (up ), o)
Vo1 € Vi_q.

Recursive call: uff’l = MGM(uf’l, fi—1,1—1)

Correction : uf’2 = uff’l + wy

Step 3 (va2-post—smoothing)

MGM (af, fi,1) = > = 8,72 (u)?)

Remark 1. This algorithm coincides with the multigrid algorithm with
hierarchical surplus in section 3.2, if a is a bilinear form. This means that
a is independent of the first parameter:

a(wl;u7v) = (I(ZUQ;’LL,’U) \V/ZUl,ZUg.

3.4 A Multigrid Algorithm on Adaptive Grids

In this section, we explain a multigrid algorithm on adaptive discretization
grids.
Let us first explain an adaptive discretization for finite elements. To this
end, let

Vh1 C Vh2 C...C Vh

max

be a sequence of finite element spaces V3, with respect to the meshsize h;.
Furthermore, let €5, be the discretization grid corresponding to V3, and
(U]}J”)pEth the set of nodal basis functions, such that

Vhi = span {’U;ZLZ

pGth}
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To obtain an adaptive discretization, choose a sequence
1,9, ..o, Qnax

such that
O CQy,.

Then, let us define the spaces

‘/i = span {Uhi
p
max

Vadaptive = span U sz
=1

pEQi}

The adaptive discretization is defined by:

Problem 5 (Adaptive Discretization). Find u € V} _such that
adaptive

a(u,v) = f(v) Yvey

adaptive’

An iterative solver for this linear equation system is the multigrid
algorithm with hierarchical surplus in section 3.2. A Gauss-Seidel iteration
can be constructed by the subspaces

Vii=Ven, NV Voii=Von,NVi Voo :=Von, NV Vyii=Vyp NVi

The difficulty in an efficient implementation of this multigrid algorithm is
the implementation of

e the Gauss-Seidel relaxation (or the implementation of stencil
operators) and

e the interpolation and restriction operators.

To avoid this problem, we construct a grid €; D Q;, Q; C Qp,, with
hanging nodes and we permit only subgrids 2; with a certain refinement
property. First, let us define the neighbor points N;(p) on level i for a grid
point p € Q.. N;(p) is the set of points of Q,, which is needed to apply a
stencil operator at the point p. Now, define

Q= [ Nilp)

pEY;

Using this grid €;, we can perform a Gauss-Seidel iteration on §; by
treating the points QZ\QZ as points with inhomogeneous Dirichlet
boundary conditions.

For the implementation of efficient interpolation operators, we assume that
the following refinement property holds:
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Refinement Property
For every p € Q;\Qp, , the following equation is satisfied:

Ni(p) N, , C Q1.

Figure 14 shows an adaptive grid with two levels and hanging nodes.

O O OO0 OO0 O
e e 0 0 O

O Y e 0 0 0 O e coarsegrid points
e e 0 0 O

O Y e o0 0 0 O e finegrid points

O Y ° ® o e hanging nodes

O O O O O o boundary points

Figure 14: Adaptive grid.
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4 Analysis of Multigrid Algorithms on a
Complementary Space

See [3], [4], [11], [1] and [2] for further literature.

4.1 Analysis for a Symmetric Bilinear Form

Let V1 C V, C ... C V, be a sequence of vector spaces and let a be a
symmetric positive bilinear form

a:V, xV, eR.

Then, V, is a Hilbert space with scalar product a, which induces the norm
| - ||. For f; € V! consider the problem

Problem 6. Find u; € V; such that
a(ui,v) = fi(v) Yv e V. (71)

Furthermore, let us assume that W; is a subspace of V; such that we
obtain the direct sum

Vi=W;® V1.

Such subspaces W; are called complementary subspaces. A simple
construction of a complementary subspaces W, can be a obtained by the
hierarchical construction as in Example 8 and 9.

The corresponding subspace correction method with recursion parameter u
can be described as follows:

Algorithm 1 (Multilevel cycle with exact subspace correction (i, (ug)))-
Let u;10 € Vi be an approximate solution of equation (71).
If i =1, let u;,, 3 be the exact solution of equation (71).
Otherwise, perform the following steps.
1. A priori exact subspace correction:
Find w} € W; such that a(u; 10 + w), w;) = fi(w;) Yw; € W;.
Let U;1,1 = Ui1,0 + wg
Forpu=1,...,u;, do:
BEGIN
2. Coarse-grid correction:
Define fi—1 € Vi_; by:
fic1(vic1) = fi(vie1) — a(ui ua,vie1) Vvi—1 € Vieq.
Let u;—q € V;—1 be the approximate solution of equation (71) obtained by
Multilevel cycle with exact subspace correction (i — 1, (ux),v) and
initial approximation wi—11,0 =0 (Ui—1 = ui—l,mflvi%)-
Let Ui 1,2 = Ui, + ’LNLZ'_l.
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3. A posteriori exact subspace correction:
Find w; € Wj such that a(u; 2 + w),w;) = fi(w;) Yw; € W.
Let uj 3 = 0 + w.
Let wi 1,1 = Ui 3-
END
Return u; ,, 3.

In case of a direct splitting V; = W, & V;_1, the equation system on W;
usually is much easier to solve than the equation system on the complete
space V;. Therefore, we assume that there exists a fast iterative solver

S; sm for the linear equation system on ;. This means, that S; ¢ is a
linear iterative solver for solving the problem

Problem 7.
a(u;,v) = gi(v) Vv e V. (72)

for a given g € V/, such that the the convergence rate of S; g, does not
depend on the number of unknowns. This is stated in the following
assumption:

Assumption A: Assume that there are constants 0 < Cy, and
0 < psm < 1 independent of i such that

[(Cism)” (W) < Complmllwll YweW;, 2<i<n.

The convergence rate of the whole multilevel algorithm can be estimated
by the constant Cgy,, if the spaces W; are a-orthogonal. This follows by the
observation that, in this case, a correction in the direction of W; does not
influence the correction in the direction of another subspace W;. This
leads to the conjecture that the convergence rate of the multilevel
algorithm depends on the angle between the coarse-grid space V;—; and the
complementary space W;. By (92) this implies that the convergence of the
multilevel algorithm depends on the strengthened Cauchy-Schwarz
inequality between V;_1 and W;. The aim of this section is to study the
convergence rate of the multilevel algorithm with respect to the constant

YVie1, Wi).
To this end, let us assume the following;:

Assumption B: Assume that there is a constant 0 <y < 1
such that

a(v,w
Y(Vic1, Ws) = sup alv, w)

< 2<i<n.
veEV;_1,weEW; ”U” ”w”

)
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.7 Ruw;

/,.../
Nw;
! Ui — Ui p,2
T
«
«
- - - >
4 ! !
. Uiy Ruv;_,

Figure 15: The vectors v]_;, w}, u; — U; 2, and u; — U; 0 + N w}.

In case of the hierarchical construction and bilinear finite elements, one
can prove y = \/g for Poisson’s equation.

Our proof of convergence of the multilevel cycle involves several steps. The
first step is to analyze the two-grid algorithm with exact coarse-grid

correction and exact subspace correction on W;. An exact subspace
correction can be obtained, if pgy, = 0;

Theorem 2 (Two-grid convergence with exact subspace correction).
Assume 2 <1i <n and let f; € V] be given. Assume that Ui 1 € Vi,
ui—1 € Vi_1, and w; € W;, such that

a(uwip1,w;)) = filw;) for every w; € Wi,
a(wipy1 + Ui—1,vi—1) = fi(vic1) for every vi—1 € Vi_q, and
a(uip1 + -1 + Wi, w;) = filw;) for every w; € Wi.

Define
Ui po = Ui p1 + i1 and ;3 = Ui 1 + Ui + W5

Note that ;3 is the solution of the two-grid algorithm with an exact
subspace correction corresponding to the spaces V; and V;_1. For this
algorithm, we obtain

i = i3l < V2 llws = il

Proof. First, we prove

i = i g3l < yllwg — 2.

Let us write w; — @; ,0 = v, + w’ where v/_; € V;_1 and w’ € W,.
sy i—1 [ i—1 )
Obviously, it is

i = i 3] = min [Ju; — (@ 2 +ws) || < minJlu; — (G2 — Awg) || (73)
w; €W; AER

7
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Let )\ € R such that

min [Ju; — @i 2 + Awil| = [lug — i + X wil. (74)
AER
The vectors v,_; and w) span a 2-dimensional Hilbert space with scalar
product (-, -).
Therefore, (74) is equivalent to
a(u; — i po + N wj,w) = 0.
This means that u; — 4,2 + X w) is orthogonal to w;. By equation (71),
we get

a(u; — Gy p,2,v;_1) = 0.

