
Simulation und wissenschaftliches Rechnen (SiwiR I) 2013/2014
Christoph Pflaum

Contents

1 Performance Optimization 2

1.1 Motivation . 2
1.2 Basic Concepts of Computer Architecture 4

1.2.1 Pipeline-Concept . 4
1.2.2 Memory-Concepts . 7

1.3 Methods of Performance Optimization 10
1.3.1 Basic Optimization done by the Compiler 10
1.3.2 Performance Optimization: Mult-Add 13
1.3.3 Eliminating Overheads 13
1.3.4 Loop Unrolling . 13
1.3.5 Optimization of Memory Access 18
1.3.6 Automatic Optimization 22

1.4 Shared Memory Parallelization 22
1.4.1 Shared Memory Computer Architecture 22
1.4.2 Parallelization with OpenMP 22

1.5 Optimization in C and C++ 27
1.5.1 Inlining and Const . 27
1.5.2 Meta-Programming in C++ 28

2 Finite Difference Discretization 29

2.1 Model Problem: Poisson’s Equation 29
2.2 Finite Differences . 31
2.3 Convergence of the Finite Difference Discretization 34
2.4 Eigenvectors and Eigenvalues of Lh 37

3 Basic Solvers 38

3.1 Introduction . 38
3.2 Gauss-Seidel Relaxation . 40
3.3 cg Iteration . 41
3.4 Estimation of the Algebraic Error 42
3.5 Estimation of the Convergence Rate 45
3.6 Estimation of the Convergence Rate by Residuum 46

1

3.7 Finding the Meshsize and the Number of Iterations 46

4 Software Development 47

4.1 Debugging . 47
4.2 Testing . 53
4.3 Software Development . 56
4.4 Basic Concept of Expression Templates 58
4.5 Interfaces with Expression Templates 66

5 Parallelization 70

5.1 Introduction . 70
5.2 MPI - Message Passing Interface 71
5.3 Distributed Memory Parallelization of PDE-Solvers 79
5.4 Automatic Parallelization with MPI and Expression Templates 84

6 Raytracing 85

7 Finite Differences 93

7.1 Stability Analysis . 93
7.1.1 Discretization of Stiff ODE’s 93
7.1.2 Discretization of Parabolic PDE’s 96
7.1.3 Discretization of Hyperbolic PDE’s 100

7.2 Order of Consistency . 103
7.3 Shortly-Weller Discretization for Curvilinear Bounded Domains105

8 Nested Dissection 107

1 Performance Optimization

1.1 Motivation

Assume that we want to compute the flow of water in a hydroelectric power
plant or the flow of air around a car.

2

• It is impossible to compute the flow exactly.

• We have to compute an approximate solution on a discretization grid.

Example of a 2D discretization grid:

kx grid points

ky grid points

h

In 3D, O(kx ∗ ky ∗ kz) data and
O(kx ∗ ky ∗ kz ∗ kt) floating-point operations are needed.

3

Example: kx = ky = kz = 200 and kt = 10000.
This leads to: kx ∗ ky ∗ kz = 8 ∗ 106 data and
kx ∗ ky ∗ kz ∗ kt = 8 ∗ 1010 operations.

The computational amount of numerical simulations can be very large.
Depending on the problem the computational amount can even be arbitrary
large.

Therefore, very fast computers are needed. This leads to the following
problems in computer architecture:

• Due to technical reasons the clock rate cannot be arbitrary high.

• In the last years the CPU performance (clock rate, ...) of processors
increased more than the performance of memory (bandwidth, ...).

1.2 Basic Concepts of Computer Architecture

1.2.1 Pipeline-Concept

Definition 1 (Latency and bandwidth, access time).

• The latency L is the time needed until the execution of an instruction
can start.

• The execution of every instruction needs a certain computational time.

• The bandwidth B is the maximum speed of message transfer in Mbyte/sec

(or Gbps) for an infinitely large message.

Thus, the time T for sending a message of size M is:

T = L+M/B.

• The time for reading a certain amount of data from memory is often
called access time.

Figure 3 depicts a simple pipeline with 5 cycles. Modern processors often
contain longer pipelines. Observe, that the latency of a single instruction is
2 cycles.

Example 1.

AMD Opteron: 15 pipeline stages
Intel Nehalem: 16 pipeline stages

4

main memory

cache

register

CPU

Figure 1: A simple serial computer.

FETCH
instructions

DECODE
instructions

COMPUTATION
and/or

LOAD / STORE

of data

data
WRITE

1 cycle 1 cycle 1 cycle2 cycle

Figure 2: Pipeline concept.

This means FETCH, DECODE, ... can be executed in every cycle, if this
leads to correct computations.

Bypassing

Example: Computation of x ∗ (a+ b).
By a “bypassing concept”, the result of a + b can be used directly after

computing it for a multiplication with x.

Fusion of Multiply and Add

Example: Computation of x ∗ a+ b.
Several processors are able to compute one multiplication and one addi-

5

FETCH 1 FETCH 2 FETCH 3 FETCH 4 FETCH 5

DECODE 1 DECODE 2 DECODE 3 DECODE 4

COMPUTE 1 COMPUTE 2 COMPUTE 3

COMPUTE 1 COMPUTE 2

WRITE 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

Figure 3: Parallel computations in a pipeline.

tion by one instruction.

Parallel Computations in a Processor

Modern processors are able to perform several instructions in parallel.
This can be obtained by

• superscalar processors and

• VLIW processors (very long instruction word)

e.g. EPIC-concept
(Explicitly Parallel Instruction Computing)

Superscalar processors are able to perform the parallelization automatically.
VLIW processors require certain instructions for performing a parallel com-
putation.

Example 2.

• superscalar processors: usually:
2 floating point operations and 2 integer operations and
1 read or write of data.

• Itanium 2: EPIC

6

• Radeon R600: GPU

Stalls of Pipeline-Processes

If a pipeline cannot accept a new instruction at a certain stage, than this
is called “stalled”. There exist several reasons for this. One is that certain
data are needed which are not contained in registers. Another may be that
a previous computation has to end until the new computation can be per-
formed.

−→ This increases the latency time.

1.2.2 Memory-Concepts

Figure 4 depicts the access time of data of different memories. A high perfor-
mance can be obtained only if the data are contained in the cache or register.

main memory

e.g. maximal 4GByte

cache
e.g. 32kByte or 3MByte

register
e.g. 32

CPU

access time: 0 cycles

access time: 3 cycles

access time: 32 cycles

Figure 4: Access time of a processor

The cache consists of several parts of different sizes.
A large cache implies a higher access time (see Figure 5) .
The performance of a computer program is influenced by the access time

of data from cache or main memory. Therefore, we have to know how this

7

:
Itanium 2 cache

access time 1
L1: 16 KB

access time 5+

L2: 256 KB

access time 12+

L3: 3MB

Figure 5: Cache of Itanium 2

access time can be decreased and how data are stored in a memory and
copied from one memory to the other.

Important is that data are copied by blocks of a certain fixed size. Let us
assume that we want to copy data to a memory with n blocks. Then, there
are three concepts to store a new block of data at the block with number s
in the memory:

• fully associative: The block can be stored everywhere and can get any
number s (or at a free block).

