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1 Linear Equation Systems in the Numerical So-
lution of PDE’s

1.1 Examples of PDE’s

1. Heat Equation

hom. plate

at the boundary
temperature g 

Heat source f in the interior of the plate.

Question: What is the temperature inside of the plate?

Poisson Problem (P)

Let Ω ⊂ Rn open, bounded, f ∈ C(Ω), g ∈ C(δΩ).

Find u ∈ C2(Ω) such that

−∆u = f on Ω

u
∣∣
δΩ

= g

where ∆ =
∂2

∂x2
+

∂2

∂y2

2. Convection-Diffusion-Problem

Find u ∈ C2(Ω) such that

−∆u +~b · ∇u + cu = f on Ω

u
∣∣
δΩ

= 0

where ~b ∈ (C(Ω))2 , f, c ∈ C(Ω)

3. Navier-Stokes-Equation

∂u

∂t
+

∂p

∂x
+

∂(u2)

∂x
+

∂(uv)

∂y
=

1

Re
∆u

∂u

∂t
+

∂p

∂y
+

∂(uv)

∂x
+

∂(v2)

∂y
=

1

Re
∆v

∂u

∂x
+

∂v

∂y
= 0
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4. Laser simulation

M M21 r

mirror 1 mirror 2

ΓM = ΓM1 ∪ ΓM2

Find u ∈ C2
C
(Ω), λ ∈ C such that

−∆u− k2u = λu

u
∣∣
ΓM

= 0

∂u

∂~n

∣∣∣
Γrest

= 0 (or boundary condition third kind)

We apply the ansatz

u = ure
−ik̃z + ule

ik̃z

where k̃ is an average value of k.
This leads to the equivalent eigenvalue problem:
Find ur, ul, λ such that

−∆ur + 2ik̃
∂ur

∂z
+ (k̃2 − k2)ur = λur

−∆ul − 2ik̃
∂ul

∂z
+ (k̃2 − k2)ul = λul

ur + ul

∣∣
ΓM

= 0,
∂ur

∂z
− ∂ul

∂z

∣∣∣
ΓM

= 0

∂ur

∂~n

∣∣∣
Γrest

=
∂ul

∂~n

∣∣∣
Γrest

= 0
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1.2 Finite-Difference-Discretization of Poisson’s Equation

Assume Ω =]0, 1[2 and that an exact solution of (P) exists. We are looking
for an approximate solution uh of (P) on a grid Ωh of meshsize h. Choose
h = 1

m where m ∈ N.

Ωh =
{
(ih, jh)

∣∣i, j = 1, . . . ,m− 1
}

Ωh =
{
(ih, jh)

∣∣i, j = 0, . . . ,m
}

Discretization by Finite Differences:
Idea: Replace second derivative by difference quotient.
Let ex = (1, 0) and ey = (1, 0),

−∆u(z) =

(
−∂2u

∂x2
− ∂2u

∂y2

)
(z) = f(z) for z ∈ Ωh

−uh(z + hex)− 2uh(z) + uh(z − hex)

h2

−uh(z + hey)− 2uh(z) + uh(z − hey)

h2
= f(z)

and u(z) = g(z)

≈ = for z ∈ Ωh\Ωh

uh(z) = g(z)

This leads to a linear equation system Lh Uh = Fh where Uh = (uh(z))z∈Ωh
,

Lh is |Ωh| × |Ωh| matrix. The discretization can be described by the stencil




− 1
h2

− 1
h2

4
h2 − 1

h2

− 1
h2


 =




m−1,1 m0,1 m1,1

m−1,0 m0,0 m1,0

m−1,−1 m0,−1 m1,−1




X X X X

X X X X

X X X X

X X X X
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Let us abbreviate Ui,j := uh(ih, jh) and fi,j := f(ih, jh). Then, in case of
g = 0, the matrix equation LhUh = Fh is equivalent to:

1∑

k,l=−1

mklUi+k,j+l = fi,j

1.3 FD Discretization for Convection-Diffusion

Let Ω,Ωh as above.

−∆u + b
du

dx
= f

Assume that b is constant.

1. Discretization by central difference:

du

dx
(z) ≈ uh(z + hex)− uh(z − hex)

2h

This leads to the stencil




− 1
h2

− 1
h2 − b

2h
4
h2 − 1

h2 + b
2h

− 1
h2




→ unstable for large b.

2. Upwind discretization:

du

dx
(z) ≈ uh(z)− uh(z − hex)

h

This leads to the stencil




− 1
h2

− 1
h2 − b

h
4
h2 + b

h − 1
h2

− 1
h2



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1.4 Irreducible and Diagonal Dominant Matrices

Definition 1. A n× n matrix A is called strong diagonal dominant, if

|aii| >
∑

i6=j

|aij| 1 ≤ i ≤ n (1)

A is called weak diagonal dominant, if there exists at least one i such that
(1) holds and such that

|aii| ≥
∑

i6=j

|aij | 1 ≤ i ≤ n

Definition 2. A is called reducible, if there exists a subset J 6=
⊂{1, 2, . . . , n},

J 6= ∅. such that

aij = 0 for all i 6∈ J, j ∈ J

A not reducible matrix is called irreducible.

Remark. An reducible matrix has the form
(

A11 A12

0 A22

)

→ The equation system separates in two parts.

Example:

1. Poisson FD:
diagonal: aii = 4

h2

non-diagonal: aij =

{
− 1

h2 if i is N,S,W,O of j
0 else

• A is not strong diagonal dominant, but weak diagonal dominant.
To see this, consider a point i such that j is N of i. Then

aij =

{
− 1

h2 if i is S,W,O of j
0 else

• A is irreducible.
Proof: If A is reducible, then, {1, 2, ..., n} is the union of two
different sets of colored points, where one set is J . Then, there
is a point j ∈ J such that one of the points i=N,W,S,E is not
contained in J , but i is contained in {1, 2, ..., n}. This implies
aj,i 6= 0. ⇒ contradiction.
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2. Convection-Diffusion-Equation

• centered difference

|aii| =
4

h2

∑

i6=j

|aij | =
4

h2
2 · 1

h2
+

(
1

h2
+

b

2h

)
+

∣∣∣∣
1

h2
− b

2h

∣∣∣∣

= 3
1

h2
+

b

2h
+

∣∣∣∣
1

h2
− b

2h

∣∣∣∣

Thus, |aii| ≥
∑

i6=j |aij |, if and only if 1
h2 − b

2h ≤ 0.

This shows |aii| ≥
∑

i6=j |aij |, if and only if h < 2
b

• upwind

|aii| =
4

h2
+

b

h
≥

4

h2
+

b

h
≥

∑

i6=j

|aij | for all h, b > 0

• Conclusion
central: A is weak diagonal dominant if and only if h < 2

b .
upwind: A is weak diagonal dominant.
A is irreducible in both cases.

Definition 3. Let A be an n × n matrix. Consider n points P1, ..., Pn.

Draw an edge between
−→

Pi, Pj if ai,j 6= 0. The directed graph of A is this set

of points P1, ..., Pn with these edges
−→

Pi, Pj .

Definition 4. A directed graph is called strongly connected, if for every pair
of disjoint points Pi, Pj there exists a directed path in the graph. This means

there exists a path
−→

Pi0Pi1 ,
−→

Pi2Pi3 , ...,
−→

Pir−1Pir such that Pi0 = Pi andPir = Pj .

Theorem 1. A n × n matrix A is irreducible, if and only if its directed
graph is connected.

Proof. Let A be irreducible.
Let 1 ≤ i0 ≤ n be an index. Let

J := {j | there is a directed path from Pi0 to Pj .}.

J is not empty. Otherwise, ai0,j = 0 for every j and choosing J̃ = {i0} would
lead to a contradiction to A to be irreducible. Let us assume J 6= {1, 2, ..., n}.
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Then, ai,j = 0 for every i ∈ J and j 6∈ J . Otherwise, there is a connected
path from Pi0 to Pi and to Pj .

The above property of J is a contradiction to A irreducible.

Let the directed graph of A be connected.
Assume that A is reducible. Then, there are disjoint sets J, I such that

ai,j = 0 for every i ∈ I, j ∈ J . Let
−→

Pi0Pi1 ,
−→

Pi2Pi3 , ...,
−→

Pir−1Pir be a directed
path from i0 ∈ I to ir ∈ J . Then, there must be a index s such that
is−1 ∈ I and is ∈ J . This implies ais−1,is 6= 0. This is a contradiction to the
properties of J and I.
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1.5 FE (Finite Element) Discretization

Definition 5. T = {T1, . . . , TM} is a conform triangulation of Ω if

• Ω =
⋃M

i=1 Ti, Ti is triangle or square

• Ti ∩ Tj is either

– empty or

– one common corner or

– one common edge.

Remark.

• Let us write Th, if the diameter hT of every element T ∈ Th is less or
equal h:

hT ≤ h.

• A family of triangulations {Th} is called quasi-uniform, if there exists
a constant ρ > 0 such that the radius ρT of the largest inner ball of
every triangle T ∈ Th satisfies

ρT > ρh.

Definition.

• Let Th be a triangulation of Ω. Then, let Vh be the space of linear finite
elements defined as follows:

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v
∣∣
T

is linear for every T ∈ TH
}

0
V h = Vh ∩H1

0 (Ω)

v
∣∣
T

is linear means that v
∣∣
T
(x, y) = a + bx + cy.

• Let Ω =]0, 1[2, h = 1
m and

Th =

{
[ih, (i + 1)h] × [jh, (j + 1)h]

∣∣∣∣i, j = 0, . . . ,m− 1

}
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The space of bilinear finite elements on Ω is defined as follows

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v
∣∣
T

is bilinear for every T ∈ TH
}

v
∣∣
T

is bilinear means that v
∣∣
T
(x, y) = a + bx + cy + dxy.

• Let Vh be the space of linear or bilinear finite elements on Th and Nh

the set of corners of Th. Then, define the nodal basis function vp ∈ Vh

at the point p by:

vp(x) =

{
1 if x = p
0 if x 6= p

for x ∈ Nh

Observe that

Vh = span

{
vp

∣∣∣∣ p ∈ Nh

}

This means that every function uh ∈ Vh can be represented as

uh =
∑

p∈Nh

λpvp

Finite Element Discretization of Poisson’s equation:

−∆u = f

u
∣∣
δΩ

= 0

Thus, for every vh ∈
0
V h, we get:

−∆u vh = f vh

⇓∫

Ω
∇u ∇vh d(x, y) +

∫

Γ

∂u

∂~n
vh d(x, y) =

∫

Ω
f vh d(x, y)

⇓∫

Ω
∇u ∇vh d(x, y) =

∫

Ω
f vh d(x, y) ∀vh ∈

0
V h

FE Discretization: Find uh ∈
0
V h such that

∫

Ω
∇u ∇vh d(x, y) =

∫

Ω
f vh d(x, y) ∀vh ∈

0
V h (2)

13



Stiffness matrix.

ap.q :=

∫

Ω
∇vp ∇vq d(x, y), fq :=

∫

Ω
f vq d(x, y)

A := (ap,q)
p,q∈

0
Nh

,
0
Nh:= Nh ∩ Ω

uh =
∑

p∈
0
Nh

λp vp

Then, (2) implies

∑

p∈
0

Nh

λp

∫

Ω
∇vp ∇vq d(x, y) =

∫

Ω
f vq d(x, y) for all q ∈

0
Nh

⇓
∑

p∈
0
Nh

λp ap,q = fq ∀q ∈
0
Nh

⇓

A Uh = Fh where
Uh = (λp)

p∈
0

Nh

Fh = (fq)
q∈

0
Nh

The matrix A is called the stiffness matrix of the FE discretization.
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1.6 Discretization Error and Algebraic Error

Let || · || be a suitable norm. Then, ||Uh − U || is called discretization error,
with respect to this norm.

Example 1. Poisson on a square

• FD, u ∈ C4(Ω), then

||Uh − U ||L∞(Ωh) = O(h2)

• FE, u ∈ H2(Ω), then

||Uh − U ||L2(Ω) = O(h2)

||Uh − U ||H1(Ω) = O(h)

Problem. The solution uh cannot be calculated exactly, since Lh (or A) is
a very large matrix and

A Uh = Fh.