This means that u; — ;2 is orthogonal to v]_;. Figure 15 depicts this
geometric behavior of the vectors vi_;, w}, u; — ; 2, and u; — ;2 + N w).
One can see that the angle o between —v]_; and w/ is the angle between
u; — U; 2 and u; — U; 2 + N w). Therefore, by assumption B, we get

N 1o . (—wi,vi_y) . .
([t = b, 2+ wyl| = cos(a) [|us—s el = W i =t 2|l < yllwi—dip2l]-
il Vi1
Thus by (74) and (73), we obtain
i = G 3]l < Yllus — i 2] (75)

Analogously, we get

||’LLZ - 'ai,,u,2|| < 7””2 - Ui,u,l”-
The last two inequalities complete the proof. q.e.d.
Now, we generalize this theorem for the case of a recursive coarse-grid

correction and exact subspace correction (Algorithm 1).

Theorem 3 (Convergence of the multilevel cycle with exact subspace
correction).
Assume that psy, = 0 and let u; be the solution of equation (71). Define

i = sup i _uivui,?»”

, 1<i<mn,
u;—u;,1,0€V; ||Uz - ui,LOH

which is the sharp convergence factor bound for the multilevel cycle with
exact subspace correction. Then the following recursion formula holds:

pi < (P Hpia(l—A2)), 2<i<n,
p = 0.
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Proof. Assume 1 < p < p;. Let 4; 4,2 be the result of the exact coarse-grid
correction in Step 2 of the multilevel cycle. Furthermore, let ;3 be the
result of the exact subspace correction in Step 3 using the exact
coarse-grid correction ;2. This means

a(t 3, w;) = fi(w;) for every w; € W; and

ﬁivu/vg - 'L/\LZ?M72 = uA}Z € WZ’
Let us introduce the following auxiliary function
Waux = (1 = pi—1) (Ui p3 — Ui p2)-

Obviously, it is waux € W;. Therefore, we get

Wi — will = Join ([ (wi,p2 +w) — ui| < (76)
< (i 2 + Wanx) — wil] <
< lpim1 (T2 — i) + Ui g2 — Ui g2l + (1 — pie)|| i3 — uil|-

pi—1 (Ui 2 — u;) is orthogonal to u; 0 — U2 € Vi—1. By Phytagoras’
Theorem, we get

Pzz—l||ai,u,2_ui||2+||ui,u,2_ﬂi,u,2||2 = ||Pi—1(ai,u,2_ui)+ui,u,2_ﬂi,uﬁ”z- (77)
Furthermore, ;2 — u; is orthogonal to w; 1 — ;.2 € V;—1. This implies

02 = | + i = Qi p2ll® = lluipr — il (78)
By Theorem 2, we obtain

llui = il < V2 luipn — uill. (79)
By the error reduction of the coarse-grid correction, we get

i pn2 = G2l < pillwips — Gpell- (80)
By (76), (77), (78), (79), and (80), we obtain

(i1 + (1= pic)V?) s — il < (81)
(v + pic1(1 =) w1 — il

i s —wil] <
<

This implies
i g3 = il < (72 + pima (1= 2" [|uian — il
Obviously, it is

lluin —will < Jlugo — -
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This completes the proof. q.e.d.

In practical application, it is important to choose u; as small as possible.
Therefore, let us put

pr = 0 and (82)
pi = (V4 pici(l =)

For fixed v and fixed (ug)ken it is simple to calculate the limit lim; o p;
numerically and to decide if the limit is smaller than 1 or not. We did this
for several recursion parameters (ug)gen. Table The result of this analysis
is shown in table 1.

In case of a constant recursion parameter (ux)gen one can find an explicit
formula, which indicates if the the limit lim;_, p; is smaller than 1 or not.
Lemma 2 states this formula and Table 2 shows some results of this
formula.

Lemma 2. Assume that (u;) = p € N\ {1} and
vy, =41 ——.
: [

Then, the equation (v* + p(1 — 72))“ = p has a solution p € [0,1[. The
elements of the sequence (82) are contained in the interval [0, p].

Proof. Let us first prove that the equation (72 +p(1— 72))” = p has one
solution 0 < p < 1. A short calculation shows

(P4+pd=))—p = (1+(p-1)1-2)) —p=
= (L=p)p(p,7), where
~ (1 k—1 21k
p(p,7) = 1—;<k)(p—l) (1—~2)".

Since 0 < v < 7, the polynomial p(p,v) has the properties
p(1,7) = 1-p(l=2% <0  and

w
p0.7) = 1+ (1) (VA= =a-a-))r = 0.
k=1

Thus, by the continuity of the function p(p,~), there is a 0 < p < 1 such
that p(p,7y) = 0. This implies (v + p(1 — 72))“ = p. By induction we get
that p; € [0,p]. q.e.d.

o6



(i) |1+4 1+4 1+% 141 141

V() | 0-2587 0.2830 0.33030 0.39887 0.54119

Table 1: If v < (), then there is a p < 1 such that p; < p for every i.

Vo = “T_l 0.70710 0.81650 0.86602 0.89443 0.91287 0.92582 0.93541

Table 2: If v < v, then there is a p < 1 such that p; < p for every i.

Example 11 (W-cycle = 2.). The equation (v* + p(1 — 72))2 = p has
the solution

p= Lh
(

72 —1)2 (83)

For the hierarchical construction it is v = \/g (see Table ??). This leads
topigp:%:0.36.

Theorem 3 can be extended to the case of approximate subspace
corrections that satisfy assumption A (see Algorithm ?7). This gives
Theorem 4 the proof of which can be found in [12]

Theorem 4 (Convergence of the multilevel cycle with an approximate
subspace correction). Let

g sup AT Uil
ui—u171,0€Vi ||u2 - ui,LOH

be the convergence rate of the general cycle with v smoothing operations.
Then, for every e > 0, there exists a number v, which depends only on €, v,
Wiy Com, and psm such that:

If pi—1 < 1, then the following recursion formula holds
pi < (P Hpia(1=7) +e
P = 07

for every v > v..

Furthermore, the following inequality holds:

pi < Oua+0u2 40,3
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where

Oy = (V4 pic1(1=79%) (011 + 0u—1,2),
Op,2 (v 4+ pici(1=7)) 013, and

0u3 = Compim/1+p? 1011 +0u—12+64-13)
foru=2,..., u; and
b1 = (V¥ +pic(1—7%),
b2 = Conpomn(y +pimi(1—7)), and
015 = CsmpZm\/ (7 + Compn(X = 1)) + p7_1 (Compln + 1)*.

4.2 Result for a Non-Symmetric Bilinear Forms

To obtain a robust estimation of the convergence rate of the multilevel
algorithm in case of non-symmetric bilinear forms, we have to estimate the
convergence rate of the multilevel algorithm in a norm which includes the
non-symmetric part of a. A natural norm with this property is the
operator norm of a. For the definition of this norm we need a Hilbert space
Therefore, let us assume that V,, is a Hilbert space with scalar product

(-,-y and norm || - ||. Then, we can define the following semi-norms on V),
llully, := sup alu, vi) foru € V,, and
v EV; [Jvill
llullw, = sup M for u € V,.
w;€W; [[wi
Obviously, || - ||y, is a norm on V; and || - ||y, is a norm on W;. These

norms contain the non-symmetric part of a. The scalar product (-, -) on
V can be defined in different ways. Often, one can construct this scalar
product with the help of the symmetric part of a. But, we do not have to
specify the scalar product (-, -) for the general theory in this section.

Assumption A: Assume that there are constants Cy, > 0 and
psm € [0,1), independent of 4, such that

1B @)llw, < Complanllwl, ¥w e Wi, 2<i<n.

The second assumption is the strengthened Cauchy-Schwarz inequality in
the Hilbert space V:

Assumption B: Assume that there is a constant 0 <4 < 1
such that

YV W) = sup ww)

< 2<1<n.
vEV;_1,WwEW; ”U” ”w”

)
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The third assumption must involve the bilinear form a. It is something like
a generalization of the strengthened Cauchy-Schwarz inequality for
nonsymmetric bilinear forms.

Assumption C: Assume that there is a constant 0 < v < 1
such that

fYHUHVz'fl Vv e Vi—l7 2<1:< n,
Ywlw, Ywew,;, 2<i<n.

