WS

Numerical Linear Algebra

Professor Dr. Christoph Pflaum

2009,/2010

Contents

1 Linear Equation Systems in the Numerical Solution of PDE’s 5

1.1

1.2

1.3

14

1.5

1.6

1.7

1.8

1.9

1.10

Examplesof PDE’s . . . . . . . ... ... ... .. ... .. 5
Finite-Difference-Discretization of Poisson’s Equation . . . . . 7
FD Discretization for Convection-Diffusion . . . . ... ... 8
Irreducible and Diagonal Dominant Matrices . . . . . .. .. 9
FE (Finite Element) Discretization . . . . . . ... ... ... 12
Discretization Error and Algebraic Error . . . . . . . . .. .. 15
Basic Theory for LInear Iterative Solvers . . . .. ... ... 15
Effective Convergence Rate . . . . . . ... ... ... .... 18
Jacobi and Gauss-Seidel Iteration . . . . . . . ... ... ... 20
1.9.1 Ideas of Both Methods . . . . . . ... ... ...... 20

1.9.2  Description of Jacobi and Gauss-Seidel Iteration by

Matrices . . . . . . ... 22
Convergence Rate of Jacobi and Gauss-Seidel Iteration . . . . 24
1.10.1 General Theory for Weak Dominant Matrices . . . . . 24
1.10.2 Special Theory for the FD-Upwind . . . . .. ... .. 26
1.10.3 FE analysis, Variational approach . . .. .. ... .. 30




1.10.4 Analysis of the Convergence of the Jacobi Method . .
1.10.5 Iteration Method with Damping Parameter . . . . . .
1.10.6 Damped Jacobi Method . . . . .. .. ... ... ...
1.10.7 Analysis of the Damped Jacobi method . . . . . . ..

1.10.8 Heuristic approach . . . . . .. .. ... ... .. ...

2 Multigrid Algorithm

2.1 Multigrid algorithm on a Simple Structured Grid . . . . . . .
2.1.1 Multigrid . . . ...
2.1.2 Idea of Multigrid Algorithm . . . . . . ... ... ...
2.1.3 Two—grid Multigrid Algorithm . . . .. ... ... ..
2.1.4 Restriction and Prolongation Operators . . . . . . ..
2.1.5 Prolongation or Interpolation . . . . .. .. ... ...
2.1.6 Pointwise Restriction . . . . . . ... . ... ... ...
2.1.7  Weighted Restriction . . . . . . ... ... ... ....

2.2 Tteration Matrix of the Two—Grid Multigrid Algorithm . . . .

2.3  Multigrid Algorithm . . . . . .. .. ...

2.4 Multigrid Algorithm for Finite Elements . . . . . . . ... ..
24.1 Model Problem . . . ... ... ... ... ...,
242 Example. . . .. ... ...
243 TheNodal Basis . . . .. ... ... ... .......

2.4.4 Prolongation Operator for Finite Elements . . . . . .

33

34

35

35

37

38

38

38

39

40

41

41

41

42



2.4.5 Restriction Operator for Finite Elements . . . . . .. 46

2.5 Fourier Analysis of the Multigrid method . . . . ... .. .. 47
2.5.1 Local Fourier analysis . . . . ... .. ... ...... 47

2.5.2 Definition . . . .. ... oo 51

2.5.3 Local Fourier analysis of the smoother . . . . . . . .. 51

3 Gradient Method and cg 52
3.1 Gradient Method . . . . . ... ... ... L. 52
3.2  Analysis of the Gradient Method . . . . . . .. .. .. .... 53
3.3 The Method of Conjugate Directions . . . . . .. ... .. .. 55
3.4 cg-Method (Conjugate Gradient Algorithm) . . . . . . .. .. 57
3.5 Analysis of the c¢g algorithm . . . . ... ... ... ...... 59
3.6 Preconditioned cg Algorithm . . . . ... ... .. ... ... 61

4 GMRES 63
4.1 Minimal residual method . . . . .. ... ... ... ... 64
4.2 Solution of the Minimization Problem of GMRES . . . . . . . 65
4.3 Computation of QR-Decomposition with Givens Rotation . . 66
4.4 The GMRES Algorithm . . . .. ... ... ... ....... 67
4.5 Convergence of the GMRES method . . . . . .. ... .. .. 68

5 Eigenvalue Problems 69
5.1 Rayleigh Quotient . . . . . ... ... ... .......... 69



5.2

5.3

5.4

9.5

Method of Conjugate Gradients . . . . . . ... .. .. .... 71

Simple Vector Iteration . .. .. ... ... ... ....... 74
Computation of Eigenvalues using the Rayleigh Quotient . . 76
Jacobi-Davidson-Algorithm . . . . . . .. ... ... .. ... 80
5.5.1 The Jacobi-Method . . . . ... ... ... .. ..., 80
5.5.2 Motivation of Davidson’s Algorithm . . .. ... ... 81
5.5.3 The concept of the Jacobi-Davidson-Algorithm . . . . 82
5.5.4 Jacobi-Davidson-Algorithm . . . .. ... ... .... 84



1 Linear Equation Systems in the Numerical So-
lution of PDE’s

1.1 Examples of PDE’s

1. Heat Equation

STEBaSy

/

hom. plate

Heat source f in the interior of the plate.

Question: What is the temperature inside of the plate?
Poisson Problem (P)

Let Q C R™ open, bounded, f € C(Q2), g € C(692).
Find u € C?(Q) such that

—Auy = f on{

ulyg = 9
0? 0?
Where A = W + 8—112

2. Convection-Diffusion-Problem
Find u € C?(Q) such that

—Au+b-Vu+cu = f onQ
0

u‘m
where b € (C(Q)*, f,ceC(Q)

3. Navier-Stokes-Equation

ou Op  Ow?)  O(w) 1
ot Oz Oz + oy ReAu
ou Op  Ow)  00?H 1
ot + oy + ox * dy Re Av
o
or Oy



—
4. Laser simulation
mirror 1 mirror 2
I\ M

Ty = FM;[ U FM2
Find u € C2(2), A € C such that

—Au—FKku = M\u
u|FM =0
ou

EF ‘F =0 (or boundary condition third kind)

rest

We apply the ansatz

u = UTE_ikz + uleikz
where k is an average value of k.

This leads to the equivalent eigenvalue problem:
Find u,, u;, A such that

—Au, + 2ik aau; + (12‘2—162)% = du,
—Auy — 2ik % + (P -y = \y
ou,  Ou B
ur o+, =0, ek, = O
Oy — % = 0
on Trest on Trest




1.2 Finite-Difference-Discretization of Poisson’s Equation

Assume  =]0,1[? and that an exact solution of (P) exists. We are looking
for an approximate solution up, of (P) on a grid €, of meshsize h. Choose
h:%wheremeN.

Q, = {(ih,jh)|i,j=1,....m—1}
Q= {(ih.jh)]i,j=0,....,m}
Discretization by Finite Differences:

Idea: Replace second derivative by difference quotient.
Let e; = (1,0) and e, = (1,0),

2 2
—Au(z) = <—% - g—yg) (2) = f(z) for z € Qp

up(z + heg) — 2up(2) + up(z — hey)

h2
izl B el g
and u(z) = g(2)
~ = for z € O\,
’LLh(Z) = g(Z)

This leads to a linear equation system Ly U, = F} where U, = (uh(z))zeﬂh,
Ly, is |Qp] x |2p] matrix. The discretization can be described by the stencil

1
2 m—_11 Mol M1l

I, 1
“h2 Py T h2 = m—1,0 mo,o mio
1
—7z m-_1-1 Mo—1 M1,-1




Let us abbreviate U; j := up(ih, jh) and f; ; := f(ih,jh). Then, in case of
g = 0, the matrix equation LU, = Fj, is equivalent to:

1
> muUipr i = fij
Ei=—1

1.3 FD Discretization for Convection-Diffusion

Let Q,Qy as above.

—Au—l—bd—u =f
dx

Assume that b is constant.

1. Discretization by central difference:

du, . up(z+ hey) —up(z — hey)

—(z) ~
dx( ) 2h
This leads to the stencil
1
h2
1 b 4 1 b
TR T W TR T
_ 1
h2

— unstable for large b.
2. Upwind discretization:

du, . up(z) —up(z — hey)
& h

This leads to the stencil




1.4 Irreducible and Diagonal Dominant Matrices

Definition 1. A n x n matriz A is called strong diagonal dominant, if

lasi| > lag] 1<i<n (1)
i#j
A is called weak diagonal dominant, if there exists at least one i such that
(1) holds and such that

|aii|22|aij| 1<i<n
i#
Definition 2. A is called reducible, if there exists a subset J?{l, 2,...,n},
J # 0. such that

a;; =0 foralli g J jeJ

A not reducible matriz is called irreducible.

Remark. An reducible matrix has the form
Air A
0 Ay

— The equation system separates in two parts.

Example:

1. Poisson FD:
diagonal: Qi = %
if 7 is N,S,W,0 of j

1
non-diagonal:  a;; :{ ()Eg else

e A is not strong diagonal dominant, but weak diagonal dominant.
To see this, consider a point ¢ such that j is N of ¢. Then

0 —% if 4 is S,;W,0 of j
* 0 else

e A is irreducible.
Proof: If A is reducible, then, {1,2,...,n} is the union of two
different sets of colored points, where one set is J. Then, there
is a point j € J such that one of the points i=N,W,S E is not
contained in J, but i is contained in {1,2,...,n}. This implies
a;; # 0. = contradiction.



2. Convection-Diffusion-Equation

e centered difference

4
|aii| = p
Syl = Aa Lo (L by L
L C R R VT N YRR
i#j
Gl
~ Th*2h [R* 2k
Thus, |ai| = 32, .; lai;|, if and only if o — 2= < 0.
This shows |a;| > >~, . |a;;l, if and only if h < 2
e upwind
4 b
laii| = ﬁ—i_ﬁ

v

4 b
St g\%\ for all h,b >0
17]

v

e Conclusion
central: A is weak diagonal dominant if and only if h < %
upwind: A is weak diagonal dominant.
A is irreducible in both cases.

Definition 3. Let A be an n X n matriz. Consider n points P, ..., P,.
Draw an edge between R,—jjj if a;j # 0. The directed graph of A is this set
of points P, ..., P, with these edges PZ,—ID]

Definition 4. A directed graph is called strongly connected, if for every pair
of disjoint points PZ, P; there exists a dzrected path in the graph. This means
there exists a path P; P,l, P PZ3, . PZT \Bi, such that Py, = P; andP;, = P;.