Therefore, we need iterative solvers if n > 10.000 (or n > 100.000). By such
an iterative solver, we get an approximation ũh of uh. ||ũh − uh|| is called
algebraic error.

1.7 Basic Theory for LInear Iterative Solvers

Let A be a non singular n× n matrix and b a vector, b ∈ Rn.

Problem:
Find x ∈ Rn such that A x = b.

A basic approach to construct an iterative solver is to use a decomposition

A = M −N

where M is a matrix, which is easy to invert (which can be inverted by a
small number of operations). Then we get

M x = N x + b

⇓
x = M−1N x + M−1b

15



By this formulas, we get the algorithm:

Algorithm:
Let x0 be the start guess. Then
xk+1 := M−1N xk + M−1b

Let us write the iteration formula as

xk+1 = C xk + d,

where C = M−1N and d = M−1b . This is the general form of a linear iterative solver.

Theorem 1. xk converges to x for every start vector x0 if and only if

ρ(C) < 1

Here ρ(C) is the spectral radius of C,

ρ(C) = max
{
|λ|
∣∣λ is eigenvalue of C

}

(Observe the eigenvalues may be complex.)

Furthermore, the following convergence result holds:

||xk − x|| ≤ ||Ck|| ||x0 − x|| (3)

If C is a normal matrix, then

||xk − x||2 ≤ (ρ(C))k ||x0 − x||2 (4)

There exist start vectors x0, such that the equal sign holds in the above
inequality.

Proof. By xk+1 = C xk + d and x = C x + d, we get

xk+1 − x = C
(
xk − x

)

This implies

xk − x = Ck(x0 − x) (5)

This implies (3).
Let us assume, that x0−x = e is an eigenvector of C with eigenvalue λ such
that

|λ| = ρ(C)

Then, we get
||xk − x|| = ρ(C)k||x0 − x||

This shows:

16



• if ρ(C) ≥ 1, then xk does not converge to x.

• the equal sign holds in equation (4).

Now, let us assume that x0 is a general start vector. Let us assume ρ(C) < 1.
We want to prove limk→∞ xk = x. By (3), it is enough to prove

||Ck|| → 0 for k →∞

Since all norms are equivalent in a finite dimensional vector space, it is
enough to show this for the ‖ · ‖2-norm.

1. C is normal. Then, there exists a unitary matrix T such that

T−1D T = C

where D = diag(λ1, . . . , λn) is the diagonal matrix of eigenvalues.
Then, we get

||Ck||2 = ||T−1DkT ||2 ≤ ||T−1||2 ||T ||2 ||Dk||2 = ||Dk||2 = ρ(C)k.

This shows (4).

2. C is a general matrix. Then, we have to apply the Jordan decomposi-
tion

T−1J T = C

Then, we get
||Ck|| ≤ ||T−1|| ||T || ||Jk||

Thus, it is enough to show

lim
k→∞

||Jk|| = 0

It is enough to study an Jordan block

J̃ = λ E + N,

where E is the unit matrix and

N =




0 1 0
. . .

. . .

. . . 1
0 0








s rows

17



Since ρ(C) < 1, it follows |λ| < 1. A short calculation shows

||N i|| ≤ 1 for all i

N s = 0

Since N E = E N it follows:

||J̃k|| = ||
k∑

i=0

(
k

i

)
(λE)k−i N i|| ≤

≤
s−1∑

i=0

(
k

i

)
λk−i ≤

≤ s ks λk−s =

= (s λ−s) ks λk → 0 for k →∞

NR:

(
k

i

)
=

k(k − 1) · . . . · (k − i + 1)

i!
≤ ki ≤ ks

(k + 1)sλk+1

ksλk
=

(
1 +

1

k

)s

λ ≤ λ + 1

2
< 1 for large k

1.8 Effective Convergence Rate

In several applications one would like to know, how many iterations s are
needed to reduce the algebraic error by a certain factor. Let us assume that
this factor is 1

2 . Thus, we would like to know how many iterations s are
needed to obtain

‖xs − x‖ ≤ 1

2
‖x0 − x‖.

To this end , let us assume that there is an estimation

‖xs − x‖ ≤ ρs‖x0 − x‖.

In case of a linear iteration method with symmetric iteration matrix C, we
can choose ρ = ρ(C).

Obviously,

s =
ln
(

1
2

)

ln (ρ)

since ρ(C)s = 1
2 . s and ρ(C) are not the effective convergence rate. To

estimate the effective convergence rate , the computational amount has to

18



be included. Let Op the number of operations for one iteration. Then, the
effective convergence rate is:

Geff := s · Op

number of unknowns
=

ln 1
2

ln (ρ)
· Op

n

Example 2. Gauss elimination

Geff = O(n2)

19



1.9 Jacobi and Gauss-Seidel Iteration

The Jacobi-iteration is a
”
one-step“ method. The Gauss-Seidel-iteration is

a successive relaxation method.

1.9.1 Ideas of Both Methods

Relaxation of the i-th unknown xi:
Correct xold

i by xnew
i such that the i-th equation of the equation system

A · x = b

is correct.

Jacobi-iteration:

”
Calculate the relaxations simultaneously for all i = 1, . . . , n“

This means: If xold = xk, then
let xk+1 = xnew

Gauss-Seidel-iteration:

”
Calculate relaxation for i = 1, . . . , n and use the new values“

This means: xold,1 = xk

Iterate for i = 1, . . . , n:
Calculate xnew,i by relaxation of the i-th component
Put xold,i+1 = xnew,i

xk+1 = xnew,n

Remark.

• Jacobi-iteration is independent of the numbering of the grid points

• The convergence rate of the Gauss-Seidel iteration depends on the
numbering of the grid points
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Example 3. Model problem, FD for Poisson

W

N

M E

S
unew

M =
1

4

(
uold

N + uold
S + uold

E + uold
W

)
+ fM

red-black Gauss-Seidel

A four color Gauss-Seidel-relaxation is used for a 8-point stencil

−1 −1 −1
−1 8 −1
−1 −1 −1

- better relaxation property
- after relaxation of one color all equations at those
points are correct

Relaxation for the Convection-Diffusion:
A convection-diffusion problem is a so-called singular perturbed problem.
To see this write the convection-diffusion problem in the form:

−ǫ∆u +
∂u

∂x
= f̃ , ǫ > 0
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ǫ→ 0 is the difficult case.

(Hackbusch’s) rule for relaxing singular per-
turbed problems:
Construct the iteration such that it is an exact
solver for ǫ = 0

For ǫ = 0 we get the stencil (for upwind FD):




0
− 1

h
1
h 0
0




Thus a Gauss-Seidel relaxation with a numbering of the grid points from
left to right leads to an exact solver

1 2 3

4 5 6

7 8 9

This can be done also for more complicated convection directions. Excep-
tion: Circles!

1.9.2 Description of Jacobi and Gauss-Seidel Iteration by Matri-
ces

Let A be a n× n matrix. Decompose A = D − L−R =




∗ 0 . . . 0

0 ∗ . . .
...

...
. . .
. . . ∗ 0

0 . . . 0 ∗




−




0 0 . . . 0

∗ 0
...

...
. . .

. . .

. . . 0 0
∗ . . . ∗ 0




−




0 ∗ . . . ∗
0 0

...
...

. . .
. . .
. . . 0 ∗

0 . . . 0




Let x0 ∈ Rd be a start vector.

Jacobi-iteration
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D xk+1 − (L + R) xk = b ⇒
xk+1 = D−1 (L + R)xk + D−1b

Decomposition: A = D − (L + R) = M −N
Thus, the iteration matrix is

CJ = D−1 (L + R)

Gauss-Seidel-iteration

(D − L) xk+1 −R xk = b ⇒
xk+1 = (D − L)−1 R xk + (D − L)−1 b

Thus, the iteration matrix is

CGS = (D − L)−1 R
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1.10 Convergence Rate of Jacobi and Gauss-Seidel Iteration

1.10.1 General theory for weak dominant matrices

1.10.2 Special theory for upwind FD

1.10.3 FE analysis, variational approach

1.10.4 Eigenvector, eigenvalue analysis:
”
Fourier-analysis“

1.10.1 General Theory for Weak Dominant Matrices

Theorem 1.

1. Assume that A is weak diagonal dominant and irreducible. Then, Ja-
cobi and Gauss-Seidel iteration converge.

2. Assume that A is diagonal dominant. Then, the following estimate for
the convergence rate holds:

ρ ≤ max
1≤i≤n

1

|aii|
∑

j 6=i

|aij | < 1

Proof. Let x be an eigenvector of C with eigenvalue λ, where |λ| = ρ(C).
Furthermore assume ||x||∞ = 1.
Assume that A is weak diagonal dominant.

• In case of the Jacobi iteration: C = D−1(L + R)

|(Cx)i| ≤
1

|aii|
∑

j 6=i

|aij | |xj | ≤





1

|aii|
∑

j 6=i

|aij |



 ||x||∞ ≤ 1 (6)

This shows ||Cx||∞ ≤ 1. Since x eigenvector with eigenvalue λ, it
follows

1 ≥ ||Cx||∞ = ||λx||∞ = |λ| = ρ(C)

• In case of the Gauss-Seidel iteration:

C = (D − L)−1R⇒ (D − L)C = R⇒ C = D−1(LC + R)
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Let us prove by induction |(Cx)i| ≤ 1 for i = 1, . . . , n

|(Cx)i| ≤
1

|aii|




∑

j<i

|aij | |(Cx)j|+
∑

j>i

|aij | |xj |



 (7)

≤ 1

|aii|




∑

j 6=i

|aij |



 ≤ 1

Analogously, we get ρ(C) ≤ 1.

If A is diagonal dominant, then similar calculations show

|(Cx)i| ≤
1

|aii|




∑

j 6=i

|aij|



 < 1

This implies

||Cx||∞ ≤ max
i

1

|aii|
∑

j 6=i

|aij | < 1

which shows

ρ(C) ≤ max
i

1

|aii|
∑

j 6=i

|aij | < 1

This completes the proof of 2.

Let us assume that A is irreducible and weak diagonal dominant. Let

J =
{
i ∈ N

∣∣1 ≤ i ≤ n, |xi| = 1
}

Proof by contradiction. Assume ρ = 1. Then for all i ∈ J , the equal signs
hold for all inequalities in (6),(7). This shows for every i ∈ J :

|aij | = 0 if j /∈ J (8)

(j /∈ J means |xj| < 1 )
By assumption, there is a i0 such that the equal sign does not hold in (6),(7).
This means

1 > |(Cx)i0 | = |ρxi0 | = |xi0 |
This shows that J is a real subset of {1, . . . , n}. J is not the empty set,
since ‖x‖∞ = 1.
This is a contradiction to A irreducible. �

Example. By the examples in 1.4, Gauss-Seidel iteration and Jacobi itera-
tion converge for Poisson problem and convection-diffusion problem and FD
upwind. But: no estimation of the convergence rate.
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1.10.2 Special Theory for the FD-Upwind

Definition.Let us assume, that q > 0. Then define the upwind norm

||x||up,q := max
i
|qixi|

Theorem 2. Assume that

∑

j<i

|aij |
|aii|

qi−j < 1.