<
[wllv, . <

Using these assumptions one can prove (see [13]):

Theorem 5 (Convergence of the multilevel cycle). Let

b= sup [[wi — Wi 3llv,
= Wi = Uiopi 311Vs

, 1<i1<n
u;—u;,1,0€EV; ||Uz - ui,LOHVi

— — )

which is the sharp convergence factor bound for the general cycle with v
approzimate subspace corrections. Then, for every € > 0, there exists a
number v. that depends only on €, v, v, Csm, and psy, such that the
following holds:

If Pi—1 < 1; then

1+ 42
1-—%

pi < (L + )it + 72 +e, 2<i<n,
pr = 0,

for every v > ve.

It is important to choose (u;) as small as possible. Table 3 helps to choose
(p;) for constant (y1;) = p. If one chooses v = 4 < 7, then the convergence
rate of the multilevel cycle is smaller than the value p, in Table 3.

w2 3 4 5 6 7 8

Y | 0.395 0.518 0.591  0.642 0.680 0.710  0.734

pu | 0122 0.104 0.0732 0.0612 0.0527 0.0487 0.0442

Table 3: For a non-symmetric bilinear form a choose the smallest p such
that v <7, and ¥ < 7,. Then, the convergence rate of the multi-level cycle
is smaller than p,,.
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4.3 Analysis of the Strengthened Cauchy-Schwarz
Inequality

4.3.1 Introduction

Consider a finite element space V,, and a symmetric positive definite
bilinear form

a:Vy, XV, — R

Then, V, is a Hilbert space with scalar product a. Assume that V,,_1 is a
coarse subspace of V,,. We are looking for a complementary space W,, such
that the multilevel cycle 1 is a fast iterative solver. The theory in section
4.1 and 4.2 shows that we need a complementary space W, spanned by
functions with a small support and such that the constant in the
strengthened Cauchy-Schwarz inequality

la(u, v)|

YVn-1, Whn,a) := sup
V-1, W, a) wEVn—1,0eWs /a(u, u)\/a(v,v)

is small. To solve this problem, we first try to construct suitable
complementary spaces in one dimension (see section 4.3.3 and ...). Then,
simple tensor product constructions will lead to a construction for the
two-dimensional case.

The simplest way to construct a complementary space is to use the
hierarchical basis. Let us explain this by a 1-dimensional example. Let
V,, € H$(]0,1[) be the space of piecewise linear functions of meshsize

h =27" and v} the corresponding nodal basis functions. Then, we get

W}Lner = spanR{’U; = Up ‘ pE Qn\Qn—l}
Obviously, this construction leads to the direct sum

o 19 hier

Vi =Voa @ W

Let us calculate the constant in the strengthened Cauchy-Schwarz
inequality with respect to the H'- and L?-bilinear forms

L ou v

; e dr and / uv dx.

By Theorem ?7?, vy, p € ), is an orthogonal basis of V,, and Up, D € 1 is
an orthogonal basis of Y;}l_l. This implies

. hi j‘l Jdu v dx
’Y(Vn—la Wn 1er’ Hl) — sup Jo 9z 9z *~ — 0’

ue\?‘n,hvewglier |l g [v] g
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where ]vﬁ{l = fol (%)2 dz. This certainly is the optimal construction of a
complementary space with respect to the H'-bilinear form. Unfortunately,
the hierarchical basis is not H'-orthogonal in two dimensions.

Now, let us study the constant in the strengthened Cauchy-Schwarz
inequality with respect to the L? bilinear form. Let us do this in several
steps.

Figure 16: The functions z, 1 — z, and L.

STEP 1. Localization.
Consider the basis functions x, 1 — x, and v 1 in Figure 16. Let us assume

that we can prove

2 2 2
[(eL(1—2)+cra) HL2(}0,1[)+HbMU% 1 z2g0.p < Kl (cL(1=z)+crz)+barvs I z2q0.1p
(84)

for every parameter cr,cgr, by € R, where K > 1 is a fixed constant. Then,
this implies

2
) < Kllutof| 12

2 2
HUHL2(]ih,(i+1)h[) + HUHL2(]ih,(i+1)h[ ih,(i+1)h[)

for every u € V,,_y, v € W}}ier, and ¢ =0,---,2" — 1, where h = 27",
Summing up these inequalities yields

2 2 2
H“HLZ(]O,1[) + H”Hm(]o,u) < Kfu+ UHLZ(]O,l[)
for every u €V,_1, v € W}Lﬂer. Now, we can apply Lemma 3. This gives
’7(‘7n—17 Wflzner7 L2) <1- K~
Therefore, it is enough to prove (84).

STEP 2. Algebraic analysis.
A short calculation shows that (84) is equivalent to

1 1 1
5(6%4—0%%—1—%03—1—()?\4) < Kg(c%+c%%+chR+b?w) +K§(CL+CR)bM.
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This equation is equivalent to

K 3
0<c? +ckh+cper+b3+ T 12(CL+CR)bM
Of course, this equation should hold for the special case ¢;, = cg = ¢. This
leads to the inequality
K 3

0§302+b +2H§CbM

This inequality is correct if

K -1
\/ngzl—K_l, (85)

since then

K 3 2
a2 72 R
0< 3¢ + b + 2= Scbs = <\/§c+bM>

Therefore, we choose K such that (85) holds. Then, we get

0< 1(cL—cR)2 + <\/§l

2
K 3
2(cL —cRr) + bM> = c}+chtercptbi+——= (cotcr)bu

K-12

W

and (84) is proved for this choice of K.
Combining STEP 1. - 2. shows that

1
O, M d
Y WVer, W 12) = sup Joww dz_ < \/§ ~ 0.86603.
ueV,_1 erhier HuHL2 ||U||L2 4

Summarizing the above estimations, we state the following

Proposition 1 (Hierarchical basis in 1D).

) 1 Ou Jv d
Vo, WEET [y = sup Jo 2 os dv o,
uE\Zl,hveerlZ’eT’ |u|H1|U|H1

1
7 ' uv dx 3
’Y(Vn—l, Wr{lieﬁ L2) — sup ‘/;)7 S \/j ~ 086603
ueVh_1 vewhieT ||uHL2HUHL2 4

In several applications, the constant 0.86603 is a too large constant for
obtaining a fast multilevel algorithm. In section 4.3.3 - 4.3.5, we show how
to construct complementary spaces W,, spanned by functions with a small
support and such that the constant in the strengthened Cauchy-Schwarz
inequality is smaller than 0.4 for the H! and L2-bilinear form. In the next
section, we explain how to estimate the strengthened Cauchy-Schwarz
inequality for the hierarchical basis in 2D.
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4.3.2 Hierarchical Decomposition

In this section, we study the constant in the strengthened Cauchy-Schwarz
inequality for the hierarchical construction Example 9 in two dimensions.
For reasons of simplicity, let £ be the unit square |0, 1[2. But, the results
in this sections also hold for a polygonal domain such that the corners of 2
are contained in Z x Z and such that the boundary of §2 is the union of
vertical and horizontal lines. Let V;, ,, be the space of piecewise bilinear
functions with meshsize h = 27" on ). Recall that Vnn is the space of
piecewise bilinear functions of meshsize h = 27" in x- and y-direction and
that W}S}Ler is the space defined by

W};iner = SpanR{’U&’q) ‘ (p, q) €0, x Qn\Qn—l X Qn—l}'

Observe, that the space Wyl;iﬂer can be described in the following way

W};iner = {u GTO/nm u(p) =0 forpe Q-1 x Qn—l} if n>1and
whie v,
Let

(o] (o]
a:Von XVpp—R

be a symmetric positive definite bilinear form. The aim of this section is to
estimate the constant in the strengthened Cauchy-Schwarz inequality

a(v,w)

o hier
Y101, Wy »a) = max . ,
v6‘7n71,n717w€W713,£er \/CL(’U, U) \/a’(w7 w)

where we write g := 0. The result of our analysis is printed in Table 4.
First, we explain our analysis in general. Assume that a is one of the
bilinear forms

atw) = [ (V050 da.y)
ou ov
/Q 0(cos ¢, sin ¢) J(cos ¢, sin ¢)

a(u,v) = /qud(az,y).

a(u,v) = d(z,y), where0 < ¢ <27, or

Here, we abbreviate

w ::a—w(:OS(b—i—a—wsin(b.
dy

0(cos ¢, sin @) ox
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a(u, v) ~(Hier,n, a) <

Jo(Vu, Vo) d(z,y) 3~ 0.612372
Jo, Bty deegamgy A®y) | (/3 &~ 0.866025
Jouv d(z,y) 1~ 0.968246

Table 4: Constant in the strengthened Cauchy-Schwarz inequality for the
hierarchical decomposition.