Theorem 1. A n x n matriz A is irreducible, if and only if its directed
graph is connected.

Proof. Let A be irreducible.
Let 1 <ig < n be an index. Let

J :={j | there is a directed path from P;, to P;.}.

J is not empty. Otherwise, a;, ; = 0 for every j and choosing J = {ip} would
lead to a contradiction to A to be irreducible. Let us assume J # {1,2,...,n}.

10



Then, a;; = 0 for every i € J and j ¢ J. Otherwise, there is a connected
path from P;; to P; and to P;.

The above property of J is a contradiction to A irreducible.

Let the directed graph of A be connected.

Assume that A is reducible. Then, there are disjoint sets J,I such that
a;; = 0 for every i € I,j € J. Let P, P;,, P, P;,, ..., P, P; be a directed
path from iy € I to i, € J. Then, there must be a index s such that
is—1 € I and i; € J. This implies a;,_, ;, # 0. This is a contradiction to the
properties of J and I. O

11



1.5 FE (Finite Element) Discretization

Definition 5. 7 = {T4,...,Ty} is a conform triangulation of Q if

o« 0= Uf‘il T, T; is triangle or square
o T;NTj is either

— empty or
— one common corner or

— one common edge.
Remark.

e Let us write 7}, if the diameter hp of every element T € 7, is less or
equal h:

hr < h.
e A family of triangulations {7} is called quasi-uniform, if there exists

a constant p > 0 such that the radius pr of the largest inner ball of
every triangle T € 7}, satisfies

pr > ph.
Definition.

o Let Ty be a triangulation of Q). Then, let Vi, be the space of linear finite
elements defined as follows:

Vi, = {veCo(ﬁ) ’U‘T

is linear for every T € TH}

0
Vi = VN Hol(Q)

U|T 1s linear means that U|T(aj,y) =a+ bx + cy.

o Let Q=]0,17%, h= 21 and

Th:{[z‘h,(iﬂ)h]x[jh,(j+1)h] i,j:O,...,m—l}

12



The space of bilinear finite elements on § is defined as follows

Vi = {v c C'(Q) v|T is bilinear for every T € TH}

U|T 1s bilinear means that U|T(az, y) = a+ bx + cy + dxy.

e Let V), be the space of linear or bilinear finite elements on T;, and N,
the set of corners of Ty,. Then, define the nodal basis function v, € Vj,
at the point p by:

vp(a:):{ (1) gi;g for x € N,

Observe that

pGNh}

This means that every function up € Vi, can be represented as

up = Z ApUp

peEN}

Vi, = span {vp

Finite Element Discretization of Poisson’s equation:

—Au = f
u‘m =0
0
Thus, for every v, €V, we get:
—Auvy, = foup
J

0
/ Vu Voy d(z, y) + / O () = / fon d(z,y)
Q Fan Q

<~

0
/ Vu Vop dz,y) = / Fond(z,y)  Von €V
Q Q

0
FE Discretization: Find u; €V}, such that

/ Vu Vo, da,y) = / fond(ey) Vo, €V @)
Q Q

13



Stiffness matrix.

ap-q = /vip Vvq d(l’,y), fq = /vaq d(l’,y)

0
A = (ap,q) 0 Nip=N,NQ
P,qEN},
up = Z Ap Up
0
pe-/\/h

Then, (2) implies

0
Z )\p/ Vo, Vg d(z,y) = / [ g d(z,y) for all ¢ eN},
- Q Q

PEN},
(%
0
S Napg = fo Vg €N,
PE/\(}h
(2
Up = ()‘p) 0
AU, = F, where PEN,
Fy = (fq) 0
qEN,

The matrix A is called the stiffness matrix of the FE discretization.

14



1.6 Discretization Error and Algebraic Error

Let || - || be a suitable norm. Then, ||U, — U]| is called discretization error,
with respect to this norm.

Example 1. Poisson on a square

e FD, u € CYQ), then

|Uh — Ul (q,) = O(h?)
o FE, u € H*(Q), then

U =Ull2) = O(h?)

|Un = Ullgry = O(h)

Problem. The solution u;, cannot be calculated exactly, since Ly, (or A) is
a very large matrix and

AUy, = Fy,.

Therefore, we need iterative solvers if n > 10.000 (or n > 100.000). By such
an iterative solver, we get an approximation a of up. ||an — upl| is called
algebraic error.

1.7 Basic Theory for LInear Iterative Solvers

Let A be a non singular n x n matrix and b a vector, b € R".

Problem:
Find 2 € R" such that A z = b.

A basic approach to construct an iterative solver is to use a decomposition
A=M—-N

where M is a matrix, which is easy to invert (which can be inverted by a
small number of operations). Then we get

Mz = Nx+b

N3
x = M 'Nz+ M

15



By this formulas, we get the algorithm:

Algorithm:
Let 2° be the start guess. Then
oF = MIN 2F + M1

Let us write the iteration formula as
oF = C 2k + 4,

where C' = M~'N and d = M~'b. This is the general form of a linear iterative solver.

Theorem 1. z* converges to x for every start vector z° if and only if
p(C) <1
Here p(C) is the spectral radius of C,
p(C) = max {|A||\ is eigenvalue of C'}

(Observe the eigenvalues may be complex.)

Furthermore, the following convergence result holds:
[la* — || < [|CH] ||2° — =] (3)
If C' is a normal matrix, then
k
2% — [l < (p(C))* [[a” - ]2 (4)

There exist start vectors z°, such that the equal sign holds in the above
inequality.

Proof. By z*! = C 2¥ 4 d and 2 = C z + d, we get
ka—x:C(xk—x)
This implies
b — = CFa® — 1) (5)

This implies (3).
Let us assume, that 2° —z = e is an eigenvector of C' with eigenvalue A such
that

(Al = p(C)

Then, we get
la* — || = p(C)F||2° — x|

This shows:

16



e if p(C) > 1, then z* does not converge to x.

e the equal sign holds in equation (4).
Now, let us assume that 2 is a general start vector. Let us assume p(C) < 1.
We want to prove limy_,, ¥ = z. By (3), it is enough to prove
[|Ck[| — 0 for k — oo

Since all norms are equivalent in a finite dimensional vector space, it is
enough to show this for the || - ||2-norm.

1. C is normal. Then, there exists a unitary matrix 7" such that
T'DT=C

where D = diag(A1,...,\,) is the diagonal matrix of eigenvalues.
Then, we get

IC*llz = |7~ DTl < [|T7 |2 [IT ]2 [|D*[|2 = [|D¥[|2 = p(C)*.
This shows (4).
2. C is a general matrix. Then, we have to apply the Jordan decomposi-

tion
T-'Jgr=C

Then, we get
ICHIE< T

Thus, it is enough to show
Jim[|7%][ =0
It is enough to study an Jordan block
J=AE+N,

where F is the unit matrix and

N = ' ' S TOWS

17



Since p(C) < 1, it follows |A| < 1. A short calculation shows

IIN?|| < 1 for all 4

N° =0

Since N E = E N it follows:
3 ks o
14 = 1Y (V) o<
=0
s—1
(1)
)

=0

s kS AT =
= (sA)E NS0 for k — oo

IN

7!

1)s k+1 1\° 1
%:<1+E> /\g’\%<1 for large k

\E: <1<:> kD ki)

1.8 Effective Convergence Rate

In several applications one would like to know, how many iterations s are
needed to reduce the algebraic error by a certain factor. Let us assume that
1

this factor is 5. Thus, we would like to know how many iterations s are

needed to obtain
1
la* ~ ] < 5lle® ~ .
To this end , let us assume that there is an estimation
l2* — || < p*[a® — z]].

In case of a linear iteration method with symmetric iteration matrix C, we
can choose p = p(C).

Obviously,
1
_In(3)
In (p)
since p(C)* = 3. s and p(C) are not the effective convergence rate. To

estimate the effective convergence rate , the computational amount has to

18



be included. Let Op the number of operations for one iteration. Then, the
effective convergence rate is:

Op In % Op
Gefpi=s- = - —
number of unknowns In(p) n

Example 2. Gauss elimination

Gefy = O(n?)

19



1.9 Jacobi and Gauss-Seidel Iteration

The Jacobi-iteration is a ,one-step*“ method. The Gauss-Seidel-iteration is
a successive relaxation method.

1.9.1 Ideas of Both Methods

Relaxation of the i-th unknown z;:
Correct xfld by x**“ such that the i-th equation of the equation system

A-x=b
is correct.
Jacobi-iteration:
,,Calculate the relaxations simultaneously for all ¢ =1,...,n"
This means: If 29 = zF then
let l,k-i—l — phew
Gauss-Seidel-iteration:
,,Calculate relaxation for ¢ = 1,...,n and use the new values
This means: goldl = gk
Iterate for i = 1,...,n:

Calculate 2™ by relaxation of the i-th component
Put xold,i—l—l — wnew,i
xk—i—l

= phnew,n

Remark.

e Jacobi-iteration is independent of the numbering of the grid points

e The convergence rate of the Gauss-Seidel iteration depends on the
numbering of the grid points

20



Example 3. Model problem, FD for Poisson

N
v M o X
new _ L ( old | old , .old | . old
X X X
X X X

X X X red-black Gauss-Seidel

A four color Gauss-Seidel-relaxation is used for a 8-point stencil

9 179 o
0—A D—A 18-
-1 -1 -1

- better relaxation property
X—0O X—O - after relaxation of one color all equations at those
\ \ \ \ points are correct

Relaxation for the Convection-Diffusion:
A convection-diffusion problem is a so-called singular perturbed problem.
To see this write the convection-diffusion problem in the form:

—eAu—i-%:f , €>0
or

21



€ — 0 is the difficult case.

(Hackbusch’s) rule for relaxing singular per-
turbed problems:

Construct the iteration such that it is an exact
solver for e =0

For € = 0 we get the stencil (for upwind FD):

|
=
OO
o

Thus a Gauss-Seidel relaxation with a numbering of the grid points from
left to right leads to an exact solver

1 2 3
4 5 6
7 8 9

This can be done also for more complicated convection directions. Excep-
tion: Circles!

1.9.2 Description of Jacobi and Gauss-Seidel Iteration by Matri-
ces

Let A be a n x n matrix. Decompose A=D — L — R =

* 0 ... 0 0 O ... 0 0 = L. %
0 * . : * 0 : 0 0 :

.o%x 0 0 0 o0 %
0 ... 0 = * * 0 0 0

Let 2o € R? be a start vector.