• direct mapped: The number s is k mod n.

• set associative with l sets: The number s can be chosen arbitrary in
between (k mod l) ∗ n/l and ((k mod l) + 1) ∗ n/l − 1

For each of these cases there is an example in Figure 6. In particular, in
case of a “direct mapped cache” the size of a vector has an influence of the
performance.

Example: Intel ’Nehalem’ Architektur:

8

1 2 3 4 5 6 7 8 9 10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

memory

block number

fully associative
block 11 can
go anywhere

direct mapped
block 11 goes to
3 = 11 mod 8

set associative (4 sets)
block 11 can
go anywhere in set 3

set
0

set
1

set
2

set
3

block number
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

block number

Figure 6: Blocks in a memory.

Nehalem L1 L2 L3

size 32KB 256 KB 2MB
line size 64 128 128

number of lines 512 2048 16,384
associative sets 64 256 1024
associative 8-way 8-way 16-way

Example: Itanium 2:

Itanium 2 L1 L2 L3

size 16KB 256 KB 3MB
line size 64 128 128

number of lines 256 2048 24,576
associative sets 4 8 12
associative 64-way 256-way 2048-way

update policy write write write
through back back

9

Example: IBM Power 3:

IBM Power 3 L1 L2

size 65KB 4MB
line size 128 128

number of lines
associative sets
associative 128-way direct mapped

update policy write write
through back

A cash miss occurs, if data from the cache are needed, but they are not in
the cache. Therefore these data have to be fetched from a larger memory.

• Compulsory cache misses:
Every data have to be fetched a first time to the cash. These cash
misses cannot be avoided.

• Capacity cache misses: Every cache has a maximal size. Therefore it
might happen, that a cash line was overwritten by another cash line.

• Conflict cache misses: If the cache is a directly mapped or set asso-
ciative cache, then it may happen, that the cache cannot completely
be used. Thus, cache lines will be overwritten, however there are free
cache lines.

1.3 Methods of Performance Optimization

1.3.1 Basic Optimization done by the Compiler

In this section, we describe basic optimization, which the compiler can do
and sometimes cannot do. So this section may help to avoid time-consuming
manual optimizations and it can help to change the code such that the com-
piler is able to do the optimization.

Common Subexpression Elimination

Instead of

q = a+b+c;

p = a+b+d;

10

the compiler evaluates

t = a+b;

q = t+c;

p = t+d;

But the compiler will not replace

q = a+b+c;

p = a+d+b;

by

t = a+b;

q = t+c;

p = t+d;

since this is not the same computation in floating arithmetic. Futhermore,
the compiler will not simplify

q = f(x)+b*f(x);

by

t = f(x);

q = t+b*t;

Loop-Invariant Code Motion

The compiler optimizes

for(i=0;i<n;++i)

a[i] = r*s+b[i];

by

t = r*s;

for(i=0;i<n;++i)

a[i] = t+b[i];

Evaluation of Constants

The compiler optimizes

11

x = 3*4.0 + y;

by

x = 12.0 + y;

−→ Optimization by meta-programming in C++! (See section 1.5.2)

Strength Reduction

For an integer i the compiler replaces

2*i

by

i+i

In FORTRAN, the compiler replaces

x**2

by

x*x

Instruction Scheduling

Instead of

a = b+c;

d = 2.0*a+e;

g = 2.0*c;

q = g+b*2.0;

the compiler could evaluate

a = b+c;

g = 2.0*c;

d = 2.0*a+e;

q = g+b*2.0;

and try to optimize the use of the registers. This is a very complex optimiza-
tion problem.

12

1.3.2 Performance Optimization: Mult-Add

Several processors perform a+b*c as fast as one multiplication. Thus,

a = b+c*d+f*g;

often is faster than

a = f*g+c*d+b;

1.3.3 Eliminating Overheads

There exist a lot of ways to avoid overheads.
A simple example is the following. Replace

if(sqrt(tt) < eps) { ... }

by

if(tt < eps*eps) { ... }

1.3.4 Loop Unrolling

Loop unrolling is the general concept to improve perfor-
mance!

Instead

for(int i=0;i<n*m;++i) Comp(i);

perform

for(int i=0;i<m*n;i=i+n)

for(int j=0;j<n;j=j+1) Comp(i+j);

or

for(int i=0;i<m*n;i=i+n) {

Comp(i+0);

Comp(i+1);

...

Comp(i+n-1); }

13

Perform additional changes of the computations in the interior loop!
Loop unrolling can optimize the performance of a code by

• software pipelining

• instruction parallelization

• improvement of the memory access.

Instruction-parallelization
Consider the algorithm to compute the l2 norm of a vector. Then,

norm =0.0;

for(int i=0;i<n;++i) {

norm = norm + a[i]*a[i];

}

norm = sqrt(norm);

is slower than

t1 = t2 = 0.0;

for(int i=0;i<n;i=i+2) {

t1 = t1 + a[i+0]*a[i+0];

t2 = t2 + a[i+1]*a[i+1];

}

norm = t1 + t2;

norm = sqrt(norm);

Figure 7 depicts the performance for k = 1, 2, 3, 4 parallel instructions.

Pentium 4 - Vectorization

The Pentium 4 architecture allows two floating point instructions per
cycle by SSE2 floating point instructions. Using the option -xW for the
Intel-Compiler this leads to a so called “vectorization”. For example the
compiler shows the output:

cpc -O3 -xW -c main.cc

main.cc(32) : (col. 3) remark: LOOP WAS VECTORIZED.

main.cc(84) : (col. 5) remark: LOOP WAS VECTORIZED.

icpc -O3 -xW -o run main.o -lm

14

10000 1e+05 1e+06

1e-05

0.0001

0.001

inst 1
inst 2
inst 3

Figure 7: Computational time of a scalar product with k parallel instructions.
(

Figure 8 shows the computational time of

for(i=0;i<n;++i)

c[i] = a[i]*a[i] + b[i]*b[i]*b[i];

with respect to n and Figure 9 shows the computational time of

for(i=0;i<n;++i)

c[i] = a[i] + cos(b[i]);

with respect to n for a Pentium 4 . The speed up by a factor of roughly 2 is
caused by the SSE2 floating point instructions, which lead to a vectorization
of the code.
Improvement of memory access
Consider the matrix vector multiplication. Then,

for(int i=0;i<n;++i) {

t =0.0;

15

Figure 8: Improvement of performance for a simple vector polynomial.

for(int j=0;j<n;++j) {

t = t + a(i,j)*x[j];

}

y[i]=t;

}

is slower than

for(int i=0;i<n;i=i+2) {

t0 =0.0;

t1 =0.0;

for(int j=0;j<n;++j) {

t0 = t0 + a(i ,j)*x[j];

t1 = t1 + a(i+1,j)*x[j];

}

y[i] = t0;

y[i+1] = t1;

}

Figure 10 depicts the performance with loop unrolling for k = 1, 2, 3.
Such an improvement of the memory access can also be applied to improve

16

Figure 9: Improvement of performance for a vector expression with cos.

several Gauss-Seidel relaxations. This is called blocking.