@ ® S
® ® ®
C, @ O

Figure 17: Wquare is the space of piecewise bilinear functions on a grid of
meshsize % which are zero at the coarse grid points (above white points).

a(v,w)

y hier
V(Vn—l,n—ly an ,(1) = max ) ,
v6‘7n71,n717w€W7}3,ller \/CL(’U, 2)) \/a’(w7 w)

STEP 1. Localization.

Define
Qquare =10, 1%,
Voquare = {u ‘ u is bilinear on quuare}
= span{[L'y, (1-2)y,z(1—y), (1 —z)(1 — y)}, and
Wiquare = {u € C(Ququare) ‘ w(0,0) = u(1,0) = u(0,1) = u(1,1) = 0 and «u is bilinear

on the subdomains ]0,0.5[2, ]0.5,1.0[2, ]0,0.5[x]0.5, 1.0, ]0.5, 1.0[><]0,0.5[}.

The grid points corresponding to the space Wyquare are depicted in Figure
17. Let asquare be the bilinear a, but replace the integral by the integral
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over the domain Qgquare. Let || - || be the semi-norm induced by the bilinear
form a or asquare- Assume that K > 1 is a constant such that

o] + ||w|)? < K|lv+w|?* for every v € Viquare and w € Wyquare- (86)

Then, this inequality holds on every cell of the grid €,, x £,. Summing up
these inequalities gives

[v]|? + [lw]]* < K|lv+w|?* for every v € Vy,_1 1 and w € W,}L%}Ler.

By Lemma 3, we obtain

o,

’Y(Vn—l,n—ly Wy?}zera a) S

K-1
7

STEP 2. Analysis of the matrixz equation.

Let w1, wa, w3z, and w4 be a basis of Viquare and let ws, we, wy, wg, and wy
be a basis of Wiquare- Let A = (a;;)1<i,j<o be the matrix of the bilinear
form asquare With respect to the basis {wi, w1, ,wg}. Now, let B be the
block diagonal matrix of A:

((a11 a2 a13 aus

ag1 Ay a23 A2
a3y a3z as3 a34
aq1 Q42 Q43 Q44
B= 0 0 0 0 was5 ase asr asg asg
ags age a7 A6 G69
ars arg Qrr  ars a9
ags age agy ass Ay
ags ags Q97 Q98 A9y )

o O O O
o O O O
O O O O
o O O O
o O O O

o O O O
o O O O
O O O O
o O O O

\

Furthermore, put Cx := K A — B. Then, inequality (86) is equivalent to
Ck is a positive semi-definite matrix.
This is equivalent to
Cx has no negative eigenvalues.
Let Pk (x) := det(Ex — Ck) be the characteristic polynomial of Ck-.
Then, inequality (86) is equivalent to
The roots of P (x) are not negative.
Therefore, we have to solve the following algebraic problem:

Find the minimal real number K > 1 such that the roots of

Pk (z) are not negative.

STEP 3. Analysis of the characteristic polynomial.
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The characteristic polynomial Pk (z) has the following form
Pk (x) = po(K) + p1(K)x + pa(K)a® + - - + po(K)a”

where p;(K) are polynomials. Let s € Ny be the maximal number such
that po(K) = pi1(K) =--- = ps_1(K) = 0. Then ps(K) is the product of all
roots of P (x) which are not zero for every K. We suppose that the
optimal value of K is such that Px(z) has s or more zero roots. This leads
to the ansatz

Ansatz:

Find the roots Ki, Ko, ..., K; of the polynomial p,(K).

Find the minimal K; > 1 such that the roots of Pk, (x) are not
negative.

For each of our bilinear forms this ansatz succeeded. Therefore, we get

o, K - 1
V(Vn—l,n—lywr?igera ) S ;—{ .
J

We calculated the value K; with the help of a algebra manipulation
program. The polynomials Px(x) are very long expressions. Therefore, we
do not want to write them down here. But let us explain the calculation of
K; for two bilinear forms in more detail.

Example 1: a(u,v) = [(Vu, Vv) d(z,y).

For this bilinear form we get s = 1 and

g
64
This leads to K; = 2(4 + V/6) and

pi(K) = ——(K — 1)*8 - 16K + 5K?%)2.

. hier 3+2v6 /3
n—1,n— 7Wnn ) o
YVa-1,n-1 a) < 51276 Vs

Example 2: a(u,v)

= /5 oo ¢>,sm 57 (Cos?;sin 57 d(w,y). For this bilinear
form we get s = 2. The problem of this bilinear form is that pa(K) depends
on ¢. But, K; = 2(2 ++/3) is a root of pa(K) for every ¢. Therefore, we
analyze the polynomial Qg4(z) = P, () #~3. We have to show that all
roots of Q4 () are non-negative for every ¢ € R. By symmetry, it is enough
to study Qg(x) for 0 < ¢ < 7. One can show that the roots of Q4(7%) are
greater than 1 and that the roots of Q4(0) are non-negative. Now, we use
the continuity of the roots with respect to ¢. If there is a 0 < ¢, < 7 such
that Qg, (z) has a negative root, then there must be a ¢, < ¢g < 7 such

that Qg,(x) has a zero root. This implies Q4,(0) = 0. But it is
1
Qu(0) = (1351 + 780v/3)(4 — cos(4¢)) sin*(2¢) > 0 for 0 < ¢ < Z.
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Therefore, we get

_3+2v3 B

9 hier
An-1, W, _— = .
’7(VTL 1n—1,YWnn 7a) = 4_1_2\/3 4

for every ¢.

4.3.3 Prewavelets

In several applications, the hierarchical construction leads to a too large
constant . A smaller canstant can be obtained by prewavelets. Let us
explain these functions in one dimension. The prewavelet functions are a
basis of the Ly-orthogonal complement space. This space W), C V, is
defined by

1
Wn::{we‘% / wv dr =0 foreveryveffn_l}.
0

Then, we obtain the following Ls-orthogonal direct sum
Vo =Wy ®p2 V1.

A prewavelet is a function which induces by shifting a basis of the space
W,,. The boundary makes it difficult to define a shifting in the space .
Therefore, we first define prewavelet functions for a related space. Let
V,, € C(R) be the space of 2-periodic and piecewise linear functions on a
uniform grid of meshsize h = 27", where n € N. Figure 18 shows an
example of a function in V;, restricted on the interval [—1,1]. By
2-periodicity, every function w € V,, is uniquely defined by its values on the
interval [—1, 1] and has the property w(—1) = w(1).

V,, is an L?- and H'-Hilbert space with respect the standard inner
products f_ll wwv dx and f_ll wov + % % dx, respectively. The
corresponding respective norms are || - ||z2 and || - ||g1. The semi-norm

|- [g1 on Vi, is defined by |w]3,, := f_ll gg—;’)z dz. Now let W,, C V,, be
the Lo-orthogonal complement space of V,,_1 for n > 2. This is the space

1
W, = {wEVn / wv dr =0 foreveryve‘_/n_l}.

-1

Now, we can define the prewavelet functions. Let 1y; be the function

AN

T/ 1

\ oY
_ 3]
5
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Furthermore, we define the function @, ;, € W,, by

5o (1) = Yy (@2t —k+2)  ifo<z2n!—k42<3,
ProklT) = 0 elsewhere

where k = T 1,..., 72771 The functions On ks k = T1,..., T2 form
a basis of W,,.

Now, we can define the prewavelet functions in W,,. Observe that the
functions ¢"7k|}0,1[ are contained in W, if k =2,...,2""1 — 1. To construct
a prewavelet function near the boundary with Dirichlet boundary
condition, we observe that

(@n,l - @n,—l) |]0,1[ € I7Vn

These considerations lead to the following construction. Define the
function 1/15 b

11

Sl

sl-

I I I
V

Now, define the functions ¢y, ; by

|
ulw
1

ena(z) = YP(z2"h),
onp(x) = Y2V —k+2) fork=2,...2""1 -1,
Pnon—i(z) = Y1 —z)2").

Obviously, the constant in the strengthened Cauchy-Schwarz inequality
between To/n_l and W, is

1

vw dx
V. 1. W, L? ma; foi—o
Wt W 12) 1= o ol

with respect to the L2-bilinear form. Now, we want to estimate the
constant v with respect to the H'-bilinear form. This is the constant

: 1 Ji 202 o
4, W, H) = z or
VW, Wo, HY) o= pmax Tl

where |v o= fo ( x)
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Figure 18: Example of a function in Figure 19: Symmetric extension .
|78

Theorem 6. The following estimate holds:

. 3
Y(Vie1, Wi, HY) < ‘/E ~ 0.39736.