Jacobi-iteration

22



Dl‘k+1—(L—|—R)$k:b
$k+l :D—l (L—I—R):L’k—I-D_lb

Decomposition: A=D—-(L+R)=M-N
Thus, the iteration matrix is

CJZD_l(L—l-R)

Gauss-Seidel-iteration

(D—L)z"*' —RaF =b
" =(D—-L)'Ra*+ (D -L) b

Thus, the iteration matrix is

Cas = (D — L)_l R

23



1.10 Convergence Rate of Jacobi and Gauss-Seidel Iteration

1.10.1 General theory for weak dominant matrices
1.10.2 Special theory for upwind FD
1.10.3 FE analysis, variational approach

1.10.4 Eigenvector, eigenvalue analysis: ,, Fourier-analysis®

1.10.1 General Theory for Weak Dominant Matrices

Theorem 1.

1. Assume that A is weak diagonal dominant and irreducible. Then, Ja-
cobi and Gauss-Seidel iteration converge.

2. Assume that A is diagonal dominant. Then, the following estimate for
the convergence rate holds:

p< Z 1
e \au\ a3 <

Proof. Let x be an eigenvector of C' with eigenvalue A, where |\| = p(C).
Furthermore assume ||x||» = 1.
Assume that A is weak diagonal dominant.

e In case of the Jacobi iteration: C = D~!(L + R)

1
[(C)i| < @Z |aij| || < | Zlazgl lzll <1 (6)
JFi

|u

This shows ||[Cz|lec < 1. Since x eigenvector with eigenvalue A, it
follows

1> |C2loo = [|Az]|oc = |Al = p(C)

e In case of the Gauss-Seidel iteration:

C=D-L 'R=(D-L)C=R=C=DYLC+R)

24



Let us prove by induction |(Cz);| <1fori=1,...,n

1
(Call < T d S leullCoyl+ Slasllaslp (0
v i<t J>i
< LIS eyl b <
= aal V& T
JFi
Analogously, we get p(C) < 1.

If A is diagonal dominant, then similar calculations show

D laglp <1

JF

[(Cx)i| <
|aii]
This implies

[|Cx||eo < max

Z|aw| <1

K ”’ j#i

D ayl <1

| “‘ j#i

which shows
p(C) < Max o—

This completes the proof of 2.

Let us assume that A is irreducible and weak diagonal dominant. Let
J={ieN[1<i<n,|z| =1}

Proof by contradiction. Assume p = 1. Then for all i € J, the equal signs
hold for all inequalities in (6),(7). This shows for every i € J:

la;j| =0 ifj¢J (8)

(j ¢ J means |z;| <1)
By assumption, there is a i such that the equal sign does not hold in (6),(7).
This means

1> [(Ca)ig| = |pwiy| = |2i |
This shows that J is a real subset of {1,...,n}. J is not the empty set,
since ||z]|co = 1.
This is a contradiction to A irreducible. [

Example. By the examples in 1.4, Gauss-Seidel iteration and Jacobi itera-

tion converge for Poisson problem and convection-diffusion problem and FD
upwind. But: no estimation of the convergence rate.

25



1.10.2 Special Theory for the FD-Upwind

Definition. Let us assume, that ¢ > 0. Then define the upwind norm
lellupg = max gz

Theorem 2. Assume that

\az‘j\qi_j 1
j<i il
Then,
> ‘ﬁ i—j
p(Cas) < max e
1 - 2j<i a_g q7
Proof. Let us assume, that
2] |up,g = 1 = |q2332| <1 Vi

Assume, that x is eigenvector of Cgg with eigenvalue A such that |A| =
p(Cgs). Choose i such that |g'z;| = 1. Then Cgs = (D — L) 'R = Cgs =
D YLCgs + R)

1
= m Z|a2]||(CGS$))]| —I—Z|aw||3:]| <
i1 i<i e
1
=< |aii] Z‘aiju()\w))j\ +Z!a,~ij]~\ <
1 i<i =
1 iy .
< 2 el Ve + 3 el
i1 i<i =
\

|aij |ag|
/\ 1— z 7 J 2 7
A Z| ! ZW
This completes the proof. [J

Example. FD - 1D convection diffusion

'+ b = f on [0,1], b>0
u(0) =u(l) = 0

26



T Ak s(2eRa (20

8.8 [

8.6 [

8.4

8.2

Figure 1: Estimation of the spectral radius of upwind Gauss-Seidel in 1D

Stencil of upwind discretization

where s = bh. Normalized coeflicients

a;; = 2+ s
-1 ifj=i+1
ajj = —(1+s) ifj=i-1
0 else

Let us number the grid points from left to right. Then, for —1 < s, we get

a1 1
1 o 1
—ree 2Hsa— i

!
fl@) =q— a2, f(q) =1 —2q42 = 0= o = 1255 = f(qo) = 1222,

Observel—%iiq!q 0 %>0 For —1 < s:
1 1 1+s

C < =4
1609 = e T ey

. 1+s

2ty ~ 0

1+ s

— =1

(2—|—S)2 s=0

1

EET N

(2+8) s=—1

27



The function 4 (2 - 3)2 is depicted in Figure 1.

2D case

1.5 lup. a0y := max |42,
Theorem 3. Assume that

<1
— lagig), )l
Then
Z(kl)#. ) ki Qig) (kD) | ik
’ %,7),k=2t | a I i
p(Cas) < max (5,),5,4)
@) 1=3 L)) | gi—k
k<ilag,j), 6.5

Example. FD - 2D convection diffusion

ou

—A b— =
u+ o f
Stencil:
-1
1
72 —1-—3s 4—1—13 -1

Aig)Gg) = 4+8

Rl £ D
a(’lv])v(kvl) - —(1 =+ S) lf k < Z

Let us number the grid points first from left to right and then from down
to up. Then, for —1 < s, we get

. 2+
- Da+s)  1_

+ —1
Numerically, one can calculate an optimal parameter ¢ such that Tt D)

_a(+s)
4+s
is as small as possible. The resulting estimation of the convergence rate is
depicted in Figure 2.
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Figure 2: Estimation of the spectral radius of upwind Gauss-Seidel in 2D
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1.10.3 FE analysis, Variational approach

We want to solve the following problem:

Find up, € Vj such that

a(up,vp) = f(vn) Vop € Vj 9)

where V}, is the space of bilinear finite elements.

For example,

a(uh,vh):/Vuthhd(x,y) and f(vh):/fsvhd(a:,y) (10)
Q Q

Relaxation

Let (V}) be the nodal basis of V},. Now what means a relazation step?

P,
Let u‘;fd be an old approximation. Then, let u € R such that,
a(u' + pv,,vp) = f(vp) and let (11)
e =y (12)

This is the relaxation at the grid point p. Furthermore, we can calculate
in the following way:

1 O
b= oy (F) = ati,v) (13)
new O 1 O
i = vy () — aui ) (14)

Implementation by EXPDE
Let fs be the vector describing the right hand side and let

f(v) :/fsvd(m,y) and a(u,v) :/Vqud(m,y).
Q Q

The operator corresponding to a(v,v) is the Laplace operator. Now define
the variables as
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Variable f(grid);
Variable u(grid);
Variable f_s(grid);
Variable v(grid);

f=Helm_FE(f_s);
Now, for the Jacobi method, we get

nu = (f-Laplace_{FE}(u)) / Diag_Laplace_FEQ);
u = utnu ;

and for the Gauss—Seidel method we have

u = u + (f-Laplace_{FE}(u)) / Diag_Laplace_FEQ);

Lemma 1 (Variational approach). Let us assume that a(u,v) is symmetric
positive definite. Then
Find up, € Vy, such that

a(up,vp) = f(vg) forall vy, € Vy (15)
s equivalent to

1
up, € Vi, minimizes §a(vh,vh)——j1vh) for vy = uy. (16)

Proof.

Let us assume that uy, satisfies (15). Then, we have to show that

1
p— galun + pon, up + pon) = fun + pop) = hip) (17)

has a minimum at p = 0 for every vy, € V},. We achieve this by differentiating
(15).

Uhy UR) + a(up, vp) — f(vn)
= pa(vp,vp) + a(uhavh) - a(uhavh))
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By differentiating the above equation again, we get

W' (1) = a(vn,vn) = B (n) >0
Let us assume that uy, satisfies (16), then h(u) |,—o= 0 implies that a(us, vy) =
f(’l)h). [l

A similar calculation shows that the problem
Find g € R such that a(u$'d + pvp, vp) = f(vp)

is equivalent to

Minimize %a(u;’fd + pvp, uf + pvy) — f(ugd + pvy) for all p € R

Conclusion
A relaxation step is a minimizing step.

Gauss—Seidel minimizes %a(&h,ﬂh) — f(ay) in several directions. Therefore
divergence is very unlikely, if a(u,y) is symmetric positive definite.

Example 4. Let 7, be a triangulation of a given polygon domain. Then,
discretize Poisson’s equation by finite elements on this triangulation. A
Gauss-Seidel iteration with respect to the nodal basis converges. However
the corresponding stiffness matriz is not diagonal dominant in general.

Example 5 (Linear Elasticity). Let E > 0 and 0 < v < . Define the
symmetric derivative
1/ 0u; n Ou,
€i — =
K 2 al‘j al‘l

€11
€22
Du = €33
€12
€13
€23

and the matriz

1
_1_
¢ FE 14+v ’
0 1+v
1+v
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where E and v are physical constants. The bilinear form corresponding to
the problem of linear elasticity is

a:(H' Q) x (H'(2)® — R
(u,v) +— /(Du)TCDv d(z,y, z)
Q
Using suitable boundary conditions, this matriz is symmetric positive def-

wnite. Thus, Gauss-Seidel iteration with respect to the nodal basis on the
finite element grid converges.

1.10.4 Analysis of the Convergence of the Jacobi Method

Model problem : Finite difference discretization of the Poisson equation
Both, Gauss—Seidel and the Jacobi method, converge if the co-
efficient matrix Lj, of the finite difference discretization is

e weak diagonally dominant and

e irreducible.

Now, we want to estimate the convergence rate in more detail
for Poisson’s equation.