Automatic loop unrolling

Loop unrolling is often automatically performed by the compiler. But in
some cases it is impossible for the compiler to unroll a loop. An example is:

sum = 0.0;

for(int i=0;i<n;i=i+1)

for(int j=0;j<n;j=j+1) {

sum = sum + x[i][j] * (i*i + j*j);

}

By hand it is possible to do a loop unrolling with respect to i and j.

sum0 =0.0;

sum1 =0.0;

sum2 =0.0;

sum3 =0.0;

for(int i=0;i<n;i=i+2) {

17

0 5000 10000 15000 20000

0.001

0.01

0.1

unrolling 1
unrolling 2

Figure 10: Computational Time of Matrix Vector Multiplication.

for(int j=0;j<n;j=j+2) {

sum0 = sum0 + x[i][j] * (i*i + j*j);

sum1 = sum1 + x[i+1][j] * ((i+1)*(i+1) + j*j);

sum2 = sum2 + x[i][j+1] * (i*i + (j+1)*(j+1));

sum3 = sum3 + x[i+1][j+1] * ((i+1)*(i+1) + (j+1)*(j+1));

}

}

sum = sum0+sum1+sum2+sum3;

There is a limit for the size of loop unrolling. This limit is caused by

• a limited number of registers and

• overhead caused by too small loops and a loop length, which is not a
multiple of the size of the interior loop.

1.3.5 Optimization of Memory Access

−→ Optimization of memory access is very important in HPC!

18

The general rule is:

−→ Optimize data locality!

This means compute with data from cache!

Let us consider the following two examples in FORTRAN:

dimension a(n,n),b(n,n)

LOOP A

do 10,i=1,n

do 10,j=1,n

10 a(i,j)=b(i,j)*b(i,j)+1.

and

dimension a(n,n),b(n,n)

LOOP B

do 10,j=1,n

do 10,i=1,n

10 a(i,j)=b(i,j)*b(i,j)+1.

Which version is faster?
The ordering of data in the matrix a for n = 4 is

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Therefore, the loop B is faster.
Let us consider the following two examples in C:

double a[n][n], b[n][n];

// LOOP A

for(i=0;i<n;++i)

for(j=0;j<n;++j)

a[i][j]=b[i][j]*b[i][j]+1.0;

and

19

double a[n][n], b[n][n];

// LOOP B

for(j=0;j<n;++j)

for(i=0;i<n;++i)

a[i][j]=b[i][j]*b[i][j]+1.0;

Now, loop A is faster!

Let us consider the following example in C++:

double **a, **b;

a = new double* [n];

b = new double* [n];

for(i=0;i<n;++i) {

a[i] = new double[n];

b[i] = new double[n];

}

// LOOP C

for(i=0;i<n;++i)

for(j=0;j<n;++j)

a[i][j]=b[i][j]*b[i][j]+1.0;

Now, the data of a are cut in several pieces. This leads to less data locality
and optimizations as vectorization cannot be performed in an optimal way.

The following code leads to a better data allocation:

double *a, *b;

a = new double[n*n];

b = new double[n*n];

// LOOP C

for(i=0;i<n;++i)

for(j=0;j<n;++j)

a[i*n+j]=b[i*n+j]*b[i*n+j]+1.0;

Using such a data structure, an optimal performance can be obtained on
vector machines.
Loop Fusion Consider the follwing code.

Instead of

20

for(i=0;i<n;++i)

u[i] = u[i] + tau * g[i];

for(i=0;i<n;++i)

r[i] = b[i] + alpha * g[i];

implement

for(i=0;i<n;++i) {

u[i] = u[i] + tau * g[i];

r[i] = b[i] + alpha * g[i];

}

Data Layout
Construct a data layout such that the computations can be done locally.

As an example consider the coordinates of particles. In FORTRAN write

dimension r(3,n)

instead of

dimension rx(n), ry(n), rz(n)

Blocking
Blocking is similar to loop unrolling. Consider the matrix transposition

dimension a(n,n),b(n,n)

LOOP A

do 10,i=1,n

do 10,j=1,n

10 b(i,j)=a(j,i)

Subdivide the index set

(1, 1) ... (1, n)
... ...

...
(n, 1) ... (n, n)

in small blocks of size s ∗ s:
(k1, k2) ... (k1, k2 + s)

... ...
...

(k1 + s, k2) ... (k1 + s, k2 + s)
Then, perform the matrix transposition on each of these blocks.
The size of the cache must be larger than 2 ∗ s ∗ s.

21

1.3.6 Automatic Optimization

Compilers try to perform an automatic optimization. In particular, FOR-
TRAN compilers are able to optimize a code by loop unrolling and automatic
instruction parallelization.

Using C or C++, there is a problem with aliasing.
Let us consider the program

void f(double *a,double *b,double *c,double *d){

for(int i=0;i<n;++i)

a[i] = b[i] + c[i] * d[i];

} }

Then, the C compiler does not know whether b[i] and a[i-1] point to the
same value or not. Therefore, some compilers cannot perform an automatic
optimization in this case.

To avoid the problem with aliasing some compilers support the keyword
restrict or restrict for pointers as follows:

double * restrict a;

double * restrict b;

double * restrict c;

double * restrict d;

for(int i=0;i<n;++i)

a[i] = b[i] + c[i] * d[i];

}

1.4 Shared Memory Parallelization

1.4.1 Shared Memory Computer Architecture

A parallel computer architecture with a shared memory consists of several
processors and one common memory (see Figure 11). Data are exchanged
via a crossbar. This limits the number of processors

1.4.2 Parallelization with OpenMP

The parallelization with OpenMP is based on

• threads

22

Crossbar

memory

proc 2proc 1 proc 3 proc 4

Figure 11: Shared Memory Computer Architecture.

• the usage of pragmas like # pragma omp parallel for

A simple parallelization of for loops in OpenMP can be obtained as fol-
lows:

#include <omp.h>

...

int main() {

...

double * __restrict a;

double * __restrict b;

double * __restrict c;

...

#pragma omp parallel for

for(int i=0;i<n;++i) {

c[i] = a[i]*a[i] + b[i]*b[i]*b[i];

}

Figure 12 depicts the computational time of this simple for-loop with
and without restrict .

23

Figure 12: Parallelization with and without restrict

For more complicated constructions the simple pragma
pragma omp parallel for

is not sufficient to obtain an efficient parallelization. One reason for poor
performance of an OpenMP parallelization might be that the threads often
need the same data from main memory.

One way to avoid this is tell the compiler, that a variable is only used
private by every thread. This can be done by the private construction as
follows:

...

double * __restrict a;

double * __restrict c;

double sum;

int i,j;

...

\\ good version

#pragma omp parallel for private(j,sum)

for(i=0;i<n;++i) {

sum = 0.0;

for(j=0;j<n;++j) {

sum = sum + a[i*n+j];

}

c[i] = sum;

}

24

}

Computational time for OpenMP parallelization with
2 threads:

n 12 120 1200 12000
sec 3.9e-7 4.6e-5 4.7e-3 4.9e-1
sec parallel (good version) 1.5e-6 2.4e-5 2.3e-3 2.4e-1

The shared memory concept of OpenMP leads to poor performance, if
very often the same same piece data is needed by both threads as shown in
the following code:

...

double * __restrict a;

double * __restrict b;

double * __restrict c;

double sum;

int i,j;

...