Proof. STEP 1. Remove boundary conditions.
Define the constant

1 9w 811)

V(Vn—l, Wn, Hl) = max —1 890 a{E
vEV,_1,wEW, ‘U‘Hl] 11]) ’w’Hl 1D

where ]vﬁ{l q-11] ° ( ) dz. Furthermore, define the symmetric

extension operator ~: Vn — V;, by (see Figure 19)
w(z) = —u(—z)=u(r) VO<z<l, wuwel,.

Then, it is enough to prove

_ - 3
’Y(Vn—hWnaHl) S TA0
19
since
1 9v dw dr
‘0/ W Hl — ma; 0 Oz Oz
YVo1, Wa, ) v6‘7n71,£6Wn ‘U‘Hl‘w‘[p
1 9% 8w
—1 0z 8:(:

= max —~
veVn1weWn 0] g1 1,1 |w|H1( 1—-1,1])

< 'Y(Vn—la WmHl)'

STEP 2. Localization.
The set of nodal points of the space V,, is

Qni={p=Fk2™|k=-2"+1,-- 2"}
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and the nodal basis function vy € V,, at the nodal point p € Q,, is defined
by

nor o [0 ifp#£k2
up (k2 )_{1 ifp=Fk2m >

where k = —2" + 1,--- ,2™. The set of functions vg_l, p € Q,_1 is a basis
of f{n_l. Recall that the functions @, , k = T1,..., T2 form a basis
of W,,.

Assume that v € V,,_; and w € W,,. There are real values b;, and ¢;, such
that

2n71 2n71
-1 _ _
v=" Y avyle and w=">" (bp@uk+ b kPn k)
k=—2n—141 k=1

After some calculation, one obtains

Ko+ wlip = (vl + lwlin) =

2n71
1
= =7 > 256bR(K — 1) +25(bp_; +bpy ) (K —1)+
k=—2n—141

25 (Cry1 — k) (K — 1) + 128 by (b1 + br1 ) (K — 1) +
30 (e — crg1) (kg1 — bp—1) K + 14 b 1bg 11 (K — 1),

Now, we see that contrary to the hiererchical basis, prewavelets do not
naturally lead to pure local equations. Therefore, we introduce a real
parameter 3, to obtain local problems. Then, we get

Ko+ wlip — ([olzp + lwlin) =

gn—1
1
= I0h Z (256 — 28) bp (K — 1) + (25 + ) (bj_1 + bjq) (K — 1) +
k=—2n—141
25 (Ck—l—l — Ck)z(K - 1) + 128 bk(bk—l + bk+1)(K — 1) +
30 (Ck — Ck+1)(bk+1 — bk_l)K + 14 bk_lbk+1(K — 1).

Assume that we can prove for suitable fixed parameters § and K > 1:
0 < \Ilﬁ,K(b—vb7 b+,C, C+)7 (88)
for every b_,b,by,c,cy € R, where

s (b_,bby,cocq) = (256 —208) b (K — 1) + (25 + 0) (b2 +b2)(K — 1) +
25 (¢ —¢)?(K — 1) +128b(b_ + by )(K — 1) +
30(c—cy)(by —b_)K +14b_b (K —1).
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Then, this implies
0.< Ko+ wft — (ol + ).
Now, we can apply Lemma 3. This gives
Y(Voo1, Wy, HY) <1 - K1

Therefore, it is enough to study (88).

STEP 3. Algebraic analysis.

To find suitable parameters § and K, one has to study the case ¢ = —cy
and by = —b_ in more detail. Then, by using an algebra manipulation
program, we found that the choice

1 12(45 + 7/57)
K=1(194v57) and = 2UTTVST)
16( ) and 6 11 ++/57
leads to
128K — 1 2
< ———(b_+0b
0 < <\/Eb+2 = ++)>+
2
30K 1
c—c 25(K — 1) + by —b_
(( VIR 1)+ S s 0 ))
= \I/@K(b_,b,b_,_,c,c+),
_ 2(3+VE7)3
wherea—m.

Combining STEP 1. - 3. shows that

. o 3+ VBT 3
G W HY) < (Vo W dY < 2TV 3 30736,

T 19++57 V19

q.e.d.

4.3.4 Generalized Prewavelets

The prewavelets in section 4.3.3 lead to L2-orthogonal spaces W, and V,.
We showed that the constant in the strengthened Cauchy-Schwarz
inequality between these subspaces of the Hilbert space H'(]0,1]) is
smaller than

\/ 3 ~ 0.39736.
19

In several applications (e.g. anisotropic PDE’s) it is not necessary that the
space W, is L?-orthogonal to the space V1. Furthermore, the large
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support of the prewavelet functions increases the computational amount of
a corresponding multilevel algorithm. Therefore, we construct a space W,
which is spanned by functions with a smaller support and which exactly
has the properties we need. These properties are

e W, is a subspace of V,, such that
Vo =Wo eV, 1.

e The constant in the strengthened Cauchy-Schwarz inequality is as
small as possible in the Hilbert space L?(]0, 1[) and in the Hilbert
space H'(]0,1[). This means that

max (’Y(‘O/n—laﬁ/r:aHl) ) ’Y(‘O/n—laﬁ/r:uLZ))

is as small as possible, where

W ] %g_w dx
(o] '
_ HY = max 20 dxdr " 4p(
Va1, W, ) veVior,weW)] [v] g [w|m
fol vw dx

Vo W L% = max —
YVt W, I7) o= e e Tl el

o W, is spanned by functions with a small support.

These considerations lead to the following construction of the space W, .
Let W, be the space spanned by the functions gp’ml, RNV A

Wy 1= spang { @)y p | K =1,--- 2"}

where
eha(z) = Y2,
Php@) = Yy@2"t —k+2) fork=2,...2""" 1 and
Plgna(z) = Pp((1—=z)27).

and where ¢} and ), are the following functions:

14 14

7 T 1 I \r /T
VAR \ Y
M A
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By the construction of the space Wj,, we get the direct sum
Vi, =Wy &V,_1.

Let us call the functions 90;7 ;. generalized prewavelets. The support of these
functions is smaller than the support of the prewavelets. Therefore, the
evaluation of the generalized prewavelets cost less computational time than
the evaluation of the prewavelets. Generalized prewavelets lead to a smaller
constant in the strengthened Cauchy-Schwarz inequality than prewavelets,
if the parameter X is chosen in an optimal way. Figure 20 depicts an nearly
sharp estimation of the constants ’y(‘ofn_l,W,{, H') and ’y(‘ofn_l,W,{, L?). The
optimal parameter X is at the intersections in two graphs in Figure 20. A
detailed analysis of the constants y(V,_1,W;,, H") and v(V,,_1, W, L?) leads
two the following theorem the proof of which can be found in ... .

Theorem 7. Put the parameter
Aopt = —0.442736

for the generalized prewavelets. Then, the following estimates hold

. , Ao . , Ao
YV, Wi HY) < =221 <0.30688  and  ~(V,_1, Wy, L?) < —21— < 0.30688.

/\opt_ )\opt_

Y
0.8
0.6
0.4
0.2

A
0.5 0.4 -0.3 0.2 0.1

Figure 20: Estimation of the constants in strengthened Cauchy-Schwarz
inequality for spaces spanned by generalized prewavelets
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Figure 21: Semi-coarsening of a grid.

4.3.5 2D-Splittings by Prewavelets and Generalized Prewavelets

Let us recall the tensor product construction of two subspaces
V.w c H'(]0,1])

V®W :=spang{v(z) - w(y) |[veV and weW} c H'(0,17%).
Now, consider the fine-grid space
Vn ::Vn ®‘o/ma

where m,n > 1 are two parameters.
There are two ways to construct a coarse-grid space V,_1 of Vy:

e Semi-coarsening. (See Figure 21). Now, m is a fixed parameter and n
is the parameter indicating the level. Thus, define Vﬁf_mli =Vp1 @V

e 2-directional coarsening. (See Figure 2.1.1). Now, let n = m be
parameter indicating the level. Define V,,_1 =V_1 @V,_1.

Let us first study the case of semi-coarsening. The complementary space
W,, can be constructed by prewavelets or generalized prewavelets:

o Prewavelets. Define W,Sfmi ::I;Vn Q Vm

e Generalized prewavelets. Define W/ .= Wy, @ V,,, where we choose
A = Agpt = —0.442736.