To solve the linear system Az = b, the iteration matrix of the Jacobi method
is C; = D™Y(L + R). Then, for the model problem, we have

h? h?
A=D-L-R= C;j=D"YD-A) = —D‘1A+E+E—ZA =E—— L
(18)
It follows from exercise (1.2) that
h2
Ciens = (1 _ Z“ﬂ) e (19)

Here A, ;, are the eigenvalues

4 h h
Mp = ( (7) + sin? (%»

forv,pu=1...(m—1), where h = % Thus, the iteration matrix C; has the
eigenvalues

()= 1= i (T ) < sn (720 (20)
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Here, J denotes the Jacobi method. In case of v = u we have,

(p1),,, = 1—sin” <%Vh> —sin? <7T—;h> = 1-2sin? <%Vh> = cos(mvh) (21)

The following graph depicts the eigenvalues (py),, with respect to the pa-

rameter mvh in (21).

v

0.5 4

-0.54

T2 T

n(vh)

= Bad convergence for high and low frequencies.
=—> Good convergence for middle frequencies.

In particular, one can show that the spectral radius of the iteration ma-
trix is

p(C) =1 - O(h?) (22)
Now, the effective convergence rate for the Jacobi method is
ln(%)
In(p(c))

= The convergence rate for the Jacobi method (O(n)) is better than that
of the direct solver the Gauss elimination (O(n?)).

Gerp = sOp(c)/n = % = O(h™2) = O(n). (23)

1.10.5 Iteration Method with Damping Parameter

Let us assume that ¥ — 25t1 is an iteration. The iteration can be written

as xF — 2F + (21 — 2F). The term (zFT! — 2¥) can be treated as a

correction term. Now a damped iteration is 2% — w(z**! — z*), where
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e w is called the damping factor or the relaxation parameter and w €

10,2].

e w > 1 is called over relaxation.

e w < 1 is called under relaxation.

SOR(Successive Over Relaxation) method is obtained by performing
the Gauss-Seidel method with over relaxation. But SOR has disadvantages

for e.g like,

e It is very difficult to find w for certain class of problems.

1.10.6 Damped Jacobi Method

The Jacobi method with relaxation parameter w =1 is
k+1 -1 k -1
xJZcobi =D (L + R)xJacobi +D7b
The Jacobi method with damping parameter w is

el = kw4 R)z + D7 — o)
= {E(l-w)+wD HL+R)}ak+wD™ b
— C,=E(1l-w) +wD YL+R)

This is the iteration matrix of the damped Jacobi method.

1.10.7 Analysis of the Damped Jacobi method

The iteration matrix of the damped Jacobi method can be written as

Cjo=FE(1—-w)+wD ' (D-A)=E—-wD 'A=F — w%A (27)

Furthermore, by (26), the iteration matrix of the damped Jacobi method is

Cjow=[F+wC;—wE]=(1-w)E+wCj

(28)

where C} is the iteration matrix of the Jacobi method. The eigenvalues of
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the iteration matrix of the Jacobi method are

- () ()

Thus, the eigenvalues of the iteration matrix of the damped Jacobi method

are
h h
(Prw),, =1-w [sin2 <%> + sin? (%)] (29)

Now, for v = u, we have

(1) =120 fsin? (1) (30)

Thus, if w = %

(prdy =1~ s (751 (1)

The following graph depicts the eigenvalues (pj.),, With respect to the

parameter mvh in (31).

v

0.5 4

-0.54

T2 T
m(vh)

This shows that the damped Jacobi method with w = % has the properties

e Bad convergence for low frequencies.

e Good convergence for high frequencies.

The Gauss—Seidel method has similar properties as the damped Jacobi
method with w = %
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1.10.8 Heuristic approach

X X X B
X X X X
X X X X
A X X X

By single step methods we require O(y/n) = O(h~!) operations for a cor-
rection in B due to a change in A. The idea is to achieve faster correction
by using a coarser grid.
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2 Multigrid Algorithm

2.1 Multigrid algorithm on a Simple Structured Grid

2.1.1 Multigrid

O O OO0 O0O0O0

O O OO0 O0OO0O0 O o o

O O OO0 O0OO0O0

O O O O O O O O ] ] o

O O OO0 O0OO0O0

O O OO0 O0O0O0 O O O

O O OO0 O0O0O0

Figure 3: 1=3 Figure 4: 1=2 Figure 5: 1=1

Let [ be the number of levels such that [,,,, € N and

forl=1...1u-
Let us assume that a PDE (e.g. Poisson’s equation) is given. Discretize this

equation by the grids €} := Q, where [ = 1,...,l,34,. This leads to the
discrete matrix equations

Az =y (32)

where by, z; € S; and S; = R™. The matrix A; is an invertible matrix of
order n; X ny.

Let an iterative solver for (32) be given as

xlkH = Clrela:cwlk + Niby = S“,l (xf) (33)
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2.1.2 Idea of Multigrid Algorithm

Let 7; be an approximate solution for (32). The algebraic ¢; is defined as

€ = x; — Ty. (34)

Now €; has to be calculated in order to find x;. The following residual
equation is valid for ¢,

Ajep = (35)

where r; is called the residual and is given by

r=b — Az (36)

The aim is to find an approximate solution of the residual equation by solving
the equation approximately on a coarse grid €2;_;. To this end, we need the
following matrix operators

e Restriction operator

[l =1, Sy — S;_1

e Prolongation operator

Ill_l . Sl_l — Sl
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2.1.3 Two—grid Multigrid Algorithm

Two—grid Multigrid algorithm with parameters v; and v,

Let xf be an approximate solution of (32) and v; and v the parameters of
pre—smoothing and post—smoothing.

1. Step 1 (Pre-smoothing)

zpt = S, zf (37)

2. Step 2 (Coarse grid correction)

Residual calculation :

r=b; — Alﬂjf’l (38)
Restriction :
riy =1,y (39)

Solve on coarse grid:

el = Ay (40)
Prolongation :

a=1I_1e1 (41)
Correction :

:L"f’2 = azf’l +e (42)

3. Step 3 (Post-smoothing)

k,2
it = Sy (x77) (43)
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2.1.4 Restriction and Prolongation Operators

X X X X X X X
X O X O X O X
X X X X X X X
X O X O X O X
X X X X X X X
X O X 0O X O X
X X X X X X X

Figure 6: O—Coarse grid point and X-Fine grid point

Let us abbreviate x;; = ¢, | jn,_,) and set z;; =0fori=0or j =0 or
T =1my_10r j=m_q.

2.1.5 Prolongation or Interpolation

The interpolation or prolongation of z; ; given by w; ; = {Izl_l(w)}(ihl,jhl) is
defined by the following equations

1
W24,25 = 5961'73' (44)
1
Woit1,2j = Z(xi,j + Zig1,4) (45)
W24,2j+1 = Z(l'i,j + :L"z',j+1) (46)
1
W2i41,2j+1 = 5 (Tij + Tit1j + Tij+1 + Tiv1j+1) (47)

8

2.1.6 Pointwise Restriction

Piecewise restriction is rarely applied and defined by

{jl l_l(l')}(ihlflvjhlfl) = T2,25 (48)

The quality of this restriction operator is not very good.
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2.1.7 'Weighted Restriction

Weighted restriction or full weighting is defined by

_ 1

{[zl 1($)}(ihl,1,jhl,1) = g(x2i+1,2j+1 + T2i—1,2j4+1 + T2i4+1,2j—1 + T2i—1,2j—1) +
Z(x2i+172j + X912 + T22j41 + T2i2j-1) +
1
5 2i.2j

Remark

1-1\T !
(L") =1, (49)

2.2 TIteration Matrix of the Two—Grid Multigrid Algorithm

Theorem 4. The iteration matriz of a two—grid Multigrid algorithm is

U1

Cltwo_grid _ (Clrela:c) 2 (E I (A l_lAz) <Clrela:c) (50)

Proof

The coarse grid correction is

:Elk’2 = :Elk’l + Ill_l(Al_l)_lfl l_l(bl — Al:Elk’l)

- <E — I (A7 l_lAl> e I (A) T

Therefore the iteration matrix of the coarse grid correction of the two—grid
Multigrid algorithm is
(B= s )

A short calculation shows that the iteration matrix of two linear iteration
algorithms is the product of the iteration matrices of these algorithms.
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2.3 Multigrid Algorithm

Multigrid algorithm MGM(mf,bl,l) with parameters (vq,v2,u)

Let xﬁnw be an approximate solution of (32). Then,

is the approximate solution of (32) by the multigrid algorithm with an initial
vector zf . The multigrid algorithm can then be described as

lmaz

If | = 1 then MGM (zF, b, 1) = A; ',
If I > 1 then
Step 1 (v1-pre-smoothing)
x?l =S, €]
Step 2 (Coarse grid correction)

Residual : r; = b — Alazf’l

Restriction : rj_1 = I =1y

Recursive call:

0 _
e_,=0
fori=1...pu
ef_l = MGM(efj,rl_l,l -1)
-1 =€),

Prolongation : ¢, = Ill_lel_l

. k.2 k.1
Correction : x;" = ;" + ¢

Step 3 (va-post—smoothing)

MGM (af, by, 1) = 8,2 (2,7

The algorithm p =1 is called V-cycle. The algorithm p = 2 is called
W-cycle.

Homework: Describe the multigrid algorithm as a finite state machine,
where every state is smoothing step and an operation is a restriction or
prolongation. Then, the finite state machine of a V-cycle looks like a “V”
and the finite state machine of a W-cycle looks like a “W”.

Let N be the number of unknowns. The computational amount of the
V-cycle and W-cycle is O(N).

43



The theory of multigrid algorithms shows that there is a constant p such
that the convergence rate of the multigrid algorithm satisfies

p(Crcamy) <p <1

independent of [. Thus, the effective convergence rate of the multigrid
algorithm is:

Gy (MGM, 1) = O(1)

for p=1,2.

2.4 Multigrid Algorithm for Finite Elements
2.4.1 Model Problem

Let 74, - -+ , 7, . be a sequence of quasi-uniform subdivisions, where
h; = 27! such that

Vi, TV, (This means Vb, C V3,)

i+1

2.4.2 Example

Every triangle is divided into four triangles
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We want to solve the problem

Find Up, € thmaz such that
aun,,, vn) = flon) ¥V v €V (51)

To this end, let us study all problems of type

Find uy, € V},, such that
a(uhl,vh) = fl(’l)h) Y Vp € Vhl (52)

forevery I =0, - , lmaz

where f; is a suitable coarse grid right hand side.