// bad version

#pragma omp parallel for private(j,sum)

for(i=0;i<n;++i) {

sum = 0.0;

for(j=0;j<n;++j) {

sum = sum + a[j*n+i];

}

c[i] = sum;

}

}

This parallelization increases the computational time:

n 12 120 1200 12000
sec 3.9e-7 4.6e-5 4.7e-3 4.9e-1
sec parallel (bad version) 1.5e-6 1.1e-4 1.9e-2 3.0

25

reduction Construction in OpenMP
Let us assume we want to calculate the euclidian norm of a vector

‖v‖2 =

√

√

√

√

n
∑

i=1

v2i

Then, the following code leads to the wrong result:

...

double norm;

norm = 0.0;

#pragma omp parallel for

for(i=0;i<n;++i) {

norm = norm + a[i]*a[i];

}

norm = sqrt(norm);

}

A correct code can be obtained by the reduction construction in OpenMP
as follows:

...

double norm;

norm = 0.0;

#pragma omp parallel for reduction(+ : norm)

for(i=0;i<n;++i) {

norm = norm + a[i]*a[i];

}

norm = sqrt(norm);

}

reduction can be applied to the operators
+,*,-,&,|,&&,^ ,|| .
Here, || reduces a maximum calculation of a variable.

Not Parallelizable Loops
Consider the loop

26

...

for(i=1;i<n;++i)

a[i] = a[i-1]+b[i];

...

}

OpenMP will not parallelize this loop in a correct way.

Not Parallelizable Relaxation Loop
OpenMP cannot parallelize the following loop in a correct way:

...

for(i=1;i<n-1;++i)

a[i] = 0.5*(a[i-1]+a[i+1]);

...

}

Parallelizable Relaxation Loop
The following loop can be parallelized in a correct way by OpenMP:

...

#pragma omp parallel for

for(i=1;i<n-1;i=i+2)

a[i] = 0.5*(a[i-1]+a[i+1]);

#pragma omp parallel for

for(i=2;i<n-1;i=i+2)

a[i] = 0.5*(a[i-1]+a[i+1]);

...

1.5 Optimization in C and C++

1.5.1 Inlining and Const

The call of a function requires computational times. To avoid this problem
a function can be defined to be inlined.

Example:

27

inlining double f(double x) { ... };

Advantage:

• optimization of the code in the area where the function is called (such
as common subexpression elimination and vectorization)

• no overhead by calling the function

Disadvantage:

• longer compilation time

• longer executable code

Parameters of functions which will not be changed should be defined to
be const.

Example:

inlining double f(const double x) { ... };

Member functions of a class which do not modify member values of the class
should be defined to be const member functions:

Example:

class A {

...

inlining double f(const double x) const { ... };

};

const can help a compiler to optimize a code.

1.5.2 Meta-Programming in C++

The compiler optimizes

x = 3*4.0 + y;

by

28

x = 12.0 + y;

Can we obtain such an optimization for

x = Factorial(4) + y;

where Factorial(4) mathematically means

4! = 1 ∗ 2 ∗ 3 ∗ 4 = 24

Consider the C++ construction

template<int N>

class Factorial {

public:

enum { value = N * Factorial<N-1>::value };

};

class Factorial<1> {

public:

enum { value = 1 };

};

Then, the compiler replaces

x = Factorial<4>::value + y;

by

x = 24 + y;

Meta-Programming means to write a program, which is evaluated during
compile-time and not during runtime.

2 Finite Difference Discretization

2.1 Model Problem: Poisson’s Equation

Figure 13 shows the construction of a wall. The insulation property of the
wall depends on the wall construction. The following mathematical model
can be used to calculate the insulation property of a wall:

29

outside: cold

inside: warm

λinsulation = 0.04 W
mK

λKS = 0.56 W
mK

Figure 13: Construction of a wall

λinsulation

λKS

Γin

Γout

ΓN

Figure 14: Model of a wall

−div λ gradT = 0 on Ω
T |Γout = −10 on Γout

T |Γin
= 20 on Γin

∂T
∂~n
|ΓN

= 0 on ΓN

See Figure 14 for the definition of the domain Ω and the boundaries
Γout,Γin,ΓN . An optimal discretization of such a problem is the finite ele-
ment discretization. For reason of simplicity, let us apply the finite difference
discretization. To this end, let us additionally consider the following simpli-
fied partial differential equation:

30

hy

hx

Γh

Ωh

Figure 15: Finite difference discretization grid

−△T + cT = f on Ω
T |Γ = g on Γ
Ω = (0, L)2,

where c > 0 is a constant and L > 0 is the size of the domain. Observe that

−div gradT = −△T = −∂2T

∂x2
− ∂2T

∂y2
.

2.2 Finite Differences

The first step in a finite difference discretization is the construction of a
discretization grid (see Figure 15). In case of Ω = (0, L)2, we obtain:

Ωh = {(ih, jh)|i, j = 1, . . . , m− 1}
Ω̄h = {(ih, jh)|i, j = 0, . . . , m}
Γh := Ω̄h\Ωh.

where h = L
m
.

The second step is to replace derivatives by finite differences:
Let ex = (1, 0) and ey = (0, 1), then

31

∂u

∂x
(x, y) ≈ u(z + hex)− u(z)

h
∂u

∂x
(x, y) ≈ u(z)− u(z − hex)

h
∂u

∂x
(x, y) ≈ u(z + hex)− u(z − hex)

2h

and

∂u

∂y
(x, y) ≈ u(z + hey)− u(z)

h
...

∂2u

∂x2
(x, y) ≈ u(z + hex)− 2u(z) + u(z − hex)

h2

∂2u

∂y2
(x, y) ≈ u(z + hey)− 2u(z) + u(z − hey)

h2
.

Thus, we get

−∆u(z) =

(

−∂2u

∂x2
− ∂2u

∂y2

)

(z) ≈

≈ −u(z + hex) + u(z + hey)− 4u(z) + u(z − hex) + u(z − hey)

h2

Using these finite difference formulas, we get the following discretization:

−∆u(z) =

(

−∂2u

∂x2
− ∂2u

∂y2

)

(z) = f(z) for z ∈ Ωh

−uh(z + hex)− 2uh(z) + uh(z − hex)

h2

−uh(z + hey)− 2uh(z) + uh(z − hey)

h2
= f(z)

32

and u(z) = g(z)

≈ = for z ∈ Γh = Ωh\Ωh

uh(z) = g(z)

Here uh is the approximate solution on the discretization grid Ωh.
The finite difference discretization leads to a linear equation system

Lh Uh = Fh, (1)

where Uh = (uh(z))z∈Ωh
, and Lh is a |Ωh| × |Ωh| matrix.

The discretization can be described by the stencil




− 1
h2

− 1
h2

4
h2 − 1

h2

− 1
h2



 =





m−1,1 m0,1 m1,1

m−1,0 m0,0 m1,0

m−1,−1 m0,−1 m1,−1



 .