Let b(y) > 0 be a non-negative function such that the following integrals
exist. The constants in the strengthened Cauchy-Schwarz inequality are
printed in Table 5 and Table 6 for some bilinear forms. Let us prove the
estimate

. . 3
YWRTE Wi a) <415
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a(u, v) YOV Wi a) < a(u,v) YV W a) <
Jo(Vu, Vo) d(z,y) 3~ 039736 | [(Vu, Vo) d(z,y) 0.30688
Job() 2L d(z,y) | /& ~ 0.39736] |[,b(y) 2L 9L d(z,y) 0.30688
Jo b(y) 5298 d(x,y) 0 Jo b(y)5e % d(x,y) 0.30688

Job(y) uv d(z,y) 0 Jo by) uv d(z,y) 0.30688

Table 5: Constant in the strengthened Table 6: Constant in the strengthened
Cauchy-Schwarz  inequality  for  semi- Cauchy-Schwarz inequality for semi-
coarsening and prewavelets. coarsening and generalized prewavelets.

for a(u,v) = [, b(y gz gz d(x,y). Let u € V, and v € W™, Observe, that
by the tensor product construction, the functions

x—u(z,y) and z— v(x,y)

are contained in V,_; and W, respectively for every fixed y € [0,1]. By

Theorem 6, we get
3 L/ ou\? Lo\ 2
< — — i
d Va8 e[ (2)

for every fixed y € [0,1]. Thus, we obtain

P
0 ox Y ox

[ o35 )| < /1b<y> (O ] ay
< \/7\// dx\//l @2dwdy
< \f\// a—m yw d(z.y).

The other estimates in Table 5 and Table 6 can be proved in the same way.
Now, let us study the case of a 2-directional coarsening. Assume that

n =m. Then, it is V, :‘ZL ®To/n and V,_1 :To/n_l ®‘ZL_1. The
complementary space W, can be constructed by prewavelets or generalized
prewavelets:
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e Prewavelets. Define W,, := (‘7% ®Vn) +

in two possible ways as a direct sum:

Wy, = W @V,) @ (Veey @ W) = Wy @V

e Generalized prewavelets. Define W), :=
we choose A = Aoyt =

ways as a direct sum:

= (W oV,)®

n 1®W/

(Wn ®V 1

(‘O/n ®Wn). We can write W,

® (Vo @Wa). (89)

Wy @V;,) + (Vi @W,), where

@ (V, @Wy).

—0.442736. We can write W), in two possible

(90)

Let us prove the first equation in (89). The other equations in (90) and
(89) follow by the same arguments. By V,, =V,,_; &W,,, we get

W, @W;,) =

W, @Vo1) + W, @ W) + (Vyq @W).

By a dimension argument, the last sum in this equation must be a direct

sum. Therefore, we get

Wy = W, @V,1) @ W, 0W) e (V1 @) = W, oV,) @ (Vo oWh).
This shows the first equation in (89).
a(u,v) Y Vp—1, Wy, a) < a(u,v) Y(Vn-1, W), a) <
Jo(Vu, Vo) d(z,y) | \/= =~ 0.39736 | | [o(Vu, Vo) d(z,y) 0.31°
v gz,y) | \/& =~ 0.39736 q 2udy d(z,y) 0.38 ¢
Jo Gust d(z,y) | y/f5 ~ 039736 Jo 5452 d(x,y) 0.38¢
Jouv d(zx,y) 0 Jo uv d(z,y) 0.30*
Table 7: Constant in the strengthened Table 8: Constant in the strengthened

Cauchy-Schwarz inequality for prewavelets.

Cauchy-Schwarz inequality for general-

ized prewavelets.

“numerical result

The constants in the strengthened Cauchy-Schwarz inequality of the above
splittings are printed in Table 7 and Table 8 for some bilinear forms. Let

us prove the estimate

’Y(Vn—h Wru CL) <

19
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for a(u,v) fQ gg gg d(z,y). Assume that u € V,,_1 and v = v, + vy € Wy,
where v, € Wn ®Vn_1 and vy € ‘O/n ®m. By Theorem 6, we get
8u av Ou Ov,

< L) weon [ ) e
< L) weon [ () v

The other estimates of Table 7 follow in the same way.

For the implementation a multilevel algorithm based on the space W), it is
necessary to find basis functions of W/ which support is as small as
possible. To this end, we define the space

ﬁ/iven = spanR{U;L ‘ pE Qn_l}.
A short calculation shows the following idendity
_ e vV:VOn.
This leads to the splitting

(™) e (7 o).

Using the natural basis of the spaces W}/ and IEVnOVOn gives a natural tensor
product construction for a basis of W,,. This basis consists of functions
with a small support.

4.4 Anisotropic Elliptic Differential Equation

Consider the anisotropic differential equation in section 1.1. Assume that
the coefficients in the bilinear form

L(u) = —divAgradu+cu=f on QCR? where

are constant and are of the following form:

A = ( 0 )e(L%OCm))?X?, ¢ e LL().
0 az,2

Then, the local mode analysis and the analysis of multigrid algorithms on
a complementary space show, that a fast convergence rate can be obtained
by the following choice of the coarse grid:
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(],272 . . . . .
® o << 7, semi-coarsening in y-direction,

a1l . a2 . . . .
T A T, coarsening in xy-direction,

a . . . . .
5+ >> F2 semi-coarsening in z-direction.
z Yy

4.5 PDE’s with Jumping Coefficients

Assume that a(u,v) is a bilinear form with jumping coefficients. In
ho,h

general, the entries of the stiffness matrix a(vp,vq) cannot be computed
exactly. Then, numerical integration formulas have to be applied. The
question is how to obtain the the coarse grid stiffness matrix. One choice is
to calculate the stiffness matrix on the coarse grid by numerical integration
formulas. This can lead to a very poor approximation of the stiffness
matrix on the coarse grid, since the coarse grid integration formulas are of
very low order. To understand this, consider a variable coefficient with a
large jump on a very small domain. In such situations, a numerical
integration of the stiffness matrix on the coarse grid can lead to a failure of
the multigrid algorithm. A stable approach is to compute the coarse grid
stiffness matrix As, by a restriction of the the fine grid stiffness matrix Ay

according
Agp = I Aoy 11 . (91)

In case of a symmetric positive definite bilinear form a(u,v), the stiffness
matrix Ay is symmetric positive definite, too, if the integration formulas
are accurate enough (This is simple to obtain in general). Then, a
multiplicative subspace correction method will converge, since it is a
minimizing algorithm. Nevertheless the convergence rate my be very poor.
To understand this, consider the following 1D example

0.25 0.5 1
ae(u,v) :/ eu'v'dx —I—/ u'v'dw—l—/ eu'v'dz.
0 0.25 0.5

Furthermore, let

e vg.o5 be the nodal basis function for linear elements of mesh size 0.25
and

e g5 be the nodal basis function for linear elements of mesh size 0.5.
Now, consider

_ ae(vo.2s,v0.5)|
Ve 1= —— =L
[[vo.25| lvo.s]]

Observe that

v1 =0 and 1111(1]%:1.

78



This implies, that a subspace correction method leads to a very poor
convergence in case of the above bilinear form a.(u,v). The same hold for
the classical multigrid algorithm. To improve the convergence one can
improve the restriction prolongation operator or one can improve the
smoothing. The smoothing can be improved by a block smoothing of
neighbor points near the discontinuity.

4.6 PDE’s with a Convection Term

Consider the convection-diffusion problem
—Au+l;Vu+cu:f

with suitable boundary conditions and a stable discretization. This can be
an upwind discretization of the convection term bVu or a streamline
diffusion discretization in case of finite elements. Unfortunately, the
restriction of the stiffness matrix as in (91) leads to non-stable
discretization of the convection term in case of a standard coarsening.
There are three ways to avoid this problem:

e Let Ay, be the coarse grid discretization matrix (not very good
convergence).

e Coarse orthogonal to the streamlines.
e Construct suitable restriction and prolongation operators.

In Section 5, we explain a suitable multigrid algorithm for convection
diffusion problems.

4.7 Consequence for PDE’s with a Kernel

Let a: V x V — R be a symmetric bilinear form on a Hilbert space V and

fev.
Definition 8. The kernel of a is defined by

kern(a) :={u €V | a(u,v) =0 Vv € V}.

Now, let us consider the problem

Problem 8. Find u €V such that
a(u,v) = f(v) YoeV.
If kern(a) # {0}, then Problem 8 has no unique solution. Furthermore,

Problem 8 has no solution, if f #0
kern(a)
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To obtain a solution, we have to assume

kern(a)
Furthermore, let us define the quotient space
Vo := V/kern(a)
and let is define

a:VyxV, — R
a([ul, [v]) = a(u, v)

Here, u € V is a representant of [u] € V,,. Then, the following problem has
a unique solution, if V, is a finite dimensional vector space:

Problem 9. Find u € V, such that
a(u,v) = f(v) YvoeV.

Example 12. Consider the Poisson’s equation withe pure Neumann
boundary conditions:

—Au = f onf
ou
o 0 on 0.