Then,

ρ(CGS) ≤ n
max
i=1

∑
j>i

∣∣∣aij

aii

∣∣∣ qi−j

1−∑j<i

∣∣∣aij

aii

∣∣∣ qi−j

Proof. Let us assume, that

||x||up,q = 1 ⇒ |qixi| ≤ 1 ∀i

Assume, that x is eigenvector of CGS with eigenvalue λ such that |λ| =
ρ(CGS). Choose i such that |qixi| = 1. Then CGS = (D − L)−1R⇒ CGS =
D−1(LCGS + R)

|λ|q−i = |λ| |xi| = |(λx)i| = |(CGS(x))i| =
∣∣(D−1(LCGSx + Rx))i

∣∣ ≤

≤ 1

|aii|




∑

j<i

|aij ||(CGSx))j |+
∑

j>i

|aij ||xj |



 ≤

≤ 1

|aii|




∑

j<i

|aij ||(λx))j |+
∑

j>i

|aij ||xj |



 ≤

≤ 1

|aii|




∑

j<i

|aij ||λ|q−j +
∑

j>i

|aij |q−j





⇓

|λ|


1−

∑

j<i

|aij|
|aii|

qi−j


 ≤

∑

j>i

|aij |
|aii|

qi−j

This completes the proof. �

Example. FD - 1D convection diffusion

−u′′ + bu′ = f on [0, 1], b > 0

u(0) = u(1) = 0
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Figure 1: Estimation of the spectral radius of upwind Gauss-Seidel in 1D

Stencil of upwind discretization

(
− 1

h2 − b 1
h

2
h2 + b 1

h − 1
h2

)
=

1

h2

(
−1− s 2 + s −1

)

where s = bh. Normalized coefficients

aii = 2 + s

aij =





−1 if j = i + 1
−(1 + s) if j = i− 1
0 else

Let us number the grid points from left to right. Then, for −1 ≤ s, we get

ρ =
1

2+sq
−1

1− 1+s
2+sq

=
1

2 + s

1

q − q2 1+s
2+s

f(q) = q − q2 1+s
2+s , f

′(q) = 1 − 2q 1+s
2+s

!
= 0 ⇒ q0 = 1

2
2+s
1+s ⇒ f(q0) = 1

4
2+s
1+s .

Observe 1− 1+s
2+sq

∣∣
q=q0

= 1
2 > 0. For −1 ≤ s:

ρ(CGS) ≤ 1

2 + s

1
1
4

2+s
1+s

= 4
1 + s

(2 + s)2

lim
s→∞

4
1 + s

(2 + s)2
= 0

4
1 + s

(2 + s)2

∣∣∣∣
s=0

= 1

4
1 + s

(2 + s)2

∣∣∣∣
s=−1

= 0
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The function 4 1+s
(2+s)2

is depicted in Figure 1.

2D case
||(xi,j)||up,(qi) := max

(i,j)

∣∣qix(i,j)

∣∣

Theorem 3. Assume that

∑

k<i

|a(i,j),(k,l)|
|a(i,j),(i,j)|

qi−k < 1

Then

ρ(CGS) ≤ max
(i,j)

∑
(k,l)6=(i,j),k≥i

∣∣∣a(i,j),(k,l)

a(i,j),(i,j)

∣∣∣ qi−k

1−∑k<i

∣∣∣a(i,j),(k,l)

a(i,j),(i,j)

∣∣∣ qi−k

Example. FD - 2D convection diffusion

−∆u + b
∂u

∂x
= f

Stencil:

1

h2




−1
−1− s 4 + s −1

−1




a(i,j),(i,j) = 4 + s

a(i,j),(k,l) =

{
−1 if k ≥ i, (i, j) 6= (k, l)

−(1 + s) if k < i

Let us number the grid points first from left to right and then from down
to up. Then, for −1 ≤ s, we get:

ρ ≤
1

4+s(1 + 1 + q−1)

1− 1
4+sq(1 + s))

=
1

4+s(2 + q−1)

1− q(1+s)
4+s

Numerically, one can calculate an optimal parameter q such that
1

4+s
(2+q−1)

1− q(1+s)
4+s

is as small as possible. The resulting estimation of the convergence rate is
depicted in Figure 2.
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Figure 2: Estimation of the spectral radius of upwind Gauss-Seidel in 2D

29



1.10.3 FE analysis, Variational approach

We want to solve the following problem:

Find uh ∈ Vh such that

a(uh, vh) = f(vh) ∀vh ∈ Vh (9)

where Vh is the space of bilinear finite elements.

For example,

a(uh, vh) =

∫

Ω

∇uh∇vhd(x, y) and f(vh) =

∫

Ω

fsvhd(x, y) (10)

Relaxation
Let (Vp)p∈Ωh

be the nodal basis of Vh. Now what means a relaxation step?

Let uold
h be an old approximation. Then, let µ ∈ R such that,

a(uold
h + µvp, vp) = f(vp) and let (11)

unew
h = uold

h + µvp (12)

This is the relaxation at the grid point p. Furthermore, we can calculate µ
in the following way:

µ =
1

a(vp, vp)

(
f(vp)− a(uold

h , vp)
)

(13)

unew
h = uold

h + vp
1

a(vp, vp)

(
f(vp)− a(uold

h , vp)
)

(14)

Implementation by EXPDE
Let fs be the vector describing the right hand side and let

f(v) =

∫

Ω

fsvd(x, y) and a(u, v) =

∫

Ω

∇u∇vd(x, y).

The operator corresponding to a(v, v) is the Laplace operator. Now define
the variables as

30



Variable f(grid);

Variable u(grid);

Variable f_s(grid);

Variable v(grid);

f=Helm_FE(f_s);

Now, for the Jacobi method, we get

nu = (f-Laplace_{FE}(u)) / Diag_Laplace_FE();

u = u+nu ;

and for the Gauss–Seidel method we have

u = u + (f-Laplace_{FE}(u)) / Diag_Laplace_FE();

Lemma 1 (Variational approach). Let us assume that a(u, v) is symmetric
positive definite. Then
Find uh ∈ Vh such that

a(uh, vh) = f(vh) for all vh ∈ Vh (15)

is equivalent to

uh ∈ Vh minimizes
1

2
a(vh, vh)− f(vh) for vh = uh. (16)

Proof.

Let us assume that uh satisfies (15). Then, we have to show that

µ −→ 1

2
a(uh + µvh, uh + µvh)− f(uh + µvh) = h(µ) (17)

has a minimum at µ = 0 for every vh ∈ Vh. We achieve this by differentiating
(15).

0 = h′(µ) = µa(vh, vh) + a(uh, vh)− f(vh)

= µa(vh, vh) + a(uh, vh)− a(uh, vh))

= µa(vh, vh)

⇒ µ = 0
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By differentiating the above equation again, we get

h′′(µ) = a(vh, vh)⇒ h′′(µ) > 0

Let us assume that uh satisfies (16), then h(µ) |µ=0= 0 implies that a(uh, vh) =
f(vh).

A similar calculation shows that the problem

Find µ ∈ R such that a(uold
h + µvp, vp) = f(vp)

is equivalent to

Minimize 1
2a(uold

h + µvp, u
old
h + µvp)− f(uold

h + µvp) for all µ ∈ R

Conclusion
A relaxation step is a minimizing step.

Gauss–Seidel minimizes 1
2a(ûh, ûh)− f(ûh) in several directions. Therefore

divergence is very unlikely, if a(u, y) is symmetric positive definite.

Example 4. Let τh be a triangulation of a given polygon domain. Then,
discretize Poisson’s equation by finite elements on this triangulation. A
Gauss-Seidel iteration with respect to the nodal basis converges. However
the corresponding stiffness matrix is not diagonal dominant in general.

Example 5 (Linear Elasticity). Let E > 0 and 0 < ν < 1
2 . Define the

symmetric derivative

ǫij :=
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)

Du :=




ǫ11

ǫ22

ǫ33

ǫ12

ǫ13

ǫ23




and the matrix

C−1 1

E




1 −ν −ν
−ν 1 −ν 0
−ν −ν 1

1 + ν
0 1 + ν

1 + ν




,
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where E and ν are physical constants. The bilinear form corresponding to
the problem of linear elasticity is

a : (H1(Ω))3 × (H1(Ω))3 → R

(u, v) 7→
∫

Ω
(Du)T CDv d(x, y, z)

Using suitable boundary conditions, this matrix is symmetric positive def-
inite. Thus, Gauss-Seidel iteration with respect to the nodal basis on the
finite element grid converges.

1.10.4 Analysis of the Convergence of the Jacobi Method

Model problem : Finite difference discretization of the Poisson equation
Both, Gauss–Seidel and the Jacobi method, converge if the co-
efficient matrix Lh of the finite difference discretization is

• weak diagonally dominant and

• irreducible.

Now, we want to estimate the convergence rate in more detail
for Poisson’s equation.

To solve the linear system Ax = b, the iteration matrix of the Jacobi method
is CJ = D−1(L + R). Then, for the model problem, we have

A = D−L−R =⇒ Cj = D−1(D−A) = −D−1A+E+E−h2

4
A = E−h2

4
Lh

(18)

It follows from exercise (1.2) that

Cjeνµ =

(
1− h2

4
λνµ

)
eνµ. (19)

Here λν,µ are the eigenvalues

λν,µ =
4

h2

(
sin2

(
πνh

2

)
+ sin2

(
πµh

2

))

for ν, µ = 1 . . . (m− 1), where h = 1
m . Thus, the iteration matrix Cj has the

eigenvalues

(ρJ)νµ = 1− sin2

(
πνh

2

)
− sin2

(
πµh

2

)
(20)
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Here, J denotes the Jacobi method. In case of ν = µ we have,

(ρJ )νν = 1−sin2

(
πνh

2

)
−sin2

(
πνh

2

)
= 1−2 sin2

(
πνh

2

)
= cos(πνh) (21)

The following graph depicts the eigenvalues (ρJ)νν with respect to the pa-
rameter πνh in (21).

-1

-0.5

 0

 0.5

 1

π/2 π

ρ

π(νh)

=⇒ Bad convergence for high and low frequencies.

=⇒ Good convergence for middle frequencies.

In particular, one can show that the spectral radius of the iteration ma-
trix is

ρ(C) = 1−O(h2) (22)

Now, the effective convergence rate for the Jacobi method is

Geff = sOp(c)/n =
ln(1

2 )

ln(ρ(c))
.
n

n
= O(h−2) = O(n). (23)

=⇒ The convergence rate for the Jacobi method (O(n)) is better than that
of the direct solver the Gauss elimination

(
O(n2)

)
.

1.10.5 Iteration Method with Damping Parameter

Let us assume that xk −→ xk+1 is an iteration. The iteration can be written
as xk −→ xk + (xk+1 − xk). The term (xk+1 − xk) can be treated as a
correction term. Now a damped iteration is xk −→ ω(xk+1 − xk), where
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• ω is called the damping factor or the relaxation parameter and ω ∈
]0, 2[.

• ω > 1 is called over relaxation.

• ω < 1 is called under relaxation.

SOR(Successive Over Relaxation) method is obtained by performing
the Gauss-Seidel method with over relaxation. But SOR has disadvantages
for e.g like,

• It is very difficult to find ω for certain class of problems.

1.10.6 Damped Jacobi Method

The Jacobi method with relaxation parameter ω = 1 is

xk+1
Jacobi = D−1(L + R)xk

Jacobi + D−1b (24)

The Jacobi method with damping parameter ω is

xk+1
ω = xk

ω + ω(D−1(L + R)xk
ω + D−1b− xk

ω)

=
{
E(1 − ω) + ωD−1(L + R)

}
xk

ω + ωD−1b (25)

=⇒ Cω = E(1− ω) + ωD−1(L + R) (26)

This is the iteration matrix of the damped Jacobi method.

1.10.7 Analysis of the Damped Jacobi method

The iteration matrix of the damped Jacobi method can be written as

CJ,ω = E(1 − ω) + wD−1(D −A) = E − ωD−1A = E − ω
h2

4
A (27)

Furthermore, by (26), the iteration matrix of the damped Jacobi method is

CJ,ω = [E + ωCj − ωE] = (1− ω)E + ωCj (28)

where Cj is the iteration matrix of the Jacobi method. The eigenvalues of
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the iteration matrix of the Jacobi method are

(ρJ)ν,µ = 1−
[
sin2

(
πνh

2

)
+ sin2

(
πµh

2

)]

Thus, the eigenvalues of the iteration matrix of the damped Jacobi method
are

(ρJ,ω)ν,µ = 1− ω

[
sin2

(
πνh

2

)
+ sin2

(
πµh

2

)]
(29)

Now, for ν = µ, we have

(ρJ,ω)ν,ν = 1− 2ω

[
sin2

(
πνh

2

)]
(30)

Thus, if ω = 1
2

(ρJ,ω)ν,ν = 1−
[
sin2

(
πνh

2

)]
(31)

The following graph depicts the eigenvalues (ρJ,ω)νν with respect to the
parameter πνh in (31).