Let us abbreviate Ui,j := uh(ih, jh) and fi,j := f(ih, jh). Then, the
matrix equation (1) is equivalent to:

1
∑

k,l=−1

mklUi+k,j+l = fi,j for i, j = 1, . . . , m− 1.

This implies that the entries of the matrix Lh = (l(i,j),(o,p))1≤i,j,o,p≤m−1 are

l(i,j),(o,p) =

{

mk,l if o = i+ k and p = j + l and |k| ≤ 1, |l| ≤ 1
0 else.

To describe the right hand side Fh in (1), define

g̃(x, y) =

{

g(x, y) if (x, y) ∈ Γ = ∂Ω
0 else.

Then, we get for Fh = (Fi,j)1≤i,j≤m−1

Fi,j = fi,j −
1

∑

k,l=−1

mkl g̃((i+ k)h, (j + l)h)

This implies, that in case of g = 0 we obtain

Fi,j = fi,j = f(ih, jh).

33

Let Ω = (0, 1)2. Number the points of the discretization grid Ωh by:

h(1, 1), ..., h(1, m− 1), h(2, 1), ...

Then, the FD discretization leads to an equation Lh Uh = Fh, where

Lh =
1

h2











Dh −E

−E Dh
. . .

. . .
. . . −E
−E Dh











, and where

Dh =











4 −1

−1 4
. . .

. . .
. . . −1
−1 4











.

2.3 Convergence of the Finite Difference Discretiza-

tion

Before we describe suitable norms for FD let us make a remark to norms of
the finite element (FE) method.

The finite element method leads to approximations uh ∈ C(Ω) of an exact
solution u ∈ C(Ω) of a PDE.

Suitable norms for calculating the discretization error are

‖u− uh‖L∞
:= max

x∈Ω
|(u− uh)(x)|

‖u− uh‖L2
:=

√

∫

Ω

|(u− uh)(x)|2 dx

• These norms have the normalization property

(u− uh)(x) = 1 ∀x, h ⇒ ‖u− uh‖ = const ∀h

• In case of solutions with singularities onecan expect a better conver-
gence for the ‖.‖L2

norm.

Let Ωh be a sequence of discretization grids.

34

We are looking for a sequence of norms on R|Ωh| with similar properties
for the FD method.

Example: A not suitable norm is

‖w‖ :=

√

∑

z∈Ωhi

|w(z)|2.

Definition 2. We call the sequence of norms ‖ · ‖hi
on R|Ωi| normalized, if

‖1‖hi
= 1,

where 1 is the constant function x 7→ 1.

Example 3.

‖x‖2 :=

√

1

|Ωi|
∑

z∈Ωi

x2
z

‖x‖∞ := max
z∈Ωi

|xz|

Theorem 1. Consider the finite difference discretization of Poisson’s equa-
tion on Ω = (0, L)2 with meshsize h. Then, there is a constant C > 0 such
that

‖u− uh‖∞ ≤ Ch2

(∥

∥

∥

∥

∂4u

∂x4

∥

∥

∥

∥

∞
+

∥

∥

∥

∥

∂4u

∂y4

∥

∥

∥

∥

∞

)

.

Example:

• If u = x2 ∗ y3, then u = uh,

• If u = x4, then ‖u− uh‖∞ ≤ Ch2.

Example: Poisson’s equation on (0, 1)2.
Let f(x, y) = −12.0 ∗ x2 − exp(y). Then, the exact solution of

−△u = f = −12.0 ∗ x2 − exp(y) on Ω
u|∂Ω = x4 + exp(y) on ∂Ω

35

is
u(x, y) = x4 + exp(y).

The following table depicts the error eh,max := ‖u− uh‖∞:
h = 0.5 0.25 0.125 0.0625 0.03125
N = 1 9 49 225 961

eh,max ≈ 0.033 0.0094 0.0024 0.00061 0.00015
eh/2,max /eh,max ≈ 0.28 0.26 0.25 0.25

How to Choose the Meshsize h:
Assume that the discretization error converges according

‖u− uh‖ ≤ Chp.

How should we choose h to obtain a discretization error ‖u− uh‖ ≤ η?
Assume that we can calculate ‖uh/2 − uh‖.

Then, the assumption ‖u− uh‖ ≈ Chp leads to

‖u− uh‖ ≈ 1

1− 2−p
‖uh/2 − uh‖. (2)

Thus, we have to choose h such that

‖uh/2 − uh‖ ≤ η(1− 2−p).

Let us show (2). Let us assume the asymptotic behavior

‖u− uh‖ ≈ Chp.

Then, we get

‖u− uh/2‖ ≈ C

(

h

2

)p

.

and

‖u− uh/2‖ ≈ ‖u− uh‖
1

2p
.

This implies

‖u− uh‖ ≤ ‖u− uh/2‖+ ‖uh/2 − uh‖

≤ 1

2p
‖u− uh‖+ ‖uh/2 − uh‖.

(

1− 1

2p

)

‖u− uh‖ ≤ ‖uh/2 − uh‖

This shows (2).

36

Figure 16: Eigenvector e1,1 Figure 17: Eigenvector e2,1

Figure 18: Eigenvector e3,3

2.4 Eigenvectors and Eigenvalues of Lh

Consider the FD discretization of Poisson’s equation on the unit square.
Then, the matrix Lh has the eigenvalues

λν,µ =
4

h2

(

sin2

(

πνh

2

)

+ sin2

(

πµh

2

))

with eigenvectors

eν,µ =
(

sin(νπxi) sin(µπyj)
)

(xi,yj)∈Ωh

where ν, µ = 1, · · · , m− 1

and h = 1
m
.

37

• Smallest eigenvalue: 4
h22 sin

2
(

πh
2

)

≈ 2π2 .

• Largest eigenvalue: 4
h22 sin

2
(

π(m−1)
2m

)

≈ 8
h2 .

3 Basic Solvers

3.1 Introduction

The FD discretization leads to an equation system

Ahuh = bh,

where Ah is an n× n matrix and uh, bh ∈ Rn are vectors.
There are

• direct methods and

• iterative methods

for solving such an equation system.
↓

• Both methods lead to an approximation ũh of uh.

• ‖uh − ũh‖ is called algebraic error.

• ‖u− uh‖ is called discretization error.

• ‖u− ũh‖ is called total error.

The algebraic error should satisfy the property

‖uh − ũh‖ ≤ ‖u− uh‖α, where α ≈ 0.1.

Let the discretization satisfy ‖u− uh‖ ≤ Ch2.
Then, this implies

‖u− ũh‖ ≤ C(1 + α)h2.

It is very difficult to calculate numerically the

• algebraic error ‖uh − ũh‖ and the

38

• discretization error ‖u− uh‖.
Therefore, one often calculates

• the residuum norm ‖Ahũh − bh‖ or

• the norm ‖ũh − ũh/2‖.
If the exact solution is known, then one can numerically calculate the total
error

• total error ‖u− ũh‖.
Let us recall the basic properties of the Gauss-elimination:

• The Gauss-elimination applied to a full matrix requires

– O(n3) operations

– O(n2) data

for solving a linear equation system with n unknowns.