The bilinear form of the corresponding weak formulation is

o0

a(u,v) = / VuVo d.
Q
The local kernel of a is
kern(a) = R
the subspace of constant functions. Thus, there is a unique solution, if and
only if [, d=0.
Example 13. Let E >0 and 0 < v < % Define the symmetric derivative

1 8ui+0uj
“ T 2 al‘j al‘l

€11
€22
Du = €33
€12
€13
€23
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and the matrix

1 v —v
-v 1 —v 0
1 v —-v 1
-1 _ +
¢ FE 14+v ’
0 1+v

1+v

where E and v are physical constants. The bilinear form corresponding to
the problem of linear elasticity is

a: (H'(Q) x (H'(Q)* — R

(u,v) /Q(DU)TCDU d(x,y, 2)

The local kernel of this bilinear form is a 6-dimensional space of the ridged
body modes:

1 0 0 Y 0 —z
kern(a) = span o, {111,101, —= |, z ) 0
0 0 1 0 —y T

Let us assume, we want to construct a subspace correction method with a
complementary space. This method is based on a decomposition

Va,i = Va,i—l + Wa,i-

Here, the quotient spaces Vg ;, V5 i—1, and W, ; are based on a
decomposition

Vi=Viae W,
such that
Vai={lu] |veVi}, Vaici={[u]|uveViii}, Wi={[u]|ueW}.
Theorem 8. If the constant

a(v, w)
v= _ sup
UEVa,iflwaWa,i ||U|| ||w||
of the strengthened Cauchy-Schwarz inequality between V,;—1 and Wy ; is
smaller than 1, then
kern(a) C W; or kern(a) C Vi_; .
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Proof. Let us assume that kern(a) ¢ W; and kern(a) ¢ V;_1. This means,
there are vectors 0 # w € W; and 0 # v € V;_1 such that

v+ w € kern(a).

This implies

o] = —[w]
and

a(l,[w])

Mol )l
Thus, we get v = 1. O

In case of the Examples 12 and 13, it is very difficult to obtain that
kern(a) C W; for a certain ¢ and such that the corresponding iterative
solver is an efficient solver. Thus, one has to construct the coarse grid
spaces Vi C Vo C ... C V., such that

kern(a) C V1.

Thus, in case of Example 12, the constant functions must be conained in
V1 and in case of Example 13 the space of ridged body modes.

5 Algebraic Multigrid

5.1 General Description of AMG

Let A be a n x n matrix and let b € R™. We want to solve the following
problem:

Find z; € R0l such that

Ax = b.

Define
A=A and b3 =0b.
Furthermore, let us denote
0 ={1,2,...,n}

to be the finest grid. An algebraic multigrid constructs a sequence of
coarser grids

Qn CQp1 C ... C
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and a restriction and prolongation operator

k Qp Qp,
If RI! — RIZk+1]
I}’;-ﬁ-l o Rkl I
k _ k+1\T
Ik-i-l - (Ik )

Then, define
A1 = I A IF .

Using a relaxation method S, (like the Gauss-Seidel relaxation) leads to
the following AMG (algebraic multigrid):

AGM (zF,b;,1)
If | = m, then AMG(2F,, by, m) = A lby,
If I < m, then
Step 1 (vi-pre-smoothing)
7t = Sy (@)
Step 2 (Coarse grid correction)

Residual : 7, = b — Ale’l

Restriction : ry11 = [ 17‘[

Recursive call:

e?+1 =0
fori=1...u
e = AGM(efﬁ, ri41, 0+ 1)
€1 = €4
Prolongation : ¢, = Ill+1el+1
Correction : a:f’2 = xf’l + ¢

Step 3 (ve-post—smoothing)

AGM (af by, 1) = 8,2 (%)

5.2 Coarse Grid Construction of AMG

The original AMG by [16] is based on matrices which are weak diagonal
dominant. These matrices have property

Z laij| < ag;.
ij

In case of a FD discretization of a PDE the entries a;; are often negative.
This motivates the following definition:
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Definition 9 (Strong Connections). Let 0 < a < 1 be a small value
(usually o = 0.25).
For each i € QF define the set of strong connections by:

S;=1{j € Q" | —ay > amax—a;}
ki

Now, we construct the set of coarse grid points by the following algorithm:

Coloring Sweep for Constructing Coarse Grid

1. Assume that the set of fine grid points € is defined.
Now construct the set of coarse grid points C' and
the set of fine grid points F' as follows:

2. For each i € QF, let \; = | Sy
(This is the number of strong connections).

3. Pick i with maximal A;, such that i ¢ C' and ¢ ¢ F. Put i in C.

4. Foreach j€e S;ANj€CNj & F,put jin F.
Increment ), for each k € 5.

5. I QF £CUF goto 3. .
6. If Q¥ = C' U F stop and let Q! = C.

5.3 Interpolation of AMG

To construct an interpolation operator, let us use the notation:

N; = {j#i|a;;#0} (neighborhood of 7)

c; = S;ncC
D] = S;NF
D} = ,weak® connections such that:

N, = C;UD}UDY.

Let us define a general interpolation operator as follows

(1F. ) = optt if ieC
L Y jec, wioh Tt if i€ F

Assume that (e;) is the algebraic error. To derive an interpolation formula,
we assume the following property of the algebraic error:

;i€ = — E ;5 €5

JEN;
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for every ¢ € F'. This property is motivated by two facts. First relaxation
leads to na small residuum. Second, an exact correction on a
complementary spanned by the fine grid points leads to the equation

AUy = — E Q5 Uy + bi
JEN;

for every ¢ € F'. Since,

a;;u; = — E Q5 Uy + bi.
JEN;

the algebraic error e; = u; — u; satisfies
A€ — — E a,-jej
JEN;
for every ¢ € F. Thus, we get
a6 ~ — Z jec, 4ij€; coarse strong points
— > ieps age;  fine strong points
1
— > mepw @Gimém  Weak points.
1
In this equation, we replace
e ¢, by e¢; and
° o= (Zjeci alj€j> / 2jec; Wj -
Thus, we construct the interpolation operator such that:
a;;€; = — Z jec, 4ij€; coarse strong points

— ZleDf ai (Zjeci aljej> /> jec, w; fine strong points

= meDw Gim€; weak points.
This implies

=2 jec <aij + ZleD;‘ aiaij/ Y kec, alk) €j

ai; + ZmEDf’ Qim

€, =
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6 Appendix A: Hilbert spaces
The basic tool in the analysis of partial differential equations is the Hilbert
space.

Definition 10 (Hilbert space). Let H be a real vector space. A bilinear
form (-,-) : H x H — R is called scalar product if the following rules hold:

o (v,w) = (w,v) ifwe€H, veH (symmetric) .
e (v,v) >0 for all v € H (positive).
(v,

v) =0 only if v=0 (definite).

H is called a Hilbert space if H is complete with respect to the norm || - ||
defined by ||v|| = \/(v,v).

The simplest example of a Hilbert space is the finite dimensional Euclidean
vector space R, n € N with the Euclidean scalar product

<(U7«)1<2<n7 wl 1<2<n : ZUZ’(UZ

Another example is the space L%(Q) of square integrable functions on a
bounded open domain Q C R d € N (see [15]). The scalar product on this
space is

<v,w>L2 = / vwdz for every v,w € H.
Q

An elementary property of a scalar product is stated in the following
theorem.

Theorem 9 (Cauchy Schwarz inequality). Let (-,-) be the scalar product
of a Hilbert space H with norm || - ||. Then, the following inequality holds

(v, 0) <|lo[[ ]|, v,we™H.

Proof. By the binomial formula (@ — b,a — b) = (a,a) + (b, b) — 2{(a,b), we

Hu <Wﬁ> -

v w

loll Tl

v w
= 2-2 <— —> .
ol " [lwll

This implies

2
0<‘ ‘

(v, w) < v [w]-
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q.e.d.

By the Cauchy Schwarz inequality, the angle between vectors v, w # 0 is
well-defined by

[{v, w)]
vl lwl”

since the fraction in this definition is < 1. The angle between two
subspaces V and W of a Hilbert space H is defined by

Z(v,w) = arccos

(v, w)

Z(V, W) := arccos sup .
vevwew [[v]l{w]]

Let us define the constant

AVW) = sup
vevmew [0l ]

where we write % := 0, for simplicity. By the Cauchy Schwarz inequality, it
is 7(V, W) < 1. But for special subspaces the constant (¥, W) may be
smaller than 1. Then, we call v(V, W) the constant in the strengthened
Cauchy Schwarz inequality between V and W, since the following
inequality holds

(v, w) <AV W) ol wl, veV,weW.