-1

-0.5

 0

 0.5

 1

π/2 π

ρ

π(νh)

This shows that the damped Jacobi method with ω = 1
2 has the properties

• Bad convergence for low frequencies.

• Good convergence for high frequencies.

The Gauss–Seidel method has similar properties as the damped Jacobi
method with ω = 1

2 .
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1.10.8 Heuristic approach

x x x

x x x x

x x x x

x x xA

B

By single step methods we require O(
√

n) = O(h−1) operations for a cor-
rection in B due to a change in A. The idea is to achieve faster correction
by using a coarser grid.
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2 Multigrid Algorithm

2.1 Multigrid algorithm on a Simple Structured Grid

2.1.1 Multigrid

Figure 3: l=3 Figure 4: l=2 Figure 5: l=1

Let l be the number of levels such that lmax ∈ N and

ml = 2l

nl = (ml − 1)2

hl = 2−l

for l = 1 . . . lmax.

Let us assume that a PDE (e.g. Poisson’s equation) is given. Discretize this
equation by the grids Ωl := Ωhl

where l = 1, . . . , lmax. This leads to the
discrete matrix equations

Alxl = bl (32)

where bl, xl ∈ Sl and Sl = Rnl . The matrix Al is an invertible matrix of
order nl × nl.

Let an iterative solver for (32) be given as

xl
k+1 = Cl

relaxxl
k + Nlbl = Sl,bl

(xk
l ) (33)
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2.1.2 Idea of Multigrid Algorithm

Let x̃l be an approximate solution for (32). The algebraic ẽl is defined as

ẽl = xl − x̃l. (34)

Now ẽl has to be calculated in order to find xl. The following residual
equation is valid for ẽl,

Alẽl = rl (35)

where rl is called the residual and is given by

rl = bl −Alx̃l (36)

The aim is to find an approximate solution of the residual equation by solving
the equation approximately on a coarse grid Ωl−1. To this end, we need the
following matrix operators

• Restriction operator

I l−1
l : Sl 7→ Sl−1

• Prolongation operator

I l
l−1 : Sl−1 7→ Sl
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2.1.3 Two–grid Multigrid Algorithm

Two–grid Multigrid algorithm with parameters v1 and v2

Let xk
l be an approximate solution of (32) and v1 and v2 the parameters of

pre–smoothing and post–smoothing.

1. Step 1 (Pre–smoothing)

xk,1
l = S v1

l,bl
xk

l (37)

2. Step 2 (Coarse grid correction)

Residual calculation :

rl = bl −Alx
k,1
l (38)

Restriction :

rl−1 = I l−1
l rl (39)

Solve on coarse grid:

el−1 = Al−1
−1rl−1 (40)

Prolongation :

el = I l
l−1el−1 (41)

Correction :

xk,2
l = xk,1

l + el (42)

3. Step 3 (Post–smoothing)

xk+1
l = S v2

l,bl
(xk,2

l ) (43)
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2.1.4 Restriction and Prolongation Operators

Figure 6: O–Coarse grid point and X–Fine grid point

Let us abbreviate xi,j = x(ihl−1,jhl−1) and set xi,j = 0 for i = 0 or j = 0 or
i = ml−1 or j = ml−1.

2.1.5 Prolongation or Interpolation

The interpolation or prolongation of xi,j given by wi,j = {I l
l−1(x)}(ihl,jhl) is

defined by the following equations

w2i,2j =
1

2
xi,j (44)

w2i+1,2j =
1

4
(xi,j + xi+1,j) (45)

w2i,2j+1 =
1

4
(xi,j + xi,j+1) (46)

w2i+1,2j+1 =
1

8
(xi,j + xi+1,j + xi,j+1 + xi+1,j+1) (47)

2.1.6 Pointwise Restriction

Piecewise restriction is rarely applied and defined by

{İ l−1
l (x)}(ihl−1,jhl−1) = x2i,2j (48)

The quality of this restriction operator is not very good.
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2.1.7 Weighted Restriction

Weighted restriction or full weighting is defined by

{I l−1
l (x)}(ihl−1,jhl−1) =

1

8
(x2i+1,2j+1 + x2i−1,2j+1 + x2i+1,2j−1 + x2i−1,2j−1) +

1

4
(x2i+1,2j + x2i−1,2j + x2i,2j+1 + x2i,2j−1) +

1

2
x2i,2j

Remark

(I l−1
l )

T
= I l

l−1 (49)

2.2 Iteration Matrix of the Two–Grid Multigrid Algorithm

Theorem 4. The iteration matrix of a two–grid Multigrid algorithm is

Ctwo grid
l =

(
Cl

relax
)v2
(
E − I l

l−1(Al−1)
−1I l−1

l Al

)(
Cl

relax
)v1

(50)

Proof

The coarse grid correction is

xl
k,2 = xl

k,1 + I l
l−1(Al−1)

−1I l−1
l (bl −Alxl

k,1)

=
(
E − I l

l−1(Al−1)
−1I l−1

l Al

)
xl

k,1 + I l
l−1(Al−1)

−1I l−1
l bl

Therefore the iteration matrix of the coarse grid correction of the two–grid
Multigrid algorithm is

(
E − I l

l−1(Al−1)
−1I l−1

l Al

)

A short calculation shows that the iteration matrix of two linear iteration
algorithms is the product of the iteration matrices of these algorithms.
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2.3 Multigrid Algorithm

Multigrid algorithm MGM(xk
l , bl, l) with parameters (v1,v2,µ)

Let xk
lmax

be an approximate solution of (32). Then,

xk+1
lmax

= MGM(xk
lmax

)

is the approximate solution of (32) by the multigrid algorithm with an initial
vector xk

lmax
. The multigrid algorithm can then be described as

If l = 1 then MGM(xk
l , bl, l) = A−1

l bl

If l > 1 then

Step 1 (v1-pre–smoothing)

xk,1
l = S v1

l,bl
(xk

l )

Step 2 (Coarse grid correction)

Residual : rl = bl −Alx
k,1
l

Restriction : rl−1 = I l−1
l rl

Recursive call:

e0
l−1 = 0

for i = 1 . . . µ

ei
l−1 = MGM(ei−1

l−1 , rl−1, l − 1)

el−1 = eµ
l−1

Prolongation : el = I l
l−1el−1

Correction : xk,2
l = xk,1

l + el

Step 3 (v2-post–smoothing)

MGM(xk
l , bl, l) = S v2

l,bl
(xk,2

l )

The algorithm µ = 1 is called V-cycle. The algorithm µ = 2 is called
W-cycle.

Homework: Describe the multigrid algorithm as a finite state machine,
where every state is smoothing step and an operation is a restriction or
prolongation. Then, the finite state machine of a V-cycle looks like a “V”
and the finite state machine of a W-cycle looks like a “W”.

Let N be the number of unknowns. The computational amount of the
V-cycle and W-cycle is O(N).
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The theory of multigrid algorithms shows that there is a constant ρ such
that the convergence rate of the multigrid algorithm satisfies

ρ(CMGM,l) ≤ ρ < 1

independent of l. Thus, the effective convergence rate of the multigrid
algorithm is:

Geff (MGM,µ) = O(1)

for µ = 1, 2.

2.4 Multigrid Algorithm for Finite Elements

2.4.1 Model Problem

Let τh1 · · · , τhlmax
be a sequence of quasi-uniform subdivisions, where

hl = 2−l such that

Vhi
⊂ Vhi+1

(This means V2h ⊂ Vh)

2.4.2 Example

Every triangle is divided into four triangles
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We want to solve the problem

Find uhlmax
∈ Vhlmax

such that

a(uhlmax
, vh) = f(vh) ∀ vh ∈ Vhlmax

(51)

To this end, let us study all problems of type

Find uhl
∈ Vhl

such that

a(uhl
, vh) = fl(vh) ∀ vh ∈ Vhl

(52)

for every l = 0, · · · , lmax

where fl is a suitable coarse grid right hand side.

2.4.3 The Nodal Basis

Let (vk
i )k∈Ω̊h

be the nodal basis for Vhi
. Now (52) can be defined in matrix

form as follows:

Aixi = bi (53)

where

Ai = (akj)kj∈Ω̊hi

, akj = a(vk
i , vj

i ) (54)

xi = (xk
i )k∈Ω̊h

(55)

bi = (bk
i )k∈Ω̊h

(56)

and the solution vector uh is given by

uhi
=
∑

xk
i v

k
i (57)

2.4.4 Prolongation Operator for Finite Elements

The natural inclusion is the prolongation operator

u ∈ Vhi

↓
u ∈ Vhi+1

To implement this operator, we have to describe this operator in a matrix
form.
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By Vhi
⊂ Vhi+1

, there are coefficients γk′

k such that

vk′

i =
∑

k

γk′

k vk
i+1 (58)

Thus, we get

uhi
=

∑

k′

xk′

i vk′

i =
∑

k′

∑

k

γk′

k vk
i+1x

k′

i (59)

=
∑

k

(
∑

k′

γk′

k xk′

i

)
vk
i+1 (60)

Now the matrix version of the prolongation operator is

Ii+1
i

(
xk′

i

)
k′

=
(∑

k′ γk′

k xk′

i

)
k

⇓
Ii+1
i = (γk′

k )(k,k′)

2.4.5 Restriction Operator for Finite Elements

Observe that Fi ∈ (Vhi
)′.

This means that Fi : Vhi
−→ R is a linear mapping. The natural inclusion

is the restriction operator.

Fi+1 ∈ (Vhi+1
)′

↓
Fi ∈ (Vhi

)′

Fi(w) := Fi+1(w) ∀ w ∈ Vhi

The matrix version of the restriction operator can be obtained as follows

bk′

i = Fi(v
k′

i ) =
∑

k

γk′

k Fi(v
k
i+1) (61)

=
∑

k

γk′

k bk
i+1 (62)

Ii
i+1 =

(
γk′

k

)
(k′,k)

(63)
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2.5 Fourier Analysis of the Multigrid method

2.5.1 Local Fourier analysis

A multigrid algorithm consists of several parameters that have to be
properly tuned such that the algorithm converges rapidly.The parameters
are,

µ : recursion parameter.

ν1, ν2 : smoothing parameter.

Sl,bl
: choice of smoother.

I l
l−1 : choice of the prolongation operator.

I l−1
l : choice of the restriction operator

Al for l < lmax : choice of the stiffness matrix on the courser grid.

(Almax
is determined by the discretisation.)

The following simplification is made in order to analyze the convergence of
the two–grid method more easily and exactly.

Omission of the boundary conditions – transition to an infinite
dimensional grid

Instead of the finite dimensional grid

Ωd
h :=

{
(j1h, j2h, . . . , jdh) | j1, j2, . . . , jd ∈

{
0, . . . ,

1

h

}}
(64)

we apply an infinite dimensional grid

∞
Ω

d

h := {(j1h, j2h, . . . , jdh) | j1, j2, . . . , jd ∈ Z} (65)

The operators Al, I l−1
l , Sl,bl

have to be extended to the infinite
dimensional grid in a suitable manner.

Remark
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• The operators Al etc. are stencil operators, e.g a nine point stencil.

• The operators Al etc. depend on the spatial coordinates.

Then, we define the operators on the infinite grid as follows,

Let Qd
h be a stencil operator on the grid Ωd

h. For every inner
point x0 in the grid Ωd

h of the stencil S(x0),a corresponding

stencil operator
∞
Q

d

h is defined.

Example

Let d = 1. The stiffness matrix obtained by the finite difference
discretization of the operator − d2

dx2 on the grid Ω1
h is

A1

h =




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




1

h2
(66)

The operator on the infinite grid
∞
A

1

h is now

∞
A

1

h =




. . .
. . .

. . .

−1 2 −1
. . .

. . .
. . .