• The Gauss-elimination applied to a band matrix of bandwidth 2k − 1
requires

– O(n ∗ k ∗ k) operations
– O(n ∗ k) data.

A band matrix of
bandwidth k
has the form:

















a11 . . . a1k
... a22

. . .
. . .

ak1
. . .

. . .
. . . an−k+1,n

. . .
. . . an−1,n−1

...
an,n−k+1 . . . ann

















Now consider the matrix of the FD discretization of Poisson’s equation on
Ω = (0, 1)2. The discretization matrix is a band matrix of size n = (m− 1)2

and bandwidth 2m− 1, since h = 1
m

Lh =
1

h2











Dh −E

−E Dh
. . .

. . .
. . . −E
−E Dh











, where Dh =











4 −1

−1 4
. . .

. . .
. . . −1
−1 4











39

• Then, the Gauss-elimination applied to the band matrix Lh requires

– O(n2) operations

– O(n1.5) data.

An iterative solver for solving a linear equation system is a mapping

S : Rn → R
n

with start vector x0 ∈ R such that the sequence (xi)i∈N defined by

xi+1 = S(xi)

converges to x:
lim
i→∞

xi = x.

Obviously, x should satisfy the fix point property x = S(x).

3.2 Gauss-Seidel Relaxation

Relaxation of the i-th unknown xi:
Correct xold

i by xnew
i such that the i-th equation of the equation system

A · x = b

is correct.
Jacobi-iteration:

“Calculate the relaxations simultaneously for all i = 1, . . . , n”
This means:

If xold = xk, then let xk+1 = xnew .

Gauss-Seidel-iteration:
“Calculate relaxation for i = 1, . . . , n and use the new values ”
This means:

xold,1 = xk

Iterate for i = 1, . . . , n:
Calculate xnew,i by relaxation of the i-th component.
Put xold,i+1 = xnew,i.

xk+1 = xnew,n

40

Remark.

• Jacobi-iteration is independent of the numbering of the grid points

• The convergence rate of the Gauss-Seidel iteration depends on the num-
bering of the grid points

For Gauss-Seidel iteration one often applies lexicographical and red-black
numbering of the grid points.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 14 2 15 3

16 4 17 5 18

6 19 7 20 8

21 9 22 10 23

11 24 12 25 13

3.3 cg Iteration

Let A be a symmetric positive definite n× n matrix
and b ∈ R

n.
The gradient method for solving

Ax = b

is

Start with x0 and calculate the sequence xk by:

dk = b− Axk

αk =
dTk dk
dTkAdk

xk+1 = xk + αkdk,

where k = 0, 1, 2,

The cg iteration is:

41

Let the start solution be x0. Then: g0 = Ax0 − b

δ1 = gT0 g0 if δ1 ≤ ǫ stop

d1 = −g0

recursion: k = 1, . . . : hk = Adk

α =
δk

dTk hk

xk := xk−1 + αdk

gk := gk−1 + αhk

δk+1 = gTk gk if δk+1 ≤ ǫ stop

βk = δk+1/δk

dk+1 = −gk + βkdk

3.4 Estimation of the Algebraic Error

Assume we want to solve
Ax = b

and we get the approximation x̃. A practical problem is:

• How large is the algebraic error ‖x̃− x‖?

• Assume, we apply an iterative solver.
How many iterations do we have to perform to obtain a small algebraic
error?

• How to choose ǫ in the cg-iteration?

• Assume, you have implemented two iterative solvers. Which one is
faster?

But: We do not know x !

Estimation of the Algebraic Error for Tests:
For testing a code one does the following test:

Construct right hand sides b such that the exact solution x is well-known.
Example:

42

• Choose b = 0.

• FD on a unit square: Choose u = x2y3.

Start with x0 = 1.
Then, one can compute the algebraic error ‖x̃− x‖ and one can compare

two different codes.

A Hard Approach:
If the exact solution is unknown, one applies the following difficult approach:

Calculate a very good approximation xe of x by a time consuming solver.
Then, consider

‖x̃− xe‖
as the algebraic error ‖x̃− x‖.

Estimation of Algebraic Error by Residuum:
The residuum is defined as

r := Ax̃− b

Then, ‖x̃− x‖ = ‖A−1r‖ ≤ ‖A−1‖‖r‖.
Example:

FD, Poisson on]0, 1[2: ‖A−1‖2 = λ−1
1 ≈ 1

2π2 .

• Assume that x̃− x = em−1,m−1 + h2e1,1. Then,

‖x̃− x‖2 ≈ 1 and ‖A−1‖2‖r‖2 ≈ h−2.

Since,

‖A−1‖2‖r‖2 ≈
(

λm−1,m−1

λ1,1
+ h2

)

≈ h−2.

• Assume that x̃− x = h2em−1,m−1 + e1,1. Then,

‖x̃− x‖2 ≈ 1 and ‖A−1‖2‖r‖2 ≈ 1.

Thus, if ‖r‖ is small, then ‖x̃− x‖2 can be large or small!
Therefore, do not use the size of the residuum to compare two different

iterative algorithms.
Example:

FD, Poisson on]0, 1[2: We want to obtain ‖x̃− x‖2 = O(h2).

43

• MG: Iterate such that ‖r‖ = O(1) .

• SSOR: Iterate such that ‖r‖ = O(h2) .

To find a more appropriate approach to estimate the algebraic error, we
have to study iterative solvers in more detail.

Property of Iterative Solvers:
Let x0 ∈ Rn and

S : Rn → R
n

be an iterative solver such that the sequence (xi)i∈N defined by

xi+1 = S(xi)

converges to x. Most of the iterative solvers have the following property:
There exists a constant 0 < q < 1 and s, imin ∈ N such that

‖xi+s+1 − xi+s‖ ≤ qs‖xi+1 − xi‖

for every i > imin. q is called convergence rate of S.

Algebraic Error of an Iterative Solver:

Theorem 2. Let 0 < q < 1, s, imin ∈ N, x0 ∈ Rn and

S : Rn → R
n

be an iterative solver such that the sequence (xi)i∈N defined by

xi+1 = S(xi)

converges to x and satisfies

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖

for every i > imin. Then, the algebraic error can be estimated by

‖x− xi‖ ≤ ‖xi+1 − xi‖(1− q)−1.

44

Proof:

‖x− xi‖ ≤
∞
∑

k=i

‖xk+1 − xk‖

≤
∞
∑

k=i

qk−i‖xi+1 − xi‖

≤ ‖xi+1 − xi‖(1− q)−1.

q.e.d.

3.5 Estimation of the Convergence Rate

We want to find a small parameter such that

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖.

Several iterative solvers have the following property:
There exists a constant 0 < q < 1 and s, imin ∈ N such that

‖xi+s+1 − xi+s‖ ≤ qs‖xi+1 − xi‖.

for every i > imin.

• Calculate q̃ = ‖xi+2−xi+1‖
‖xi+1−xi‖ for large i.

• Calculate q̃ =
(

‖xi+s+1−xi+s‖
‖xi+1−xi‖

)
1

s
for large i, s ≈ 5− 20.

Take q̃ as an approximation of q.