A simple calculation shows that the strengthened Cauchy Schwarz
inequality and the angle between subspaces satisfy the equation

Z(V, W) = arccos(y(V, W)). (92)

The subspaces V and W of the Hilbert space H are called orthogonal iff
vV, W) = 0.

Example 14. Consider the Euclidean Hilbert space H = R3 with the
subspaces V := (1,0,1)R and W := (1,0,0)R + (0,1,0)R. Now, a simple
calculation shows

1
VW) =— and Z(V,W)=45°.
(V. W) 7 v, W)
In the above example, the calculation of the constant in the strengthened
Cauchy Schwarz inequality is straight forward. But in case of higher
dimensional spaces such a calculation can be more complicated. Then, the
following lemma, is very helpful.
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Lemma 3. Let H be a finite dimensional Hilbert space with scalar product
(-, ) and norm || - ||. Furthermore, letV and W be subspaces of H.
Then, the following inequalities are equivalent for constants K > 1

ol + lwl* < Klv+wl|? veVwew
)
<

YV, W) 1-K L

Proof. “|}” Choose v € V and w € W such that ||v|| = ||w|| = 1. Then, we
get

lol® + [lw]® Ellv + (-w)|*

K-1

<
4

200, w)K < (K = 1) Jol® + (5 — 1) flw]?
4

= K

(v, w) [[v]] {Jw]]-
This shows
WV, W) <1-K™

“” Choose v € V and w € W. (V,W) <1 — K~! implies that

~{o,u) < Sl
Therefore, we get

0 < (ol = llwl)

Y
2ol flwl < lol? + flw]?

I

“2(v,w) K < (K =1)|* + (K — 1) Jw|?

I

ol + lwl® < Ko+ wl?.

q.e.d.

In chapter 7?7, we will apply this lemma to finite element spaces.
If different scalar products are given on a vector space, then the
strengthened Cauchy Schwarz with respect to a scalar product a is defined
by
YV, W,a) := sup a(v,w) )
vevwew \/a(v,v)y/a(w, w)
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A basic lemma describing the constant v(V, W, a) for different bilinear
forms is the following:

Lemma 4. Consider two scalar products a and b on the vector space 'H.
Let A\, and Ay be positive constants and V and W two subspaces of H.
Then the following inequality holds

Beweis!!
For the weak formulation of partial differential equations, we the the dual
space H' of an Hilbert space H. This space is the set of continuous and Lemma
linear functions f :H — R. The dual space is a vector space with norm spaeter
zitieren!!
f(v)

]| := sup "=
veEH ”U”

The mapping v — (w,v) is an element of the dual space H' for every fixed
w € H. Furthermore, every function f € H’ can be written as v — (w,v).
This is stated in the following theorem.

Theorem 10 (Riesz representation theorem). Let H be a Hilbert space
with scalar product (-,-). Then, for every f € H' exists a unique w € H
such that

(w,v) = f(v) for every v e H.

The proof of this theorem can be found in [15].
Now, let

a:HxH — R

(v,w) +— a(v,w)

be a bounded and positive definite bilinear form. This means that a is a
bilinear form and that there are constants ¢,m > 0 such that

la(v,w)| < eljv] [|w]], a(w,w)>m|w|? for every v,w € H.

The following theorem can be treated as a generalization of Theorem 10.

Theorem 11 (Lax-Milgram). Let a(-,-) be a bounded and positive definite
bilinear form on the Hilbert space H. Then, for every f € H' exists a
unique w € H such that

a(w,v) = f(v) for every v e H.

The proof of this theorem can be found in [5].
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7 Appendix B: Sobolev spaces

Consider the piecewise linear function (see Figure 22)

0 for0<zand z >1,
w(zr) = x for 0 <z <1,
2—x forl<gz<2.

The classical derivative Jw/dz of this function is well defined at every
point z € R with the exception of the points x =0, x =1 and =z = 2.
Therefore, we have to generalize the derivative of a function. Here, it is
helpful that, in our applications, we are only interested in the derivative of
w in the Hilbert space L?(f2). Therefore, we do not have to define the
derivative of w at every point x € R. The wrong generalization of the
derivative would be to define the derivative just by the classical derivative
with the exception of a finite set of points. If we use such a concept, then
the formula of partial integration would not hold. But in case of a
continuous and piecewise differentiable function, this is the right
generalization of the derivative of a function in the Hilbert space L?(Q2).
Therefore, the generalized derivative or weak derivative of the function in
Figure 22 is the function in Figure 23.

Figure 22: A piecewise linear function w. Figure 23: Weak derivative dw/0z of w.

On general, we have to define the weak derivative of a function with the
help of the partial integration. For reasons of completeness of our
presentation, we briefly describe this concept.
To this end, let Q C R? be an open and bounded domain and C§°(f2) the
space of function f such that
e the classical partial derivative
goat-taa
257 - 925

exists and is continuous and

e there is a closed subset Q2 C Q such that f(z) = 0 for every
A Q\QQ
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For the definition of the weak derivative, let us introduce the following
abbreviation.
If a= (o, ,aq) € N? is a multiindex, then we write

d
|| = Z Q.
i=1

Now, we can define the weak derivative.

Definition 11 (Weak derivative). The function g € L*() is called the
weak derivative of f € L*(Q), if the following equation holds

8a1+ +ad(‘0
/ godz = (1)l / f o=z dz for every ¢ € C3°(Q).
Then, we write
gor+taa
g I err).

= a1 g
92 - 020

The most important tools in the analysis of partial differential equations
are spaces with include the derivative of a function. The Sobolev space is
such a space with an additional Hilbert space structure.

Definition 12 (Sobolev space). Let Q C R? be an open and bounded
domain. The Sobolev space H™ (), m € N is defined by
aal-‘r +Ocdf

o) = {5 < 20| i

€ L*(Q) for every a € N with |a| < m} .

The scalar product on this space is defined by

o= [ S et
9 Qx{t -+ 0z O - - Oy

aeN? |al<m

This scalar product induces the norm

1l = J ) ‘

aeN? |a|<m

Qgarttaq f

—ar o dz.
Qxt - - 0xy?

L*(Q)

Example 15. In one dimension, the Sobolev space H'(]0,1[) is

HY(0,1]) := {f e 12(]0,1]) ( o LQ(Q)}.
In case of two dimensions, we obtain

of of
ox

HY(0,1]2) := {f e 12()0,1P) ‘ 5 € L?(Q)}.
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In addition to the Sobolev space H'(f2), we have to define a Sobolev space
with Dirichlet boundary conditions, which means that the functions in this
space are zero at the boundary of 2. This is the Sobolev space

H}(Q) € HY(Q). Usually this space is defined by the closure of the space
C5°(€2). Here, we give an equivalent definition of the space H{(f2). For our
purpose this definition is more convenient, but it is restricted to polygon
domains.

Definition 13 (Sobolev space with Dirichlet boundary conditions).
1. Let Q C R! be an interval. Define the space

C~01(Q) = {v € C(Q) | there are intervals I, --- , I, such that Uleli =0,
v, € CY(IL;) for everyi=1,--- k, and v|gq =0 }

The Sobolev space HE(Q), is defined by

1

HY@) = C(Q)
2. Let Q C R? be an open, bounded and polygon domain. Define the space
C~01(Q) = {v €C(Q) | there are triangles Ty, -+ , Ty such that UleTi =,
vlr, € CH(T;) for everyi=1,--- ,k, and v|pq = 0 }

The Sobolev space HE(Q), is defined by

Hl

Hj () = C5(9)

Observe that the space Hg () is well defined, since the space C3(9) is a
subspace of H(1).

For the analysis of Poisson’s equations with homogeneous Dirichlet
conditions (see section ??), we need the Sobolev space H{ (). This space
can be equipped with another Hilbert space structure. The corresponding
scalar product and norm are

d
_ of 99, _
Gy = | > 5 5a, 0 = | 199 i (93)
d 2
of
Flam = / iz = JIVIPaor dz. (94)
Q; 8331 L2(Q) L2

Here, we use the abbreviation

d
ow ow ow v
Vw = <8—xl’ . ’8—9@1) and VwVwv:= ; 0z, 9.
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Nevertheless, the two Hilbert space structures on HE(€2) lead to equivalent

norms.

Lemma 5 (Poincaré’s inequality). There is a constant ¢ > 0 which only
depends on the bounded domain € such that

L S Wl S elflr for every f e H().

The proof of this lemma can be found in [19].
Observe that the bilinear form (f, g) 1 is not a scalar product on H L),
since this bilinear form is not definite for constant functions.
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