1

h2
(67)

which implies

∞
A

1

h(u)(x) = (−u(x− h) + 2u(x)− u(x + h))
1

h2
∀x ∈

∞
Ω

1

h (68)

By the extension of the operators on the infinite dimensional grid, we can

construct a two–grid method on the infinite dimensional grid
∞
Ω

d

h. To
analyze the convergence of the two–grid method, we need to know the
iteration matrix of the method. By Lemma 3, the iteration matrix for the
two–grid method is

(
Crelax

h

)ν2
(
Eh − Ih

H(AH)−1IH
h Ah

)(
Crelax

h

)ν1

,where H = 2h. (69)
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where,

Crelax
h : iteration matrix of the smoothening step.

Eh : extended unit matrix.

Ih
H : extended prolongation operator.

IH
h : extended Restriction operator.

Ah, AH : extended stiffness matrices on the coarser grid.

Example
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The operators for d=1 are as follows.

Ah =




. . .
. . .

. . .

−1 2 −1
. . .

. . .
. . .




1

h2
(70)

AH =




. . .
. . .

. . .

−1 2 −1
. . .

. . .
. . .




1

4h2
(71)

IH
h =




. . .

1 2 1
1 2 1

. . .




1

4

(
or factor

1

2
√

2

)
(72)

IH
h =




. . .

1
2
1 1

2
1

. . .




1

2

(
or factor

1

2
√

2

)
(73)

Crelax
h =




. . .
. . .

. . .
1
2ω 1− ω 1

2ω
. . .

. . .
. . .


 (74)

ω= 1
2=




. . .
. . .

. . .
1
4

1
2

1
4

. . .
. . .

. . .




We allow these operators to act on the following functional spaces.

Vh :=

{
exp
(
iθ

x

h

)

x∈
∞
Ω

d

h

| − π ≤ θ ≤ π

}
(75)

VH :=

{
exp
(
iθ

x

H

)

x∈
∞
Ω

d

H

| − π ≤ θ ≤ π

}
(76)

For reasons of simplicity, let us restrict ourselves to the 1–D case.
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2.5.2 Definition

The harmonic frequency of exp
(
iθ x

h

)
is exp

(
iθ̃ x

h

)
where,

θ̃ := θ − π for θ ≥ 0

θ̃ := θ + π for θ < 0

2.5.3 Local Fourier analysis of the smoother

Definition

The functions exp
(
iθ x

h

)
are the eigenfunctions of the iteration matrix C of

the smoother Swith eigenvalues µ(θ). This implies that

C exp
(
iθ

x

h

)
= µ(θ) exp

(
iθ

x

h

)

We then have the smoothening factor of S as
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3 Gradient Method and cg

3.1 Gradient Method

Let A a symmetric positive definite n× n matrix and b ∈ Rn. Find x ∈ Rn

such that

A · x = b (77)

Theorem 5. The solution of the linear system (77) is solution of the
minimization problem:

min
x∈Rn

1

2
xT Ax− bT x (78)

Proof. Let 0 6= v ∈ Rn and λ ∈ R. If x solves the minimization problem,
then

d

dλ

1

2
(x + λv)T A(x + λv)− bT (x + λv)

∣∣∣
λ=0

= 0

⇒ 1

2
(vT Ax + xT Av)− bT v = 0

⇒ vT Ax = vT b ∀v ∈ Rn ⇒ Ax = b

Let Ax = b and v ∈ Rn. Then, we get

1

2
(x + v)T A(x + v)− bT (x + v) =

=
1

2
(x + v)T b +

1

2
vT Av − bT (x + v) +

1

2
xT Av

=
1

2
vT Av − 1

2
(x + v)T b +

1

2
bT v

=
1

2
vT Av − 1

2
xT b⇒ minimum at v = 0

Gradient method

1. Choose direction for seeking

dk = −∇f(xk),

where f(xk) = 1
2xT

k Axk − bT xk. This implies

dk = b−Axk (79)
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2. Choose αk ∈ R, such that f(xk+1) is minimal, where

xk+1 = xk + αkdk

Theorem 6. αk of the gradient method can be computed by

αk =
dT

k dk

dT
k Adk

(80)

Proof.

d

dαk

1

2
(xk + αkdk)

T A(xk + αkdk)− bT (xk + αkdk) = 0

1

2
(dT

k Axk + xT
k Adk) + αkd

T
k Adk − bT dk = 0

−dT
k dk + αkd

T
k Adk = 0

⇒ αk =
dT

k dk

dT
k Adk

3.2 Analysis of the Gradient Method

Let x∗ the accurate solution of

f(x) =
1

2
xT Ax− bT x→ minimum

This implies
Ax∗ = b.

The energy norm is defined by ||x||A =
√

xT Ax.

Lemma 2.

f(x) = f(x∗) +
1

2
||x− x∗||2A

Proof.

f(x)− f(x∗) =
1

2
xT Ax− bT x− 1

2
x∗T Ax∗ + bT x∗ =

=
1

2
xT Ax− x∗T Ax +

1

2
x∗T Ax∗ =

=
1

2
||x− x∗||2A

Lemma 3.

||xk+1 − x∗||2A = ||xk − x∗||2A
{

1− (dT
k dk)

2

dT
k Adkd

T
k A−1dk

}
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Proof. By (79) and (80), we get:

f(xk+1) = f(xk + αkdk)

=
1

2
(xk + αkdk)TA(xk + αkdk)− bT (xk + αkdk)

= f(xk) + αkd
T
k (Axk − b) +

1

2
α2

kd
T
k Adk

= f(xk) +
1

2

(dT
k dk)

2

dT
k Adk

Now, by Lemma 2, we obtain

||xk+1 − x∗||2A = ||xk − x∗||2A −
(dT

k dk)
2

dT
k Adk

By dk = −A(xk − x∗), it is

||xk+1 − x∗||2A = (A−1dk)
T A(A−1dk) = dT

k A−1dk

and so we get

||xk+1 − x∗||2A = ||xk − x∗||2A
{

1− (dT
k dk)

2

dT
k Adkd

T
k A−1dk

}

.

Lemma 4 (Inequality of Kantorowitsch). Let A symmetric positive
definite and κ the condition number of A. Then, the following inequality
holds

(xT Ax)(XT A−1x)

(xT x)2
≤
(

1

2

√
κ
−1

+
1

2

√
κ

)2

Proof. Let the eigenvalues of A a = λ1 ≤ λ2 ≤ . . . ≤ λn = b and b
a = κ.

By principal axis transformation, one gets

(xT Ax)(XT A−1x)

(xT x)2
=

∑
λiy

2
i

∑
λ−1

i y2
i

(
∑

y2
i )

2
=
∑

i

λizi

∑

i

λ−1
i zi

where x =
∑

i yiei, ei are the orthogonal eigenvector, and zi =
y2

i
P

j y2
j

.

Observe, that
∑

i zi = 1. Thus, P = (
∑

i λizi,
∑

i λ
−1
I zi) = zi

∑
i(λi, λ

−1
i ) is

a convex combination.

Now, define

P = (λ, µ)

λ =
∑

i

λizi

µ =
∑

i

λ−1
i zi
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λ1 λn

λ−1

n

λ−1

1

P = (λ, µ)

Figure 7: The convex function x→ x−1.

Then, by Figure 7, we get

µ =
∑

i

λ−1
i zi ≤ (λ1 + λn − λ)λ−1

1 λ−1
n ,

since the point P is below the line between (λ1, λ
−1
1 ) and (λn, λ−1

n ). Now,

max
λ1≤λ≤λn

λ
λ1 + λn − λ

λ1λn
=

λ1 + λn)2

4λ1λn

completes the proof.

Theorem 7. The gradient method converges as follows:

||xk − x∗||A ≤
(

κ− 1

κ + 1

)k

||x0 − x∗||A

Proof. Apply Lemma 2 to 4 and observe that

1− 1
(

1
2

√
κ + 1

2

√
κ
−1
)2 = 1− 4κ

(κ + 1)2
=

(κ− 1)2

(κ + 1)2
.

3.3 The Method of Conjugate Directions

If A is positive definite, then xT Ay defines a scalar product. Let
d0, d1, . . . , dn−1 be A-orthogonal (conjugated) vectors. Then, the set
{d0, d1, . . . , dn−1} is a basis of Rn.
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Observe, that any vector y ∈ Rn can be written as:

y =

n−1∑

k=0

αkdk

Lemma 5. Let x0 ∈ Rn be a start vector. Then, define

xk+1 = xk + αkdk (81)

where

αk = − gT
k dk

dT
k Adk

, gk = Axk − b (82)

This sequence leads to the exact solution after at most n iterations:
xn = A−1b.

Proof. There exists αi such that

x∗ − x0 =
∑

i

αidi

Thus, we get
dT

i A(x∗ − x0) = αid
T
i Adi

αi =
dT

i A(x∗ − x0)

dT
i Adi

= −dT
i (Ax0 − b)

dT
i Adi

By induction we show that equation (82) holds.
k = 0 follows from the upper equation.
By xi =

∑
k<i αkdk + x0 it is dT

i Axi = dT
i Ax0. Thus, we get

αi = −dT
i (Ax0 − b)

dT
i Adi

Lemma 6. xk in Lemma 5 minimizes

f(x) =
1

2
xT Ax− bT x

on x0 + Vk, where Vk = span{d0, d1, . . . , dk−1}.

Furthermore, the following orthogonalization property holds:

dT
i gk = 0 for i < k. (83)
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Proof. Let us show, that it is enough to prove (83).

Let d ∈ Vk ⇒ dT gk = 0

f(xk + d) =
1

2
(xk + d)T A(xk + d)− b(xk + d)

=
1

2
(xT

k Axk +
1

2
dT Ad + dT Axk − bT xk − bT d

=
1

2
(xT

k Axk + dT Ad) + dT gk − bT xk

=
1

2
(xT

k Axk + dT Ad)− bT xk

⇒ Minimization by d ∈ Vk not possible!
Proof of (83) by induction:
i = k − 1:

dT
k−1gk = dT

k−1

(
A

(
xk−1 − gk−1T dk−1

dT
k−1Adk−1

dk−1

)
− b

)
= 0 (∗)

i < k − 1 By xk − xk−1 = αk−1dk−1, it holds

gk − gk−1 = A(xk − xk−1) = αk−1Adk−1

⇒ dT
i (gk − gk−1) = 0 for i < k − 1

By the induction hypothesis, (83) follows for i ≤ k − 2.

3.4 cg-Method (Conjugate Gradient Algorithm)

The directions d0, . . . , dk+1 are computed by an orthogonalization of the
gradients:

d0 = −g0

dk+1 = −gk+1 + βkdk

where βk =
gT
k+1Adk

dT
k Adk

if gk 6= 0

Theorem 8. If gk+1 6= 0 then it holds
(I) It is dk−1 6= 0
(II) Vk = span[g0, Ag0, . . . , A

k−1g0] = span[g0, g1, . . . , gk−1] =
span[d0, d1, . . . , dk−1]
(III) The vectors d0, d1, . . . , dk−1 are pairwise A-orthogonal
(IV) It is f(xk) = minz∈Vk

f(x0 + z)

(V) αk =
gT

k
gk

dT
k

Adk
, βk =

gT
k+1gk+1

gT
k

gk
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Proof by Induction from (I) to (V)
k = 1 : obvious
k → k + 1 : First observe, that

span[g0, g1, . . . , gk−1] = span[d0, d1, . . . , dk−1]

follows by dk+1 = −gk+1 + βkdk. Thus,

gk = gk−1 + A(xk − xk−1) = gk−1 + αk−1Adk−1

implies that

gk ∈ span[g0, Ag0, . . . , A
kg0]

⇒ span[g0, g1, . . . , gk] ⊂ span[g0, Ag0, . . . , A
kg0].

By induction hypothesis d0, d1, . . . , dk−1 are linear independent. By (83),
the optimization property of xk, it is

dT
i gk = 0 for i < k. (∗)

Since gk 6= 0, the linear independence holds for d0, . . . , dk−1, gk and
therefore we get that g0, . . . , gk is linear independent. Thus, it follows by a
dimension argument:

span[g0, . . . , gk] = span[g0, Ag0, . . . , A
k−1g0].