Convergence Rate of Linear Iterative Solvers:
Let

S(xi) = Cxi + d

be an iterative solver (C matrix and d vector).
Then, the convergence rate q does not depend on the right hand side b and
not on the start value x0

(with the exception of choosing an eigenvector as x− x0).

45

Example 4. The Gauss-Seidel iteration is a linear iterative solver. To esti-
mate the convergence rate, choose the right hand side 0 and the start vector
x0 = 1. Then,

q̃ =
‖xi+1‖
‖xi‖

is an approximate value of the convergence rate q for large values i.
Remark: To avoid overflow and underflow, additionally normalize the

vectors xi.

3.6 Estimation of the Convergence Rate by Residuum

We want to find a small parameter q such that

‖xi+2 − xi+1‖ ≤ q‖xi+1 − xi‖.

Another way to estimate the convergence rate is to study the behavior of the
residuum as follows:

Let
ri = Axi − b

• Calculate q̃ = ‖ri+1‖
‖ri‖ for large i.

• Calculate q̃ =
(

‖ri+s‖
‖ri‖

)
1

s
for large i, s ≈ 1− 20.

Take q̃ as an approximation of q.

3.7 Finding the Meshsize and the Number of Itera-

tions

Assume we want to obtain a total error ‖u− uh,i‖ ≤ η!

1. For every meshsize h calculate q̃ by

q̃ =

(‖uih+s+1 − uih+s‖
‖uih+1 − uih‖

)
1

s

for large ih and suitable s ≈ 1− 20.

46

2. Calculate ih such that ‖uh,ih+1 − uh,ih‖(1 − q̃)−1 ≤ 1
4
η(1 − 2−p). This

implies

‖uh − uh,ih‖ ≤ 1

4
η(1− 2−p).

3. Choose h such that ‖uh,ih − uh/2,ih/2‖ ≤ 1
4
η(1− 2−p).

Then, we obtain ‖uh − uh/2‖ ≤ 3
4
η(1− 2−p) and thus

‖u− uh‖ ≤ 3

4
η.

This implies
‖u− uh,ih‖ ≤ η.

4 Software Development

4.1 Debugging

Is there a Bug in the Code or not?:
If a simulation program does not simulate a physical process in a correct way,
there can be different reasons for this:

• inaccuracy of the model.

• error in the mathematical solver.

• error (bug) in the code.

There exist different bugs:

• syntax error,

• wrong usage of memory,

• logical sequence of the code is not correct, or

• the mathematical formula is not implemented in a correct way.

47

Debugging with gdb:
Use debuggers like gdb.
To this end, compile with option -g and execute gdb code.
Commands of this debugger are

• b ln Set breakpoint at line number ln.

• r Run code.

• s Make one step.

• S Make one step and do not go into functions.

• p u Print u.

• b Backtrace how the code went to a certain point in the code.

• up Go up the stack frame.

• down Go down the stack frame.

• c Continue running the code.

Apply intelligent print statements!:
Instead of using the command p in gdb write your own intelligent print
statements, which gdb does not contain.

Example:

Print_L_infty(u);

Prints the L∞ norm of a vector u.

Finding a Bug in a Radio:
To find a bug in a code, we assume that the code runs in a sequential way
similar to the amplification of a signal in a radio. The following pictures
simplify an approach to find a bug in a radio. Similarly, we insert print
statements in a code to find a bug.

48

Hierarchical Search of Bug:
If a code consists of N of statements, then inserting a print statement after
each statement is too complicated for large numbers N . In this case a hier-

49

archical search with a small number of print statements is more appropriate.
See the following picture:

Location of the bug

Then, a bug contained in N statements can be found by ln(N) print
statements.

Reduction of the Problem:
A very important concept is the concept to

reduce a big problem to a smaller one.

Of course the hierarchical search can be treated as such a concept. But
there are also other ways to reduce a problem.

• Skip parts of the code in an hierarchical way such that the resulting
code still contains the bug.

• Comment out statements in the code. As an example omit coarse grid
correction in a multigrid code.

• Write a smaller code which contains the bug.

• Find a problem with a smaller problem size, such that the bug appears!

• Find a problem with known exact solution or a more simple solution!
(see Section 4.2 testing)

50

If a reduction of the code is not possible any more, then analyze the code.

Memory check by valgrind:

Call valgrind by

valgrind --tool=memcheck --leak-check=yes run

Use of valgrind for:

• finding causes for segmentation faults.

• finding memory leaks

Warnings in an HPC code:
Warnings in a code are very useful to avoid bugs in a code.

class vector {

public:

vector(int dim_);

double operator[] (int i) {

if(i< 0) cout << ‘‘i negative ‘‘ << endl;

if(i>=dim) cout << ‘‘i too large‘‘ << endl;

return a[i];

}

private:

int dim;

double *a;

}

But this implementation of operator[](int i) is very inefficient.
To increase performance implement a developer version as in the following

example:

#define developer_version true

// #define developer_version false

...

51

double vector::operator[] (int i) {

if(developer_version) {

if(i< 0) cout << ‘‘i negative ‘‘ << endl;

if(i>=dim) cout << ‘‘i too large‘‘ << endl;

}

return a[i];

}

or one can use assert as follows:

double vector::operator[] (int i) {

assert(i<0 && i>=dim);

return a[i];

}

Avoid == Sign:
Try to avoid the == sign. Instead use ≥ or ≤.

Avoid double Comparison:
Example:
Instead of

double x,h;

h = 1.0 / 10.0;

for(x=0.0;x<=1.0;x=x+h) {

...

}

write

double x,h;

h = 1.0 / 10.0;

for(int i=0;i<10;++i) {

x = i*h;

...

}

52

4.2 Testing

Mathematical Error or Bug in the Code?:
Often it is difficult to decide, if there is

• an inaccuracy in the model,

• an error in the mathematical solver, or

• a bug in the code.

This is one of the reasons why a simulation code must be developed in
several modules. Each of the modules must be tested in detail.

Test Frame for Module Test:
Implement a test frame for modules. This frame gives a module certain input
data and requires certain output data. If the output data are correct, then
the module is expected to be correct.

module 1

module 2

test frame
main module

Integration and Regression Test:

• Using the test frame, apply the same tests for each module while de-
veloping the code and adding new modules.

This is called integration test.

• Store results of your tests in a data file. Compare new test results with
older test results.

This is called regression test.

53

Finding Test Functions:
The general concept is to calculate the right hand side for a given exact
solution. These exact solution are the test functions.

There are different kinds of test functions:

• function 0, 1, x, y,

• functions with special properties:

– u = sin(x ∗ π) sinh(y ∗ π), then △u = 0 and u has nice Dirichlet
boundary conditions on Ω =]0, 1[2. u = et sin(x ∗ π) satisfies the
PDE ∂u

∂t
= −π−2 ∂2u

∂x2 .

– u = x2∗y3 is an exact solution for a FD discretization (see Section
2.3).

• symmetric solutions like u = x5 ∗ y5. For symmetric problems, chang-
ing the coordinates x and y must lead to the same result.

• general functions. Calculate right hand side by a computer manipula-
tion program (maple,mathematica).