2.4.3 The Nodal Basis

Let (vf)keﬁh be the nodal basis for V},,. Now (52) can be defined in matrix
form as follows:

Aga; = b (53)
where

Ai = (ar))jeq, o = a(v),v]) (54)

zi = (@)eq, (55)

bi = (V)geq, (56)

and the solution vector uy is given by

Up, = Z zhol (57)

2.4.4 Prolongation Operator for Finite Elements

The natural inclusion is the prolongation operator

u € Vy i
!
u € Vh

i+1
To implement this operator, we have to describe this operator in a matrix
form.
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By Vi, C Vh,.,, there are coefficients v such that
k/
Yy Z Yk ’Uz+1 (58)
k
Thus, we get

un, = Yo afof =) 0N vl (59)
k! Kk
= Z(Zw ) (60)

Now the matrix version of the prolongation operator is

1), = (Zenk'sl),

L= (’Y;fl)(k,k')

2.4.5 Restriction Operator for Finite Elements

Observe that F; € (V3,.)'.
This means that F; : Vj,, — R is a linear mapping. The natural inclusion
is the restriction operator.

Fi—l—l S (th+1)

l
Fy e (Vhi)/
Fi(w) = Fii(w) V weW,

The matrix version of the restriction operator can be obtained as follows

b?, = Z’ykl 2+1 (61)
= Z ’Yk/bz-i-l (62)

b = (vk ) (63)
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2.5 Fourier Analysis of the Multigrid method

2.5.1 Local Fourier analysis

A multigrid algorithm consists of several parameters that have to be
properly tuned such that the algorithm converges rapidly.The parameters
are,

I : recursion parameter.
vy, V2 : smoothing parameter.
Sip, : choice of smoother.
I ll_l . choice of the prolongation operator.
1 ll_l . choice of the restriction operator
A; for [ <lmer : choice of the stiffness matrix on the courser grid.

(A;,,..is determined by the discretisation.)

The following simplification is made in order to analyze the convergence of
the two—grid method more easily and exactly.

Omission of the boundary conditions — transition to an infinite
dimensional grid

Instead of the finite dimensional grid

L . o . 1
Q;il = {(]1h7]2h7"'7]dh) | ]17]27“‘7]6[6{07"‘7%}} (64)

we apply an infinite dimensional grid

oo d

Q h:: {(j1h7j2h7...,jdh) ‘ j17j27"'7jd GZ} (65)

The operators A;, I ll_l, S1.p, have to be extended to the infinite
dimensional grid in a suitable manner.

Remark
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e The operators A; etc. are stencil operators, e.g a nine point stencil.

e The operators A; etc. depend on the spatial coordinates.

Then, we define the operators on the infinite grid as follows,

Let Qfl be a stencil operator on the grid Q;ll. For every inner
point zq in the grid Qi of the stencil S(x¢),a corresponding

oo d
stencil operator (), is defined.
Example

Let d = 1. The stiffness matrix obtained by the finite difference

discretization of the operator —di;g on the grid Q,ll is

2 -1
-1 2 -1
-1 2 -1 1
A = . . 3 (66)
-1 2 -1
-1 2
The operator on the infinite grid A 5 is now
oo 1 1
n= -1 2 -1 (67)

which implies

oo 1 1 oo 1
A p(u)(z) = (—u(z — h) + 2u(z) — u(x + h)) 2 Vee Q, (68)
By the extension of the operators on the infinite dimensional grid, we can

construct a two—grid method on the infinite dimensional grid Q Z. To
analyze the convergence of the two—grid method, we need to know the
iteration matrix of the method. By Lemma 3, the iteration matrix for the
two—grid method is

(chete) ” (Bn — s (Am) " 1f 4y ) (C5etee) " where H =2h.  (69)
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where,

C’};d‘”’ : iteration matrix of the smoothening step.
By : extended unit matrix.
1 ?I . extended prolongation operator.
1 ,ff . extended Restriction operator.
A, Ag : extended stiffness matrices on the coarser grid.
Example
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The operators for d=1 are as follows.

. . . .
Ay, = —1 2 —1 3
1
A = -1 2 -1 —
" 4n?
1 21 1
H _ z
L) = 1 92 1 (07“ factor V3
1
2
1 1
= 11 — or factor
" 5 2 ( ! 2\/§>
1
Crelaz — %w l—w %w
w=3 1 1 1
= 1 2 1

We allow these operators to act on the following functional spaces.

x
= 10— 0o —n1<f<
\% {ewp(z@h)xe N Z | 71_0_77}
z
= 0—) o —r<h<
Vi {ewp<19H>m€Q d | 71_0_77}

For reasons of simplicity, let us restrict ourselves to the 1-D case.
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2.5.2 Definition

The harmonic frequency of exp (20%) is exp <z(§%) where,

= f@—7 for 6>0
= f+7 for <0

T D>

2.5.3 Local Fourier analysis of the smoother
Definition

The functions exp (19%) are the eigenfunctions of the iteration matrix C of
the smoother Swith eigenvalues p(6). This implies that

C'exp (z@%) = u(0) exp (z@%)

We then have the smoothening factor of S as
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3 Gradient Method and cg

3.1 Gradient Method

Let A a symmetric positive definite n x n matrix and b € R". Find 2 € R"
such that

A-x=b (77)

Theorem 5. The solution of the linear system (77) is solution of the
minimization problem:

1
min 27 Az — b'x (78)

PISIING

Proof. Let 0 # v € R" and A € R. If x solves the minimization problem,
then
il(z +20) T Az + M) = b7 (x + W) =0
d\ 2 A=0
1
= §(UTA(£ + 2T Av) —bTv =0
= vl Az =0T VoeR"= Az =10

Let Ax = b and v € R". Then, we get
1
5(35 + )l Az 4+ v) = bT (z +v) =
1 1 1
= 5(35 +0) b+ §UTA?} — b (x +v) + §xTAv

T 1 T 1.7
=—v Av—=(z + + =
5V Av 2(:13 v)'b 2b v

1 1
= §UTAU — §$Tb = minimum at v =0

Gradient method

1. Choose direction for seeking

dk = —Vf(xk),

where f(xg) = %:E{Aﬂ:k — bTxj,. This implies
dp = b— Axy, (79)
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2. Choose oy, € R, such that f(xgy1) is minimal, where
Tht1 = Tk + agdy
Theorem 6. «y of the gradient method can be computed by

_ dfd,
T Adj,

Qg

Proof.

d 1
dTékﬂxk + oppdi) T Ak + agdy) — b7 (g, + agdy) = 0

1
5(d{ Az, + L Ady,) + apdt Ady — b7 dy, = 0
—dFdy + apdl Ady, = 0

dl dy
= =
T Ady,

3.2 Analysis of the Gradient Method

Let z* the accurate solution of
1
flz)= §:ETA3} —b'z — minimum

This implies
Az" =b.

The energy norm is defined by ||z||4 = V2T Ax.

Lemma 2. ]
f(x)Zf(w*)Jrglllt—w*lli
Proof.
* 1 T T 1 «T * T x
flz)— f(z*) = Ex Ax —b az—iaz Az +b 2™ =
1 1
= —aTAz — 2T Az + 2T Ax* =
2 2
1 *
= Slle—a"I
Lemma 3.

(di di)? }

* (12 *|12
T —x = |lzy —x 1-—
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Proof. By (79) and (80), we get:

fmpr1) = flag + oxdy)
1
= §(xk + akdk)TA(J}k + akdk) — bT(J}k + Oékdk)
1
= flaw) + agd (Azy — ) + S afdf Ady
_ 1 (df dy,)?
= Tt 3 g,
Now, by Lemma 2, we obtain
T 712
— 2¥]2 = _*2_(dkdk)
e =21 = e~ 27113~ gy

By di, = —A(z — x¥), it is
lanr — 2|5 = (A7 dp)TA(AT dy) = df A7y,

and so we get

T 7 32
*||2 ]2 (d, dr.)

Tkl — T = ||z — 1-—
s =1 = Nl =27 {1 = B
Lemma 4 (Inequality of Kantorowitsch). Let A symmetric positive

definite and k the condition number of A. Then, the following inequality

holds
(2T Az)(XT A 1z
(zTx)?

) (%\/E_l + %ﬁf

Proof. Let the eigenvalues of Aa=X\ <Ay <...< A, =band 3 = K.
By principal axis transformation, one gets

(@TAD)(XTAe) Y YNy -1
(T2)? = S 2)2 = Z/\iziz)‘i 2

v
257
Observe, that 3, z; = 1. Thus, P = (3", Mizi, >, A7 tzi) = 20 >, (N, \h) s

a convex combination.

where x = ). y;e;, e; are the orthogonal eigenvector, and z; =

Now, define
P o= (A\p)

>
I
&
A



A
P=(\np)

n —

A An

Figure 7: The convex function z — z 1.

Then, by Figure 7, we get
o= Z Az < O+ A — DAY

since the point P is below the line between (A1, A7) and (A,, A\ '). Now,

A+ A, — A _ )\1+)\n)2
AL <A<, M 4\,

completes the proof.

Theorem 7. The gradient method converges as follows:

k
k—1
low = a*lla < (57 ) llzo = a*l

Proof. Apply Lemma 2 to 4 and observe that

1 4 —1)2
- A (s

(%\/E+%\/E_1>2 (k+1)2 - (k+1)%

3.3 The Method of Conjugate Directions

If A is positive definite, then 27 Ay defines a scalar product. Let
do,dy,...,d,—1 be A-orthogonal (conjugated) vectors. Then, the set
{do,d1,...,d,—1} is a basis of R™.
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Observe, that any vector y € R™ can be written as:
n—1
y= Z agdy,
k=0
Lemma 5. Let xg € R™ be a start vector. Then, define
Tp1 = T + agdg

where

_ gt dy
T Ady’

Qp = gr = Az — b

This sequence leads to the exact solution after at most n iterations:

T, = A71h.

Proof. There exists «; such that
l‘* — Xy = Z Oéidi
i

Thus, we get
dY A(z* — o) = a;df Ad;
o — dZTA(x* —x0) _dZT(Aa;O —b)
Y dlAd; dl' Ad;
By induction we show that equation (82) holds.

k = 0 follows from the upper equation.
By z; = > jo; andy + o it is dZTAxi = diTAxo. Thus, we get

o — _d?(Al‘o — b)
f dl' Ad;

Lemma 6. x; in Lemma 5 minimizes

flx) = %JETAJJ — vl

on xg + Vi, where Vi, = span{dy,dy,...,dp_1}.

Furthermore, the following orthogonalization property holds:

dZTgk =0 fori <k.

o6



Proof. Let us show, that it is enough to prove (83).
Letde V= d g, =0

flar+d) = S+ Alw+d) = b+ d)

_ %(x{Axk + %dTAd +d" Awy — by — b7d

1
= §(x{Axk +d"Ad) + d" g, — b xy,

1
- 5(95{ Azy, + dTAd) — by,

= Minimization by d € V, not possible!
Proof of (83) by induction:

i=k—1:

—1Td,,
dg—lgk = d;ép_1 <A <517k—1 - Z%llwkiqu) — b> =0 ()
i<k—1 By zp — xp_1 = ap_1di_1, it holds

Gk — gh—1 = Az, — Tp—1) = g1 Adg—1

= d;fp(gk —gk-1)=0 fori <k-—1
By the induction hypothesis, (83) follows for i < k — 2.