This completes the proof of (II). Since dk−1, gk are linear independent, it
follows dk 6= 0, (I). Now, we proof (III):

dT
i Adk = −dT

I Agk + βk−1d
T
i Adk−1

By the construction of βk−1, the orthogonality (III) holds for i = k − 1:

dT
i Adk = 0.

For i < k − 1 the induction hypothesis dT
i Adk−1 = 0 implies

dT
i Adk = −dT

i Agk

Since Adi ⊂ span[d0, . . . , di+1] and i + 1 < k, (∗) leads to

dT
i Adk = 0

(IV) is a implication from Lemma 6. Proof of (V): dk = −gk + βk−1dk−1

and (∗) imply that

αk = − gT
k dk

dT
k Adk

=
gT
k gk

dT
k Adk

.
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Now, observe that gT
k+1gk = 0 follows by (∗) and (II). Thus, we get

βk =
gT
k+1Adk

dT
k Adk

=
gT
k+1αkAdk

gT
k gk

=
gT
k+1(gk+1 − gk)

gT
k gk

=
gT
k+1gk+1

gT
k gk

.

To implement the cg-algorithm in an efficient way, we apply (V) in
Theorem (8). Furthermore, observe that

gk+1 = A(xk + αkdk)− b = gk + αkAdk

and let us introduce the auxiliary vector

h := Ad.

cg algorithm

x = x0

g = Ax− b

δ0 = gT g

if δ0 ≤ ǫ stop

d = −g

recursion: k = 0, 1, . . .

h = Ad

α =
δ0

dT h
x := x + αd

g := g + αh

δ1 = gT g(= δk+1)

if δ1 ≤ ǫ stop

β =
δ1

δ0

(
= β =

δk+1

δk

)

d = −g + βd

δ0 := δ1

3.5 Analysis of the cg algorithm

cg is a direct and an iterative method!

Lemma 7. Let p ∈ Pk be a polynomial such that

p(0) = 1, |p(z)| ≤ r for all z ∈ σ(A)
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Then, for the cg algorithm, the following inequality holds

||xk − x∗||A ≤ r||x0 − x∗||A

Proof. Let q(z) = p(z)−1
z and y := x0 + q(A)g0. Then, by g0 = A(x0 − x∗),

we get

y − x∗ = x0 − x∗ + y − x0 = x0 − x∗ + q(A)g0 = p(A)(x0 − x∗)

⇒ ||y − x∗||A ≤ ||p(A)||A · ||x0 − x∗||A
Let w =

∑
j cjej, where ej are the orthonormal eigenvectors of A such that

Aej = λjej . Then, it holds

||p(A)w||2A = ||
∑

j

cjp(λj)ej ||2A =
∑

j

λj |cjp(λj)|2

≤ r2
∑

j

λj|cj |2 ≤ r2||
∑

j

cjej ||2A = r2||w||2A

⇒ ||p(A)||A ≤ r

This shows ||y − x∗||A ≤ r||x0 − x∗||A. By Theorem 8 and Lemma 2, we
conclude

||xk − x∗||A ≤ r||x0 − x∗||A
Lemma 8. Let

Tk(x) =
1

2

[
(x +

√
x2 − 1)k + (x−

√
x2 − 1)k

]

for k = 0, 1, . . .. Then it holds
a) Tk(x) is a real-valued polynomial of degree ≤ k.
b) |Tk(x)| ≤ 1 for −1 ≤ x ≤ 1.
c) Tk(x) ≥ 1

2(x +
√

x2 − 1)k for x ≥ 1.
d) Tk(1) = 1

Proof. a) Using the binomial formula, one can see that the terms with
odd powers cancel. Thus, of Tk is a real-valued polynomial.

b) |Tk(x)| ≤ 1
2

(
|x + i

√
1− x2|k + |x− i

√
1− x2|k

)
≤ 1 for |x| ≤ 1.

c) and d) are obvious.

Remark: Tk is called Tschebyscheff polynomial. One can prove

Tk(x) = cos(k arccos x)
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Theorem 9.

||xk − x∗||A ≤
1

Tk

(
κ+1
κ−1

) ||x0 − x∗||A ≤ 2

(√
κ− 1√
κ + 1

)k

||x0 − x∗||A

Proof. Let a, b be the extremal eigenvalues of A. Set

p(x) =
Tk

(
b+a−2x

b−a

)

Tk

(
b+a
b−a

)

Then, p(0) = 1 and by b) in Lemma 8.

p(x) ≤ 1

Tk

(
b+a
b−a

)

for every x ∈ ρ(A). Furthermore, by Lemma 7:

||xk − x∗||A ≤
1

Tk

(
b+a
b−a

) ||x0 − x∗||A

Furthermore, observe that

b + a

b− a
=

κ + 1

κ− 1

and

κ + 1

κ− 1
+

√(
κ + 1

κ− 1

)2

− 1 =
κ + 1 +

√
4κ

κ− 1
=

√
κ + 1√
κ− 1

.

Now c) in Lemma 8 completes the proof.

3.6 Preconditioned cg Algorithm

Let A be a symmetric positive definite n× n-matrix and C a symmetric
positive definite n× n-matrix, such that C is an approximation of A.

Example 6. • C is the diagonal of A .

• C is the tridiagonal part of A . Then, C−1 can be computed be a
LR-decomposition.

• C−1 is the result of a suitable symmetric multigrid algorithm.
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Instead of the equation

Ax = b

we try to solve the equation

C−1Ax = C−1b,

if C−1A has a smaller condition number than A.

The problem is that in general C−1A is not symmetric positive definite.
Therefore, we apply the following Lemma.

Lemma 9. Define

〈x, y〉C := xT Cy.

C−1A is symmetric positive definite with respect to 〈·, ·〉C .

This leads to the algorithm

precondition cg algorithm (bad version)

x = x0

g = C−1(Ax− b)

δ0 = gT Cg

if δ0 ≤ ǫ stop

d = −g

recursion: k = 0, 1, . . .

h = C−1Ad

α =
δ0

dT Ch
x := x + αd

g := g + αh

δ1 = gT Cg

if δ1 ≤ ǫ stop

β =
δ1

δ0

(
= β =

δk+1

δk

)

d = −g + βd

δ0 := δ1

In several cases C−1 can be computed, but C cannot be computed.
Therefore, one applies the following more efficient version of the
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precondition cg algorithm, which does not require the computation of C.
In this version we introduce the new variables w and r by

Cg =: r

Ch =: w

and omit the variable h.

precondition cg algorithm (efficient version)

x = x0

r = Ax− b

g = C−1r

δ0 = gT r

if δ0 ≤ ǫ stop

d = −g

recursion: k = 0, 1, . . .

w = Ad

α =
δ0

dT w
x := x + αd

r := r + αw

g := C−1r

δ1 = gT r

if δ1 ≤ ǫ stop

β =
δ1

δ0

(
= β =

δk+1

δk

)

d = −g + βd

δ0 := δ1

4 GMRES

Let A be an invertible n× n matrix. Furthermore, let b ∈ Rn and x0 ∈ Rn

a starting vector.

Problem: Find x ∈ Rn such that

Ax = b

Let us consider the Krylov space Km defined by

r0 = b−Ax0, Km = span{r0, . . . , A
m−1r0}
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4.1 Minimal residual method

Find xm ∈ x0 + Km such that

||b−Axm||2 is minimal. (84)

A stable basis of Km can be obtained by the Arnoldi-algorithm. The
Arnoldi-algorithm is based on the orthogonalization algorithm of
Gram-Schmidt:
Arnoldi Algorithm

Let q1 with ||q1||2 = 1, q1 =
r0

||r0||2
.

For j = 1, . . . ,m− 1 :

q̃j+1 = Aqj , hij =< q̃j+1, qi > for i = 1, 2, . . . , j

˜̃qj+1 = q̃j+1 −
j∑

i=1

hijqi

hj+1,j = ||˜̃qj+1||2

qj+1 =
˜̃qj+1

hj+1,j

Observe, that one has to stop the Arnoldi algorithm, if hj+1,j = 0.

To analyze the properties of the Arnoldi algorithm, let us define the
matrices

Qk = (q1, . . . , qk) , Hk+1,k =




h11 h12

h21 h22
. . . ∗

h32
. . .
. . . hk−1,k

hk,k

hk+1,k




Hk+1,k is a Hessenberg matrix.

Then, we get the following lemma.

Lemma 10.
(i) AQk = Qk+1Hk+1,k

(ii) Q is an orthogonal matrix.
(iii) Km = span{q1, . . . , qm}
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Proof: (i) :

hj+1,jqj+1 = Aqj −
j∑

i=1

hijqi, Aqj =

j+1∑

i=1

hijqi

for j = 1, ..., k. (ii) - (iii) is trivial.

By this lemma, we get:

xm = x0 + Qmy, y ∈ Rm

||b−Axm||2 = ||r0 −AQmy||2
= ||r0 −Qm+1Hm+1,my||2
= ||Qm+1 (βξ1 −Hm+1,my) ||2
= ||βξ1 −Hm+1,my||2,

where β = ||r0||2 and ξ1 =




1
0
...
0


. For solving the minimization problem

(84) it is enough to resolve the problem:

Minimization Problem:
Find y ∈ Rm such that

||βξ1 −Hm+1,my||2 → minimal (85)

The standard approach to solve this problem is to apply the QR-algorithm
and Givens rotations.

4.2 Solution of the Minimization Problem of GMRES

min
y∈Rm

||βξ1 −Hm+1,my||2, (86)

where Hm+1,m is a the Hessenberg-matrix:

Hk+1,k =




h11 h12

h21 h22
. . . ∗

h32
. . .
. . . hk−1,k

hk,k

hk+1,k



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Problem (86) can be solved by the QR decomposition. To this end, let F
be a unitary matrix (m + 1)× (m + 1) matrix and Rm+1,m an upper
triangular matrix, where the last row is 0 and

Hm+1,m = FHRm+1,m

Then, one gets

min
y∈Rm

||βξ1 −Hm+1,my||2 = min
y∈Rm

||βFξ1 −Rm+1.my||2

The solution of this problem is:

y = R̃m,m

−1
βF̃ ξ1,

where the operator˜omits the last row. R̃m,m

−1
can easily be computed,

since R̃m,m is an upper triangular matrix.

4.3 Computation of QR-Decomposition with Givens
Rotation

F = FmFm−1 · · ·F1

Fi =




I
ci si

−si ci

I




in the real case
=




I
ci si

−si ci

I


 ,

where ci = cosθi, si = sinθi.

It is easy to verify that

(
ci si

−si ci

)(
ci −si

si ci

)
=

(
1 0
0 1

)

So F is unitary. Construct F1, . . . , Fm−1 such that

(Fm−1Fm−2 · · ·F1) Hm+1,m =




∗
∗ ∗

. . .

∗ ∗
0 d
0 h



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where h = hm+1,m and Fm satisfies the equation
(

cm sm

−sm cm

)(
d
h

)
=

(
∗
0

)
(87)

To obtain (87), consider the following to cases:

1. d = 0: cm = 0, sm = 1

2. d 6= 0: sm = cm
h
d , cm = |d|√

|d|2+|h|2

Furthermore, observe

s2
m + c2

m =

(
h2

d2
+ 1

)
d2

d2 + h2
(88)

4.4 The GMRES Algorithm

(1) Let x0 be given. Compute r0 = b−Ax0, q1 = r0
||r0||2

. Set

ξ = (1, 0, . . . , 0)T , β = ||r0||2

For k = 1, 2, . . .
(2) Compute qk+1 and hi,k, i = 1, . . . , k + 1 by the Arnoldi Algorithm.
Set H(i, k) := hi,k, i = 1, . . . , k + 1

(3) Apply F1, . . . , Fk−1 to the last column of H, that means for
i = 1, . . . , k − 1

(
ci si

−si ci

)(
H(i, k)

H(i + 1, k)

)
→
(

H(i, k)
H(i + 1, k)

)

(4) Compute the rotation sk, ck to get H(k + 1, k) to 0.