3.4 cg-Method (Conjugate Gradient Algorithm)

The directions dy, . .., dk11 are computed by an orthogonalization of the
gradients:
dy = —go
di+1 = —Gk+1 + Brdk
T
Jp1Ady
where B = ——— if 0
B T Ady gk #

Theorem 8. If g1 # 0 then it holds

(I) It is dk—l 75 0

(II) Vi, = span[go, Ago, . - ., A¥ " go] = spanlgo, g1, - .., gr—1] =
span|dy,dy, ..., dg_1]

(III) The vectors dy,dy,...,dk_1 are pairwise A-orthogonal
(IV) It is f(x)) = min,ey, f(xo + 2)

gt gi 9;? 19k+1
V) ap = = Shtr
( ) k dz.ﬂAdk 3 ﬁk gggk
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Proof by Induction from (I) to (V)
k=1: obvious
k — k 4+ 1 : First observe, that

span[go, g1, - - -, gk—1] = span[dg, dy, . .., dg_1]
follows by di+1 = —gg+1 + Brdi. Thus,
Gk = gr—1 + AT — Th—1) = gp—1 + ap—1Adg1
implies that

gk € span[go, Ago, ..., A*go]
= Span[g()7gla o 7916] C Span[g()7 AgO7 .. 7Ak90]-

By induction hypothesis dy,ds,...,d_1 are linear independent. By (83),
the optimization property of xg, it is

df'gr =0 for i < k. (%)

Since g # 0, the linear independence holds for dg, ..., dr_1, g and
therefore we get that go, ..., gx is linear independent. Thus, it follows by a
dimension argument:

span(go, - - - , gx] = span[go, Ago, - . . , A¥ 1 gg].

This completes the proof of (II). Since dy_1, gi are linear independent, it
follows dj, # 0, (I). Now, we proof (III):

df Ady = —df Agy + Br—1d] Ady,y
By the construction of j_1, the orthogonality (III) holds for i = k — 1:
d¥ Ady, = 0.
For ¢ < k — 1 the induction hypothesis dZTAdk_l = 0 implies
d] Ady, = —d Agy
Since Ad; C spanldp,...,d;+1] and ¢ + 1 < k, (x) leads to
dF Ady =0

(IV) is a implication from Lemma 6. Proof of (V): dx, = —gx + Bk—1dk—1
and () imply that
ek gL

d{Adk d{Adk

. =
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Now, observe that ggﬂgk = 0 follows by (x) and (II). Thus, we get

8 — GinAdy _ giionAde  giy (9ri1 — 96) _ ek
dF Ady 9E 9 9r 9 9k 9

To implement the cg-algorithm in an efficient way, we apply (V) in
Theorem (8). Furthermore, observe that

gk+1 = Az + agdy) — b = g + ap Ady,
and let us introduce the auxiliary vector

h = Ad.

cg algorithm

0

x =z
=Axz —b
8o S
if e stop
d =—g
recursion: k=0,1,...
h = Ad
oo 00
dTh
r:=x+ad
g:=g+ah

01 =g" g(= 0pt1)
if 6 <e stop

0 (L k1
=g (=0=%2)
d=—g+pd

do = 01

3.5 Analysis of the cg algorithm

cg is a direct and an iterative method!

Lemma 7. Let p € Py be a polynomial such that

p(0) =1, Ip(z)| <r for all z € o(A)
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Then, for the cg algorithm, the following inequality holds
lzk — 2|4 < rllwo — 27|[a
Proof. Let ¢(z) = @ and y := xo0 + q(A)go. Then, by go = A(zo — x7),
we get
y—a"=x9—2" +y—mz9 =0 — 2" +q(A)go = p(A)(z0 — ")

= [ly = z%|[a < [lp(A)l]a - [lzo — 27[|a

Let w=> ; ¢jej, where e; are the orthonormal eigenvectors of A such that
Ae; = Aje;. Then, it holds
Ip(Awl|Z = ] ZCJP ey”A = Z/\ lejp(A;

2ZA le;? < r2||chey||A = r2||w|[

IN

A

= [lp(Alla < 7

This shows ||y — z*||a < 7||zo — 2*||4. By Theorem 8 and Lemma 2, we
conclude
lzx — 274 < rllzo — 274

Lemma 8. Let

T(w) = 5 [0+ Va1 4 (o Va2~ D]

for k=0,1,.... Then it holds

a) Ti(z) is a real-valued polynomial of degree < k.
b) |Tk(x)| <1f0r—1<:p<1

c) Ty(x )_2(x+\/a:2 ¥ for x> 1.

d) Tjy(1) =

Proof. a) Using the binomial formula, one can see that the terms with
odd powers cancel. Thus, of T}, is a real-valued polynomial.

b) [Tx(z)| < 1 (|:L~ +ivI— 22+ |z — iV — x2|k) <1 for |z] < L.

c¢) and d) are obvious.

Remark: T}, is called Tschebyscheff polynomial. One can prove

Ty (z) = cos(k arccos x)
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Theorem 9.

—_

lzx — 27[|a <

k
iz msz( leo — 2”14
T (:i—%) VE+1

Proof. Let a,b be the extremal eigenvalues of A. Set

n ()
p(x) = T (ﬁif—g >
Then, p(0) = 1 and by b) in Lemma 8.
p(z) < L
W)

b—a

for every x € p(A). Furthermore, by Lemma 7:

* 1 *
ok —2%||a < [lzo — 2|
b+a
< (#2)
Furthermore, observe that
b+a r+1
b—a k-1

and

K+1 k+1)2 k+1+Vae  Jr+1
k—1 k—1 k—1 VE—=1

Now ¢) in Lemma 8 completes the proof.

3.6 Preconditioned cg Algorithm

Let A be a symmetric positive definite n x n-matrix and C' a symmetric
positive definite n x n-matrix, such that C'is an approximation of A.

Example 6. e (' is the diagonal of A .

o C is the tridiagonal part of A . Then, C™1 can be computed be a
L R-decomposition.

o C~ 1 is the result of a suitable symmetric multigrid algorithm.
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Instead of the equation
Ax =19

we try to solve the equation
C~ YAz = C™ ',

if C~1 A has a smaller condition number than A.

The problem is that in general C~!A is not symmetric positive definite.
Therefore, we apply the following Lemma.

Lemma 9. Define

(z,y)c == 2" Cy.
C~YA is symmetric positive definite with respect to (-,-)c.
This leads to the algorithm

precondition cg algorithm (bad version)

0

x =z
= C7 YAz —b)
do =g'Cyg
if o <e stop
d =—g
recursion: k=0,1,...
h=C"1Ad
do
“Tach
r:=x+ ad
g:=g+ah
5 =9"Cg

if 01 <e stop
T S|
=5 (=7="%)

d=—g+ pd
0o := 01

In several cases C~! can be computed, but C' cannot be computed.
Therefore, one applies the following more efficient version of the
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precondition cg algorithm, which does not require the computation of C'.
In this version we introduce the new variables w and r by

Cg = r
Ch = w

and omit the variable h.

precondition cg algorithm (efficient version)

x =z
=Ax—b
g =07l
do =g'r
if o <e stop
d =—9
recursion: k=0,1,...
w = Ad
do
T T
r:=x+ ad
ri=7r+ow
g:=C"r
s1=g"r
if 01 <e stop
o1 0
=5 (%)
d=—g+pd
do = 01

4 GMRES

Let A be an invertible n X n matrix. Furthermore, let b € R™ and zg € R"
a starting vector.

Problem: Find x € R™ such that
Ax =9
Let us consider the Krylov space K, defined by

ro =b— Az, K, =span{rg,..., A" g}
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4.1 Minimal residual method

Find z,, € x¢ + K, such that
[|b— Az |2 is minimal. (84)

A stable basis of K, can be obtained by the Arnoldi-algorithm. The
Arnoldi-algorithm is based on the orthogonalization algorithm of
Gram-Schmidt:

Arnoldi Algorithm

. To
Let ¢; with llq1]]2 = 1, a1 = 7 -
70| |2
Forj=1,....m—1:
q~j+1 :Aq]7 hl] =< Qj-i-laqi > for i = 1727"'7j
J
Gj+1 = qj+1— Z hi;q;
i=1
hivij = G+ll2
dj+1 = _(L‘+1
’ hjt1,

Observe, that one has to stop the Arnoldi algorithm, if A1 ; = 0.

To analyze the properties of the Arnoldi algorithm, let us define the
matrices

hi1 hi2
hai hay . *
Qr=(q1,--- k), Hiyp1 = hsa
hi—1.x
P 1
Ptk

Hj. 1 is a Hessenberg matrix.

Then, we get the following lemma.

Lemma 10.

(i) AQp = Qry1Hpy1 1
(ii) Q is an orthogonal matriz.

(11i) K, = span{qi,...,qm}

64



Proof: (i) :

J Jj+1
hji1595+1 = Agj— Zhij% Agj = Zhij‘h
i=1 =1

for j =1,...,k. (ii) - (iii) is trivial.

By this lemma, we get:

Tm = %0+ QmY, y e R™

16— Azmll2 = [lro — AQmyl|2

lro — Qa1 Hmt1,myll2
[[Qm1 (B& — Hiy1,my) |2
= |81 — Himg1,myll2,

where 5 = ||rgl]2 and & = | . |. For solving the minimization problem

0
(84) it is enough to resolve the problem:

Minimization Problem:
Find y € R™ such that

|8& — Hm+1,my||2 — minimal (85)

The standard approach to solve this problem is to apply the QR-algorithm
and Givens rotations.

4.2 Solution of the Minimization Problem of GMRES

min |66 — Huyg1.mYll2, (86)
yeR™

where Hy, 11, is a the Hessenberg-matrix:

hi1  hi2
hor hoy . *
_ h
Hiy = 32
Pg—1 1
P i
[y
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Problem (86) can be solved by the QR decomposition. To this end, let F’
be a unitary matrix (m + 1) x (m + 1) matrix and Ry,41,, an upper
triangular matrix, where the last row is 0 and

Hm+1,m = FHRm—l—l,m
Then, one gets

min ||8& — Hmp1,myll2 = min ||BF& — Rypimyl|2
yeR™ yeR™

The solution of this problem is:

—_~1

Yy = Rm,m ﬁFgly

P S |

where the operator ~omits the last row. R,,,, can easily be computed,

—_—

since Ry, is an upper triangular matrix.