(5) Compute
(

ξ(k)
ξ(k + 1)

)
←
(

ck sk

−sk ck

)(
ξk

0

)

H(k, k)← ckH(k, k) + skH(k + 1, k)

H(k + 1, k)← 0

(6) If the residual β|ξ(k + 1)| is small enough, stop with the following
solution:
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• Solve Hk,kyk = βξk+1

• xk = x0 + Qkyk

The computational amount of one GMRES step is

O(kn).

4.5 Convergence of the GMRES method

Theorem 10. Let A ∈ Rn×n positive definite, that means xT Ax > 0 for
every x ∈ Rn, x 6= 0. Let rm = b−Axm. Then, it holds

||rm||2 ≤


1−

λ2
min

(
AT +A

2

)

λmax(AT A)




m
2

||r0||2

Proof. xm = x0 + p̃(A)r0, where p̃ ∈ Pm−1

||rm||2 = ||b−Axm||2 = ||b−A(x0 + p̃(A)r0)||2 =

= ||r0 −Ap̃(A)r0||2 = ||(1−Ap̃(A))r0||2
= ||p(A)r0||2

whereat p ∈ Pm with p(0) = 1. Now, define q(A) = 1− αA, α > 0. By
the minimization property it holds

||rm||2 = ||p(A)r0||2 ≤ ||qm(A)r0||2 ≤ ||q(A)||m2 ||r0||2 (89)

||q(A)||22 = sup
x 6=0

||(I − αA)x||22
||x||22

=

sup
x 6=0

(
1− 2α

(x,Ax)2
(x, x)2

+ α2 (Ax,Ax)2
(x, x)2

)

Sine A is positive definite, it follows

(Ax,Ax)2
(x, x)2

=
(x,AT Ax)2

(x, x)2
≤ λmax(AT A) =: λ̃max

(x,Ax)2
(x, x)2

=
(x, AT +A

2 x)2

(x, x)2
≥ λmin(

AT + A

2
) =: λ̃min > 0

This shows:

||q(A)||22 ≤ 1− 2αλ̃min + α2λ̃max
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The minimization of the right hand side leads to:

αmin =
λ̃min

λ̃max

> 0

and thus:

0 ≤ ||q(A)||22 ≤ 1− 2
λ̃2

min

λ̃max

+
λ̃2

min

λ̃max

(90)

= 1− λ̃2
min

λ̃max

< 1

(89) and (90) show the assertion.

5 Eigenvalue Problems

5.1 Rayleigh Quotient

Let A,B symmetric, positive definite n× n matrices. The general
eigenvalue problem is:
Find λ ∈ R and x ∈ Rn, x 6= 0 such that

Ax = λBx

Example 7. 1. Let Vh be a finite element space and let Vh ⊂ H1
0 (Ω).

Find λ ∈ R and uh ∈ Vh such that

∫

Ω
∇uh∇vhdz = λ

∫

Ω
uhvhdz

for every vh ∈ Vh.

2. Eigenmodes of waveguides

[
∆ + k2

0ǫ
]
u = λu

Theorem 11. Let λmin the smallest and λmax the largest eigenvalue of
B−1A. Then, it holds

min
x 6=0

xT Ax

xT Bx
= λmin,

max
x 6=0

xT Ax

xT Bx
= λmax.
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xT Ax
xT Bx

is called Rayleigh quotient. If

x̃T Ax̃

x̃T Bx̃
= λmin

then x̃ is an eigenvector with eigenvalue λmin. If

x̃T Ax̃

x̃T Bx̃
= λmax

then x̃ is an eigenvector with eigenvalue λmax.

Proof. Choose the inner product

〈x, y〉 := xT By.

B−1A is symmetric with respect to 〈·, ·〉, since

〈
B−1Ax, y

〉
= xT AT

(
B−1

)T
By = xT Ay =

〈
x,B−1Ay

〉
.

Thus, there exist 〈·, ·〉 -orthogonal eigenvectors e1, . . . , en such that
eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn. This means:

B−1Aei = λiei,

eT
i Bej = δij .

Let x =
∑

ciei. Then, we get

xT Ax

xT Bx
=

∑
c2
i λi∑
c2
i

. (91)

This implies

λmin ≤
xT Ax

xT Bx
≤ λmax.

Furthermore, (91) implies that the Rayleigh quotient is maximal or
minimal if and only if x is an eigenvector.
This completes the proof.

Corollary. Let V ⊂ Rn be a vector space. Then,

min
x∈V,x 6=0

xT Ax

xTBx
≥ λmin

max
x∈V,x 6=0

xT Ax

xTBx
≤ λmax
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5.2 Method of Conjugate Gradients

Let

λ(x) :=
xT Ax

xT Bx
.

Lemma 11. The gradient and Hesse-matrix of λ(x) are

g(x) =
2

xT Bx
(Ax− λ(x)Bx)

H(x) =
2

xT Bx
(A− λ(x)B −Bxg(x)T − g(x)xT B).

Proof.

g(x) = 2Ax
1

xT Bx
− xT Ax

(xT Bx)2
2Bx

=
2

xT Bx
(Ax− λ(x)Bx).

H(x) = − 2

(xT Bx)2
2Bx(Ax− λ(x)Bx)T

+
2

xT Bx
(A− g(x)(Bx)T −Bλ(x))

=
2

xT Bx
(A− λ(x)B −Bxg(x)T − g(x)xT B).

Lemma 12. Let λ1 be the maximal eigenvalue of B−1A and λn be the
minimal eigenvalue of B−1A. Then
H(e1) is positive definite and
H(en) is negative definite.

Proof. By Theorem 11, g(e1) = 0 and g(en) = 0. Then, a simple
calculation completes the proof.

One can consider

λ̃(x + h) := λ(x) + g(x)T h +
1

2
hT H(x)h

as an approximation of the functional λ(x + h).
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We are looking for an approximation of e1 and en, where we assume

λ1 < λ2 ≤ ... ≤ λn−1 < λn.

are the eigenvalues corresponding ei. Starting with x0, we construct a
sequence (xk) which converges to e1 and en. By Theorem 11, we have to
find the extreme values of λ(x). Thus, let us define

xk+1 = xk + αksk

such that

∂λ(xk+1)

∂αk
= g(xk+1)

T sk = 0,

where sk is a search direction.

Lemma 13. The equation g(xk+1)
T sk = 0 leads to a quadratic equation

with respect to αk.

Proof.

g(xk+1)
T sk = 0

⇓
sT
k (A(xk + αksk)− λ(xk + αksk)B(xk + αksk)) = 0

(xk + αksk)
T B(xk + αksk)s

T
k A(xk + αksk)

−sT
k B(xk + αksk)(xk + αksk)

T A(xk + αksk) = 0

The term α3
k in this equation cancels.

Construction of the search direction sk:
Let us assume, we are looking for an approximation of λmin = λ1.

1.Choice of sk: Gradient method:

sk := −g(xk)
T .

To find a better search direction, let us construct sk such that

sk := v + βw such that: g(xk)T w = 0.
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Now, consider the λ̃(x + αksk)

λ̃(xk + αksk) = λ(xk) + g(xk)
T αksk +

1

2
(αksk)

T H(x)(αksk)

= λ(xk) + g(xk)
T (v + βw)αk +

1

2
α2

k(v + βw)T H(x)(v + βw)

= λ(xk) + g(xk)
T vαk +

1

2
α2

k

(
vT H(x)v + β2vT H(x)w + β2wT H(x)w

)

To minimize λ̃(xk + αksk), let us choose β such that

∂λ̃(xk + αksk)

∂β
= 0.

This implies

vT Hw + βwT Hw = 0

⇓
(v + βw)HW = 0

⇓

β = − vT Hw

wT Hw
.

By Lemma 11 and g(xk)T w = 0, we obtain

β =
vT (A− λ(xk)B)w − vT g(xk)x

T
k Bw

wT (A− λ(xk)B)w
.

By Lemma 13 we can choose v and w as follows:
2.Choice of sk: Conjugate gradient method:

sk := v + βw

v = −g(xk)

w = sk−1.

3.Choice of sk: Another method:

sk := v + βw

v = r = Axk − λ(xk)Bxk

w = sk−1 −
xT

k Bsk−1

xT
k Bxk

xk.

Here: xT
k Bw = 0 but not g(xk)T w = 0.
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5.3 Simple Vector Iteration

Let A be a n× n matrix. For reasons of simplicity, we assume that A is
diagonalizable. Similar results hold for general matrices.

Let us assume that λ1, . . . , λn are eigenvalues of A with orthonormal
eigenvectors ei. Furthermore, let us assume that:
(i) |λ1| = . . . = |λr| > |λr+1| ≥ . . . ≥ |λn|
(ii) λ1 = . . . = λr

(iii) Let x0 be a start vector such that :
x0 =

∑n
i=1 ciei, E := c1e1 + . . . + crer 6= 0.

Algorithm: Vector Iteration:

xi+1 = Axi

x̃i =
xi

||xi||
Theorem 12. Let us assume that A is symmetric positive definite.

∣∣∣∣
∣∣∣∣
xi

λi
1

− E

∣∣∣∣
∣∣∣∣ ≤

∣∣∣∣
λr+1

λ1

∣∣∣∣
i

||x− E||

limi→∞
xi

λi
1

= E, limi→∞
‖x̃i+1‖2

‖x̃i‖2
= |λ1| and |λr+1

λ1
| < 1.

Proof. First, observe that

xi

λi
1

= c1e1 + . . . + crer + cr+1

(
λr+1

λ1

)i

er+1 + . . . + cn

(
λn

λ1

)i

en.

This implies
∥∥∥∥

xi

λi
1

− E

∥∥∥∥
2

=

∥∥∥∥∥cr+1

(
λr+1

λ1

)i

er+1 + . . . + cn

(
λn

λ1

)i

en

∥∥∥∥∥
2

=




n∑

j=r+1

|cj |2
∣∣∣∣
λj

λ1

∣∣∣∣
2i



1
2

≤




n∑

j=r+1

|cj |2
∣∣∣∣
λr+1

λ1

∣∣∣∣
2i



1
2

=

∣∣∣∣
λr+1

λ1

∣∣∣∣
i

‖x− E‖2 .

Modification of the vector iteration
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• xi+1 = A−1xi → leads to the smallest eigenvalue

• xi+1 = (2Eλmax −A)xi For symmetric positive definite matrices
this also leads to the smallest eigenvalue

• xi+1 = (A− λI)−1 xi only works, if λ is close to an eigenvalue
λj , that means

|λj − λ| << |λk − λ|

One obtains numerical problems, if the eigenvalues are very close to each
other (cluster). In this case, one has to find a group of orthogonal
eigenvectors.

75



5.4 Computation of Eigenvalues using the Rayleigh
Quotient

Let Vk be a sub-vector space of the Rn and let A be symmetric positive
definite. Then,

µ1 = min
x∈Vk

xT Ax

xT x
(92)

is an approximation of the smallest and

µ2 = max
x∈Vk

xT Ax

xT x
(93)

an approximation of the largest eigenvalue. If k << n, then the eigenvalue
problem (92) is less difficult to solve than the original eigenvalue problem
eigenvalue problem

min
x∈Vn

xT Ax

xT x
(94)

(92) can be solved by vector iteration, a direct solver, QR-algorithm, or
any other direct solver.

Theorem 13. Let Vk = span{d0, Ad0, . . . , A
kd0} and let us assume that

the eigenvalues of A are numbered as follows

λ1 = λ2 = ... = λr−1 < λr ≤ λr+1 ≤ . . . λn,

where r ≥ 2. Let ei be the corresponding eigenvectors. Now, define

Z1 = span{e1, . . . , er−1}.