4.3 Computation of QR-Decomposition with Givens
Rotation

F = FyFy 1 F
1 1
ro— ¢ S in the real case ¢ S
¢ —S8; C; o —S8; C;
where ¢; = cosb;, s; = sinb;.
It is easy to verify that
C; S; C; —S8; . 1 0
—S8; C; S C; o 0 1
So F' is unitary. Construct Fi,..., F;,—1 such that

*

(Fm—lFm—2 T Fl) Hm—l—l,m —

*x ok
0 d
0 h
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where h = hp,41,.m and F), satisfies the equation

<f$ 2><Z>=<3> (87)

To obtain (87), consider the following to cases:

1.d=0: ¢,=0, s,=1
. _ . h _ |d]
2.d#0: sp=cng, Cm= VL

Furthermore, observe

h2 d?
2 2
%+%:<@+Q@¢ﬁ (88)

4.4 The GMRES Algorithm

(1) Let 2 be given. Compute g = b— Azxg, ¢ = Set

€= (1,0,...,00", 8 = [|rol|2

o
[[roll2

For k=1,2,...
(2) Compute gr41 and h;g, i=1,...,k+1 by the Arnoldi Algorithm.
Set H(ik) = hig, i=1,... k+1

(3) Apply Fi,..., Fx_1 to the last column of H, that means for
i=1,...k—1

(52 (i ) (atetl)

(4) Compute the rotation sg,cy to get H(k + 1,k) to 0.

(et )= (o) (%)

H(k, k) — cpH(k, k) + s H(k + 1, k)

(5) Compute

H(k+1,k) <0

(6) If the residual §|(k + 1)| is small enough, stop with the following
solution:
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e Solve Hy pyr = B&k+1

o 1 =20+ Qryk

The computational amount of one GMRES step is
O(kn).

4.5 Convergence of the GMRES method

Theorem 10. Let A € R™ ™ positive definite, that means x* Az > 0 for
every x € R", x #£0. Let ry, = b — Ax,,. Then, it holds

/\2 <AT+A> el
man 2
lrmlle < (1= ———7"| llroll2

Amaz (AT A)

Proof. z,, = 9o + p(A)rg, where p € P,

Irmlla = [[b = Azm|l2 = [[b = A(zo + p(A)ro)ll2 =
= |lro = Ap(A)roll2 = [|(1 = Ap(A))roll2
= [lp(A)roll2

whereat p € P, with p(0) = 1. Now, define ¢(4) =1—aA, «a>0. By
the minimization property it holds

[rmll2 = [lp(A)roll2 < [lg™ (A)roll2 < [[g(A)[2"|I7oll2 (89)
(I —ad)z|f3
lg(A)l[5 = sup———2 =
Pk [l
sup <1 — 2« (z, Az), + 0427(14% Aa;)2>
240 (7,2)2 (z,2)2
Sine A is positive definite, it follows
T ~
(Az, Ax)y _ (x, AT Ax)o < Aman(ATA) = R
(x,2)9 (z,2)9
AT+A T .
(f]}';AI‘)Q — (xy D) x)Q 2 )\mzn(u) _. )\mln > O
(z,)2 (z,)2 2
This shows:

g(A)]13 <1 = 20X min + & Xnaz
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The minimization of the right hand side leads to:

5\min
Qmin = = >0
min Amam
and thus:
A2 2
0<[lg(A)lf < 1—27mn 4 min (90)
)\ma:c )\ma:c
= 1- J%L—m <1

max

(89) and (90) show the assertion.

5 Eigenvalue Problems

5.1 Rayleigh Quotient

Let A, B symmetric, positive definite n x n matrices. The general

eigenvalue problem is:
Find A € R and x € R™, 2 # 0 such that

Ax = \Bzx

Example 7. 1. Let V}, be a finite element space and let V;, C H} ().
Find A € R and uy, € Vi, such that

/Vuthhdz = /\/ upvpdz
Q Q

for every vy, € Vj,.
2. Eigenmodes of waveguides
[A+ k‘ge] U= A\u

Theorem 11. Let A\, the smallest and Mg the largest eigenvalue of
B~YA. Then, it holds

ol Ax _
wh0 T Bx ™
=T Az _
g0 oTBx M
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zT Ax
T Bx

is called Rayleigh quotient. If

' Az
Bz

then T is an eigenvector with eigenvalue Apip. If

T Az
Bz e

then T is an eigenvector with eigenvalue Az -

Proof. Choose the inner product
(z,y) := 2T By.
B~ A is symmetric with respect to (-,-), since
<B_1A:1:,y> =zTAT (B_I)TBy =2l Ay = <x,B_1Ay> .

Thus, there exist (-, -) -orthogonal eigenvectors ey, ..., e, such that
eigenvalues A\; < Xo < ... < \y,. This means:

B_lAei = )\iei,
e;TFBej = (52]

Let x =Y ¢;e;. Then, we get

eTAz YN
aTBx Y.

This implies
T Az
<

Ami —— < Mnaz-
min = DT g = Amaz

Furthermore, (91) implies that the Rayleigh quotient is maximal or
minimal if and only if x is an eigenvector.
This completes the proof.

Corollary. Let V C R" be a vector space. Then,

o 2T Az >
min ——— ;
zeV,x#0 x'Bx — e

T Az
é Amaw

max
zeVa0 27 Bx
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5.2 Method of Conjugate Gradients

Let

2T Az

Lemma 11. The gradient and Hesse-matriz of A\(x) are

glx) = %(Aa: — A(z)Bx)
H(z) = %(A — Mx)B — Bzg(z)T — g(x)z" B).
Proof.
1 T Az
g(x) = 2Ax TBr  TBa) 2Bz
2
= Th, (Ax — A(z)Bx)
H(z) = (a:TZx)22Bx(Ax — \x)Bz)T
b (A — gla)(Ba)" ~ BA(r)
= (A= \@)B — Bag@)" — g(x)a" B)

Lemma 12. Let \; be the mazimal eigenvalue of B~YA and \,, be the
minimal eigenvalue of B~'A. Then

H(ey) is positive definite and

H(e,) is negative definite.

Proof. By Theorem 11, g(e;) = 0 and g(e,,) = 0. Then, a simple
calculation completes the proof.

One can consider

1
Mz +h) == \x) 4+ g(x)Th + 5hTH(gc)h
as an approximation of the functional A(z + h).
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We are looking for an approximation of e; and e,, where we assume
M <A< ... < A1 < A\

are the eigenvalues corresponding e;. Starting with xg, we construct a
sequence (zj) which converges to e; and e,. By Theorem 11, we have to
find the extreme values of A(x). Thus, let us define

Th+1 = Tk + QS

such that

ONMTpy1)

T
= =0
Doy 9(@k+1)" sk )

where sj is a search direction.

Lemma 13. The equation g(ka)Tsk = 0 leads to a quadratic equation

with respect to ay.

Proof.
g(@ry) sk = 0
\
Sg(A(l’k + agsk) — AMxg + apsk)B(zg + agsg)) = 0
(z) + apsp)T Bz + apsi)st Az, + agpsy)
—s;;FB(xk + agsk)(xp + aksk)TA(a:k +agsg) = 0

The term a% in this equation cancels.

Construction of the search direction sg:
Let us assume, we are looking for an approximation of Ay, = A1.

1.CHOICE OF si: GRADIENT METHOD:

sp = —glzp) T,

To find a better search direction, let us construct s such that

sp:= v+ fw such that: g(z;)Tw = 0.
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Now, consider the \(z + asy)

)\(xk + Oéksk) =

>
g
z

+ o+

(a:k)Taksk + %(aksk)TH(a;)(aksk)
(z1)T (v + Pw)ay +
v+ fw)"H(z) (v + fuw)

—~~

9
9

Il
>
8
z

Q
TN
—

+ g($k)T’UOék +
vl H(z)v + 20T H(z)w + ﬁ2wTH(x)w)

I
wl»ag_: N | =
L. 'y
TN
—_~

To minimize S\(xk + aysk), let us choose (3 such that

Oz + agsk)
op
This implies

=0.

v Hw+ puwTHw = 0
(v+ W) HW = 0

oI Hw
g =~
wt Hw

By Lemma 11 and g(x;,)Tw = 0, we obtain

8= v (A = Mag) B)w — vT g(zp)z] Bw
wl(A — Mag)B)w

By Lemma 13 we can choose v and w as follows:
2.CHOICE OF s;: CONJUGATE GRADIENT METHOD:

s = v+ fw
v o= —g(z)
w = Sk-1.

3.CHOICE OF sj: ANOTHER METHOD:

S = v+ fw
v = r=Axy — Nay)Bzy
T
B Ty, Bsp_1
w = Sg-1— T k

Here: 1 Bw = 0 but not g(z)Tw = 0.
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5.3 Simple Vector Iteration

Let A be a n x n matrix. For reasons of simplicity, we assume that A is
diagonalizable. Similar results hold for general matrices.

Let us assume that \1,..., A\, are eigenvalues of A with orthonormal
eigenvectors e;. Furthermore, let us assume that:

1) M=o = M| > A1l =0 = [N

(i) M =...=\

(iii) Let xg be a start vector such that :

To =y ce, E:=ce+...4+ce #0.

Algorithm: Vector Iteration:

rip1 = Aw

- T
r, = T
|||

Theorem 12. Let us assume that A is symmetric positive definite.

i

||z — El|

T EH < ‘/\7‘4-1

1

. . . ; A
limj oo 5 = B, limioc Bietle — 3] and |25 < 1.

Proof. First, observe that

xT; —)\ ! i Z
—?261€1+--.+Cr6r+0r+1< ;\—: ) er+1+...+0n <)\_1> €n.