Then, it holds

0 ≤ µ1 − λ1 ≤ (λn − λ1)




tan φ1

Tk

(
κr+1−2

λ1
λr

κr−1

)




2

,

where κr = λn

λr
,

κr+1−2
λ1
λr

κr−1 > 1,

Tk(x) ≥ 1

2

(
x +

√
x2 − 1

)k
,

and

cos φ1 = max
z1∈Z1

|dT
0 Az1|

||d0||A||z1||A
.
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So φ1 is the angle between d0, Z. To calculate the largest eigenvalue, let us
use the following abbreviation:
λ1 ≤ . . . ≤ λr < λr+1 = . . . = λn and κr = λr

λ1
. Then, we get:

λn − µn ≤ (λn − λ1)


 tan φ1

Tk

(
2κ−κr−1

κ−κr

)




2

Proof. Let ei be the normalized eigenvectors of A, Aei = λiei. Then, it
follows

d0 =

n∑

i=1

ciei

µ1 = min
x∈Vk

xT Ax

xT x
= min

p∈Pk

(p(A)d0)
T Ap(A)d0

(p(A)d0)T (p(A)d0)
=

= min
p∈Pk

∑n
i=1 c2

i λip(λi)
2

∑n
i=1 c2

i p(λi)2

This implies

0 ≤ µ1 − λ1 ≤
∑n

i=1 c2
i (λi − λ1)p(λi)

2

∑n
i=1 c2

i p(λi)2
=

=

∑n
i=r c2

i (λi − λ1)p(λi)
2

∑n
i=1 c2

i p(λi)2
≤

≤ (λn − λ1)

∑n
i=r c2

i p(λi)
2

∑n
i=1 c2

i p(λi)2
=

= (λn − λ1)
1

1 +
p(λ1)2

Pr−1
i=1 c2i

Pn
i=r c2i p(λi)2

for every polynomial p. To estimate the smallest eigenvalue choose:

p(λ) = Tk

(
λn + λr − 2λ

λn − λr

)

Then, it holds

|p(λn)| = 1, |p(λi)| ≤ 1 for i = r, r + 1, . . . , n− 1

Thus, we get

0 ≤ µ1 − λ1 ≤ (λn − λ1)
1

1 +
p(λ1)2

Pr−1
i=1 c2i

Pn
i=r c2i

≤ (λn − λ1)

∑n
i=r c2

i∑r−1
i=1 c2

i

1

Tk

(
λn+λr−2λ1

λn−λr

)2
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Tk

(
λn + λr − 2λ1

λn − λr

)
= Tk

(
κr + 1− 2λ1

λr

κr − 1

)

√∑n
i=r c2

i√∑r−1
i=1 c2

i

= tan φ1.

To estimate the largest eigenvalue choose:

p(λ) = Tk

(
2λ− λr − λ1

λn − λr

)
,

where the eigenvalues are λ1 ≤ . . . λr < λr+1 = . . . = λn. Then, we get

0 ≤ λn − µn ≤
∑n

i=1 c2
i (λn − λi)p(λi)

2

∑n
i=1 c2

i p(λi)2

≤ (λn − λ1)

∑r
i=1 c2

i∑n
i=r+1 c2

i

1

Tk

(
2λn−λr−λ1

λn−λr

)2

≤ (λn − λ1) tan φ1
1

Tk

(
2κ−κr−1

κ−κr

)2 .

Example: Poisson’s Equation
Let us discretize Poisson’s equation by finite differences. Then, the
eigenvalues of the matrix A are:

λν,µ =
4

h2

(
sin2

(
πνh

2

)
+ sin2

(
πµh

2

))

The smallest eigenvalue is at µ = ν = 1:

λ1 =
4

h2
· 2
(

π2h2

4

)
= 2π2

λ2 =
4

h2
·
(

π2h2

4
+ 4

π2h2

4

)
= 5π2

Our aim is to find the smallest eigenvalue λmin of A. There are to ways to
get an approximation of λmin by minimizing the Rayleigh quotient.

1. Application of the Rayleigh quotient to A−1:

lim
n→∞

Tk

(
2κ− κr − 1

κ− κr

)
= Tk(2)

Tk(2) ≥
1

2
(2 +

√
3)k ≥ 1

2
(3.7)k .

78



This implies fast convergence of the smallest eigenvalue of A, by using the
inverse iteration applied to A−1.

2. Application of the Rayleigh quotient to A:

lim
n→∞

Tk

(
λn + λr − 2λ1

λn − λr

)
= Tk(1) = 1.

This implies low convergence of the smallest eigenvalue of A for large n!
This shows that the first approach is better!!!
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5.5 Jacobi-Davidson-Algorithm

5.5.1 The Jacobi-Method

Let the coordinate system be transformed such that

e1 =

(
1
0

)

is a “good “ approximation of an eigenvector. We want to solve the
problem

A

(
1
z

)
= λ

(
1
z

)

z ∈ Cn−1, λ ∈ C.

Idea: Apply Newton method to

A

(
1
z

)
− λ

(
1
z

)
=: f

(
λ
z

)
.

Then, we have to calculate

(
λn+1

zn+1

)
:=

(
λn

zn

)
−
(

f ′

(
λn

zn

))−1

f

(
λn

zn

)
.

The calculation of

(
f ′

(
λn

zn

))−1

is difficult. Since, e1 is a “good “

approximation of an eigenvector, we can define the following approximative
Newton method:

(
λn+1

zn+1

)
:=

(
λn

zn

)
−
(

f ′

(
λn

0

))−1

f

(
λn

zn

)
.

Let us find a short formula for this iteration. To this end, let

A =

(
α cT

b F

)
. Then, we get

f ′

(
λn

0

)
=

(
0 cT

0 F

)
−
(

1 0
0 λnE

)

Let us abbreviate f

(
λn

zn

)
=

(
p
w

)
. Then, let q, u be such that

(
f ′

(
λn

0

))(
q
u

)
=

(
p
w

)
.
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This implies

(
cT u− q

(F − λnE)u

)
=

(
p
w

)
⇒ u = (F − λnE)−1w, q = cT u− p

(
p
w

)
= f

(
λn

zn

)
=

(
α + cT zn

b + Fzn

)
−
(

λn

λnzn

)

⇒ p = α + cT zn − λn

w = b + Fzn − λnzn = b + (F − λnE)zn

u = (F − λnE)−1 (b + (F − λnE)zn) = (F − λnE)−1b + zn

zn+1 = zn − u = (F − λnE)−1(−b)

q = cT
(
(F − λnE)−1b + zn

)
− α− cT zn + λn

= cT
(
(F − λnE)−1b

)
− α + λn

λn+1 = λn − q = cT zn+1 + α

SIAM Review, June 2000, Vol. 42, Number 2.

Instead of inverting F − λnE exactly, one can approximate F − λnE by the
diagonal. This means we apply the Jacobi iteration for solving
zn+1 = (F − λnE)−1(−b) as follows:

”
(F − λnE)zn+1 = −b⇒ “{

(D − λnE)zn+1 = (D − F )zn − b
λn+1 = cT zn+1 + α

}

By changing the notation of λn and λn+1 this leads to

λn = α + cT zn

(D − λnE)zn+1 = (D − F )zn − b

5.5.2 Motivation of Davidson’s Algorithm

Convergence of Eigenvalues, Eigenvectors.
Let V ⊂ H1(Ω) be a Hilbert space and a(·, ·) : V × V → R V -koerziv. Let
Vn be spaces such that

lim
n→∞

inf
{
||u− uh||V

∣∣uh ∈ Vn

}
= 0 ∀u ∈ V
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Let e ∈ V , e 6= 0 and λ ∈ C such that

a(e, v) = λ

∫

Ω
ev dµ ∀v ∈ V. (95)

Let en ∈ Vn, λn ∈ C such that

a(en, vn) = λn

∫

Ω
envndµ ∀vn ∈ Vn. (96)

Theorem 14. If λ is a single eigenvalue, then there is a constant c and a
sequence (en, λn) such that

||e− en||V ≤ cd(e, Vn)

Connection to the matrix eigenvalue problem
Let A be a matrix which describes a(·, ·) with respect to an L2-orthogonal
basis. Then (95) and (96), are equivalent to

A~e = λ~e

(A~en − λn ~en) ⊥ ~vn ~en ∈ ~Vn, ∀vn ∈ ~Vn

λn is called Ritz value of A with Ritz vector ~en ∈ ~Vn. Furthermore λn is an
eigenvalue of the matrix Bn = (bij), where bij = a(vi, vj) and (vi)i a basis

of ~Vj . There is an eigenvector ξn of Bn with eigenvalue λn such that

~en =
∑

i

ξi
nvi.

Davidson’s Idea:
Choose the optimal eigenvector from the subspace V as a new approximate
eigenvector. This is the Ritz vector. By increasing V one gets an
approximation of the exact eigenvector.

5.5.3 The concept of the Jacobi-Davidson-Algorithm

Idea A: Compute the optimal eigenvector
”
Ritz vector“ and

”
Ritz value“ λ

in the subspace Vk

Idea B: Enlarge the subspace Vk → Vk+1 by the Idea of
”
Jacobi“

orthogonal to the old
”
Ritz vector“ by a Newton step on

”
A

(
1
z

)
− λ

(
1
z

)
= 0“
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Orthogonalize the new vector t with respect to Vk and build Vk+1.

In the Jacobi method we had

A

(
1
z

)
− λ

(
1
z

)
=

(
0
0

)

A =

(
α cT

b F

)

Let us denote

A

(
1
0

)
− λ

(
1
0

)
=

(
α− λ

b

)
= r

the residual. In the Jacobi method, one has to compute

(F − λnE)−1(−b)

.

We have to describe this in suitable spaces.

Let û be an approximation of the eigenvalue θ. Let us rotate the
coordinate system such that




1
0
...
0


 =̂ û.

Now,







0
∗
...
∗








corresponds to a space T , which is orthogonal to û. This means:

V = Cû⊕ T and Cû⊥T

Now we can describe “t̃ := (F − λnE)−1(−b)” in suitable spaces. We have
to find a t ∈ T , ǫ̃C such that

(A− θE)t = −b + ǫ̃û

where b⊥û and r − b ∈ Cû. This is equivalent to t ∈ T , ǫ ∈ C, and

(A− θE)t = −r + ǫû (97)

83



This equation can approximatively be solved as follows.

Let M−1 be a preconditioner for A− θE.

This means that M is an approximation of A− θE.

Thus, instead of solving (97), we are looking for a t̂ ∈ T such that

Mt̂ = −r + ǫû

This leads to t̂ = −M−1r + M−1ǫû. Since t̂ ∈ T , we obtain:

0 = −ûM−1r + ûM−1ǫû

⇓

ǫ =
û∗M−1r

û∗M−1û

Now, one can solve

t̂ = M−1(−r + ǫû).

5.5.4 Jacobi-Davidson-Algorithm

Step 1. Start: Choose a non trivial start vector v.
Calculate v1 = v/‖v‖, w1 = Av1.
h11 = v∗1w1.
Set V1 = Rv1, W1 = Rw1, H1 = h11 .
u = v1, θ = h11.
Calculate v = w1 − θu.

Step 2. Iterate until convergence:

Step 3. Inner loop: For k = 1, ...,m − 1 :

• Let M be an approximation of A− θE. Calculate:

ǫ =
û∗M−1r

û∗M−1û
, t = M−1(−r + ǫu).

• Orthogonalize t with respect to Vk by Gram-Schmidt.
This leads to the vector tortho.
Extend Vk by t to obtain Vk+1.

84



• Calculate wk+1 = Avk+1 and
extend Wk by wk+1 to obtain Wk+1.

• Calculate V ∗
k+1wk+1 and v∗k+1Wk+1.

Then the whole matrix Hk+1 := V ∗
k+1AVk+1 is computed.

• Calculate the largest eigenvalue of θ with eigenvector s of Hk+1

(where ‖s‖ = 1).

• Calculate the Ritz vector u := Vk+1s.
Calculate û := Au (this is Wk+1s)
Calculate the residuum r := û− θu.

• Test convergence. Stop if ‖r‖ is small enough..

Step 4. Restart: If ‖r‖ can not be reduced any more, then set:

Set V1 = Ru, W1 = Rû, H1 = θ .
Goto Step 3.
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