Al
)\r+1>i <)\n>Z
= Cp — ) epr1+ ...+ | — | en
, ‘ +1< A +1 ¥

This implies
_ 2 : g2
- |C] | )\1

j=r+1

%_E
)\1

IN

Z |C‘|2 A7‘-1-1
J )\1

j=r+1

i

_ /\r+1
A1

|’37_EH2-

Modification of the vector iteration
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® 1,11 = ALy, — leads to the smallest eigenvalue

o ziy1 = (2ENpar — Az For symmetric positive definite matrices
this also leads to the smallest eigenvalue

o x4 =(A— )\I)_1 T only works, if A is close to an eigenvalue
Aj, that means
IAj = Al << Ak = Al

One obtains numerical problems, if the eigenvalues are very close to each
other (cluster). In this case, one has to find a group of orthogonal
eigenvectors.
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5.4 Computation of Eigenvalues using the Rayleigh
Quotient

Let Vj, be a sub-vector space of the R and let A be symmetric positive
definite. Then,

2T Az

= min 92
Ha zeVi, olx (92)
is an approximation of the smallest and
T
' Ax
= max 93
H2 zeV, xlx (93)

an approximation of the largest eigenvalue. If k << n, then the eigenvalue
problem (92) is less difficult to solve than the original eigenvalue problem
eigenvalue problem

2T Ax
min —-
zeV, X

(94)

(92) can be solved by vector iteration, a direct solver, QR-algorithm, or
any other direct solver.

Theorem 13. Let Vi, = span{dy, Ady, ..., A*dy} and let us assume that
the eigenvalues of A are numbered as follows

/\1 :/\2 = ... :>\r—1 < >\r < >\7‘+1 < )\n,
where r > 2. Let e; be the corresponding eigenvectors. Now, define
Zy = span{ey,...,e.—1}.

Then, it holds

tan ¢

T nr+l—2§—i ’
k Kr—1

0< 1 —A1 < (A — A1)

Hr+1—2%

where Kk, = i—’:, T

>1,

Tk(l') 2

<x+m>k,

N =

and

|dgAZ1|
coOsS¢p = max ——————.
21621 ||do[all21]|a
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So @1 is the angle between dy, Z. To calculate the largest eigenvalue, let us
use the following abbreviation:
M SA<Ai1=...= A\, and K, = % Then, we get:

2
tan ¢

An =t < (A — A1) @

Proof. Let e; be the normalized eigenvectors of A, Ae; = A;e;. Then, it
follows

n
dy = E cie;
i=1

_ AT (p(A)do) " Ap(A)ds
p= zeVi, olx pePy (p(A)do)T (p(A)do)
= min Licy ()"
PEPy Z? 1€ Zp()‘)

This implies
< Zhr 00 M)

0 < A
Zz 1€ zp()\)
ZZTZ()\_)\I) (/\) <
Zz 1€ zp()\) B
>, p(Ni)?
< =\ A:
( 1)22 1 zp()‘)
1
= (A=A
( 1)1+p()\1) Z: 11 %
S, cZp(N)?

for every polynomial p. To estimate the smallest eigenvalue choose:

A+ A — 2)
A) =Ty (LA = 2A
(V) k( s )

Then, it holds
p(A) =1, |p(\)|<lfori=rr+1,...,n—1

Thus, we get
1
P23 ¢
DO

0 < =X < (A=)

1+




To estimate the largest eigenvalue choose:

2)\—)\,,—)\1>

R

where the eigenvalues are \; < ... A\, < A\py1 = ... = \,. Then, we get

>im1 6 n = A)p(\)?

0 < )\n — Mn < n
Dic1 szp()\z’)2

Tl 1
: (An_Al)Z%Z_l 202 DAy )2
S AT ()
1
< (A= A)tan g ——5.
Tk (2&—;@—1)
K—Kr

Example: Poisson’s Equation
Let us discretize Poisson’s equation by finite differences. Then, the
eigenvalues of the matrix A are:

4 h h
Amu - ﬁ <Sin2 <%> + Sin2 <%>>

The smallest eigenvalue is at p =v = 1:

4 w2h2 9
4 m2h2 m2h2
A2 72 ( 1 + 1 > 5

Our aim is to find the smallest eigenvalue A,.;, of A. There are to ways to
get an approximation of A.,;, by minimizing the Rayleigh quotient.

1. Application of the Rayleigh quotient to A~!:




This implies fast convergence of the smallest eigenvalue of A, by using the
inverse iteration applied to A™1.

2. Application of the Rayleigh quotient to A:

lim Tk

n—oo

<)\n + A — 2N

— ) = Tj(1) = 1.

This implies low convergence of the smallest eigenvalue of A for large n!
This shows that the first approach is better!!!
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5.5 Jacobi-Davidson-Algorithm
5.5.1 The Jacobi-Method

Let the coordinate system be transformed such that

(1)

is a “good “ approximation of an eigenvector. We want to solve the
problem
(1))
z z

Idea: Apply Newton method to

() (2)=0(0),

Then, we have to calculate

(2 )= ()= (r () ()

The calculation of ( f! ( /Z\n

approximation of an eigenvector, we can define the following approximative
Newton method:

-1
)\n—l—l L )\n o / /\n )‘n
< Zn+1 > o < Zn ) <f 0 f Zn ’
Let us find a short formula for this iteration. To this end, let
T
A= < @ > Then, we get

b F
A [0 T 1 0
7(5) =00 % )=o)

Let us abbreviate f( An ) = < 5}

zeCrv 1 NeC.

-1
>> is difficult. Since, ey is a “good *

. Then, let g, u be such that

N
it
7N
o
N——
N—
/_\\_/

S Q
N——
Il
7N
g3
N—



This implies
c'u—q = p =u=(F—-\ E)_lwq:cTu—p
(F— \E)u w " ’

P _ A [ a+ Lz, _ An
w o Zn - b+ Fz, Ann
p=a+clz, — M

w=b+Fz, — A\zp =b+ (F — \E)z,
u = (F=ME) ' (b4 (F = ME)zy) = (F = ME) '+ 2,

Zni1 = 2p —u = (F — \yE)71 (=)

g = I (F=ME) b+2,)—a—cz+ A\,
= CT ((F - /\nE)_lb) —a+ A\,

)\n—i-l = )\n —q= CTzn-l—l +

SIAM Review, June 2000, Vol. 42, Number 2.

Instead of inverting F' — A\, F exactly, one can approximate F' — A, E by the
diagonal. This means we apply the Jacobi iteration for solving
Zni1 = (F — M\ E) 71 (—b) as follows:

J(F = ME)zns1 = —b= ¢

(D—=X\yE)zpy1 = (D — F)z, — b
A1 =z +a

By changing the notation of A\, and A, this leads to

Ap=a+clz,
(D—ME)zpy1 = (D—F)z, — b

5.5.2 Motivation of Davidson’s Algorithm

Convergence of Eigenvalues, Eigenvectors.
Let V. C HY(Q) be a Hilbert space and a(-,-) : V x V — R V-koerziv. Let
V. be spaces such that

nli_)ngoinf{\]u—uh]\‘/!uh € Vn} =0 YueV
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Let e€ V, e# 0 and XA € C such that

ale,v) = )\/ ev du Yv e V. (95)
Q

Let e, € V,, A\, € C such that
alen,vy,) = )\n/ enUndp Y, € V,. (96)
Q

Theorem 14. If A is a single eigenvalue, then there is a constant ¢ and a
sequence (en, \n) such that

lle —en|lv < cd(e, Vi)

Connection to the matrix eigenvalue problem
Let A be a matrix which describes a(-,-) with respect to an L?-orthogonal
basis. Then (95) and (96), are equivalent to

>

Aé= e
(A6, — Aner) L o, en eV, Yo, eV,
Ay, 1s called Ritz value of A with Ritz vector €;, € V;L Furthermore )\, is an
eigenvalue of the matrix B, = (b;;), where b;; = a(v;,v;) and (v;); a basis
of Vj. There is an eigenvector &, of B,, with eigenvalue ), such that

&= &ui
)

Davidson’s Idea:

Choose the optimal eigenvector from the subspace V as a new approximate
eigenvector. This is the Ritz vector. By increasing V one gets an
approximation of the exact eigenvector.

5.5.3 The concept of the Jacobi-Davidson-Algorithm

Idea A: Compute the optimal eigenvector ,,Ritz vector” and ,Ritz value“ A
in the subspace Vj,

Idea B: Enlarge the subspace Vi — Vi11 by the Idea of ,,Jacobi“
orthogonal to the old ,,Ritz vector” by a Newton step on

(1))
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Orthogonalize the new vector ¢ with respect to Vj, and build Vjy.

In the Jacobi method we had
(1) (1) =
z z
A - <
1 1 a— A
(o)) =("7)=

the residual. In the Jacobi method, one has to compute

T
F

o
N———

Let us denote

(F = X E)'(=b)

We have to describe this in suitable spaces.

Let @ be an approximation of the eigenvalue . Let us rotate the
coordinate system such that

1
0

= 4.

Now,

*
corresponds to a space T', which is orthogonal to @. This means:
V=CueT and CalT

Now we can describe “t := (F — \,,E)~!(—b)” in suitable spaces. We have
to find a t € T, éC such that

(A—0OE)t=—-b+éu
where b4 and r — b € Ca. This is equivalent to t € T', € € C, and

(A—0E)t = —r + ¢t (97)
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This equation can approximatively be solved as follows.
Let M1 be a preconditioner for A — E.
This means that M is an approximation of A — 6F.

Thus, instead of solving (97), we are looking for a ¢ € T' such that
Mt = —r + et
This leads to t = —M ~'r + M~ 'eq. Since t € T, we obtain:

0 = —aM Yr+aMteq

Now, one can solve

t =M~ (—r+ed).

5.5.4 Jacobi-Davidson-Algorithm

Step 1. Start: Choose a non trivial start vector v.
Calculate v1 = v/[[v]|, w1 = Av;.

h11 = v{wl.

Set Vi = Ruq, Wi = Rwq, H1 = h11 .

u = v, 0= hn.

Calculate v = wy — fu.

Step 2. Iterate until convergence:

Step 3. Inner loop: For k =1,...,m —1:

e Let M be an approximation of A — §FE. Calculate:

WM~ 1y

_ -1
m, t=M (—T—i—eu).

€ =

e Orthogonalize t with respect to Vi by Gram-Schmidst.
This leads to the vector torthe.
Extend Vi by t to obtain Vi 4.
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e Calculate wi41 = Avgy1 and
extend Wy by wyy1 to obtain Wi 4.

e Calculate V;', jwg41 and vy Wiy,
Then the whole matrix Hy 41 := V" +1AVk+1 is computed.

e Calculate the largest eigenvalue of 6 with eigenvector s of Hyyq
(where [|s|| = 1).

e Calculate the Ritz vector u := Vi41s.
Calculate 4 := Au (this is Wi15)
Calculate the residuum r := 4 — Qu.

e Test convergence. Stop if ||| is small enough..

Step 4. Restart: If ||7|| can not be reduced any more, then set:

Set Vi =Ru, Wy =Ru, H =0 .
Goto Step 3.
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