First, test your code with the simplest one!

Test Parameters:
Consider the PDE:

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g

Parameters in a FD discretization are:

• physical parameters a, b.

• meshsize h, timestep τ .

• number of grid points N , number of timesteps m.

First, test your code for physically not correct parameters:

• a, b = 0, +
−1,

+
−10, ...

54

• N = 1 and m = 1, ...

Test Part of the PDE:
Instead of

∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g

first test the stationary scalar equation:

−△u+ aw = f

and the stationary system:

−△u+ aw = f

−△w + bu = g.

Test Convergence:

• Test the convergence of your discretization for different test functions
and parameters in the equation.

• Test the convergence rate of your iterative solver for different parame-
ters.

Test of an Unstructured Grid Code:
Assume there is a bug in your unstructured grid code with a complicated
unstructured grid like:

55

−→ To Calculate the matrix elements in each step of the code by hand
is too complicated!

To test your code let your unstructured grid generator generate a simple
structured grid like

or

and test your code.
−→ Change x and y coordinates and test symmetry of your code!

4.3 Software Development

The following picture describes the general concept of software development:

implementation

module test

integration test

system test

What does the user want to have?

How to realize the requirements by software?

Write the realization!

Test the realization!

Test the design spec!

Test the requirement spec!

requirement spec.

design specification

Implement and Test:
Build up your code step by step!
Example: Write a code for

−△u+ aw = f

and then for

−△u+ aw = f

56

−△w + bu = g

and at last for:
∂u

∂t
= −△u+ aw − f

∂w

∂t
= −△w + bu− g.

Implement one module and test it!

Types of Modules:

• vector library (contains matrix multiplication, use libraries like LA-
PACK)

• grid generator

• linear equation solver

• calculation of stiffness matrix

• parallelization module

• input, output

• applications (different fluid dynamics applications)

Problems in PDE Software Development:

• Black box solvers which are independent of the PDE and the discretiza-
tion would be very helpful for the software development (algebraic
multigrid (AMG), direct solver). But the optimal solver depends on
the PDE and its discretization.

• Optimal solvers use the data structure of the discretization.

• Complicated data structure is needed for adaptive parallel solvers with
load balancing.

• It is difficult to describe suitable interfaces between solvers.

• A clear software design often is in contradiction to efficiency. Therefore,
expression templates and other template constructions are needed!

57

4.4 Basic Concept of Expression Templates

Operator Overloading for Vector Class:

Consider the vector class

class vector {

public:

vector(int l);

double operator[](int i) { return p[i]; }

...

private:

int length;

double *p;

};

How should we implement an operator
vector operator+(vector &a, vector &b)

in an efficient way?

Operator Overloading for Small Vectors:

In case of small vectors, one can implement a vector class as in the fol-
lowing example for the vector class complex:

Example: vector class complex:

class complex {

public:

complex(double& re, double& im);

...

double Re, Im;

};

complex operator+(complex &a, complex& b) {

return complex(a.Re + b.Re,a.Im + b.Im);

}

In case of longer vectors introduce the length of the vector as a template
parameter.

58

Vector Class for Long Vectors:

In case of large vectors, the storage has to be allocated by new. The
addition of vectors has to be performed by a for loop.

class vector {

public:

vector(int l) { p = new double[l];

length = l; };

double operator[](int i) { return p[i]; }

...

private:

int length;

double *p;

};

Problem:

• Should vector operator+(vector &a, vector &b) allocate an aux-
iliary vector?

• Efficient implementation of c = a+b+d; requires only one loop!

Realization of an Efficient Operator+:

Implement operator+ such that it gives back an object, which is able to
add two vectors:

class add_vector {

public:

add_vector(double& *a, double& *b)

: pa(a), pb(b) {};

double operator[](int i) const

{ return pa[i] + pb[i]; }

...

private:

double *pa, *pb;

};

59

Now, the expression is evaluated in the operator + as follows:

class vector {

public:

...

double operator[](int i) { return p[i]; }

void operator=(add_vector& av) {

for(int i=0;i<lenghth;++i) {

p[i] = av[i];

}

}

...

private:

int length;

double *p;

};

By this construction, we can add only two vectors. To evaluate larger
expressions, we need expression templates.

Expression Template - Wrapper Class:

To construct expression templates, we first need a wrapper class, which
represents all possible expressions:

template<class A>

class DExpr {

private:

A a_;

public:

DExpr(const A& x)

: a_(x) {}

double operator[](int i) const

{ return a_.[i]; }

};

Expression Template - Operator +:
The following class represents an object which is able to add two expressions.

60

template<class A, class B>

class DExprSum {

const A a_; const B b_;

public:

DExprSum(const A& a, const B& b)

: a_(a), b_(b) {}

double operator[](int i) const {

return a_.[i] + b_.[i]; };

};

template<class A, class B>

DExpr<DExprSum<DExpr<A>, DExpr > >

operator+(const DExpr<A>& a,const DExpr& b) {

typedef DExprSum<DExpr<A>, DExpr > ExprT;

return DExpr<ExprT>(ExprT(a,b));

}

The expression is evaluated in the operator + as follows:

class vector {

public:

...

double operator[](int i) { return p[i]; }

template <class A>

void operator=(const Expr<A>& a) {

for(int i=0;i<lenghth;++i) {

p[i] = a[i];

}

}

...

private:

int length;

double *p;

};

Additionally, we need operators like

template<class B>

61

DExpr<DExprSum<Dvector, DExpr > >

operator+(const vector& v,const DExpr& b) {

typedef DExprSum<Dvector, DExpr > ExprT;

return DExpr<ExprT>(ExprT(v,b));

}

...

Properties of Expression :

• efficient implementation by inlining.

• parallelization by OpenMP is possible.

• user friendly interface.

Expression Tree:

The expression

d = a + b + c;

leads to the following expression tree:

DExpr<DExprSum<Dvector,Dvector>>

DExpr<DExprSum<DExpr<DExprSum<Dvector,Dvector>>,Dvector>>

Dvector Dvector

Dvector

62

First Simplification:

template<class A, class B, class Op>

class DExprBinOp {

const A a_; const B b_;

public:

DExprBinOp(const A& a, const B& b) : a_(a), b_(b) {}

double operator[](int i) const {

return Op::apply(a_.[i], b_.[i]);};

};

class DApSum {

public:

DApSum() { }

static inline double apply(double a, double b)

{ return a+b; }

};

template<class A, class B>

DExpr<DExprBinOp<DExpr<A>, DExpr, DApSum> >

operator+(const DExpr<A>& a,const DExpr& b)

{

typedef DExprBinOp<DExpr<A>, DExpr, DApSum> ExprT;

return DExpr<ExprT>(ExprT(a,b));

}

Second Simplification:

template <class A> struct Expr{

inline const A& operator~() const{

return static_cast<const A&>(*this);}

};

class vector : public Expr<vector> {

public:

...

template <class A>

63

void operator=(const Expr<A>& a) {

for(int i=0;i<length;++i) {

p[i] = (~a).[i];

}}

...

};

template <class A, class B>

class DExprSum : public Expr<DExprSum<A,B> >{

const A& a_; const B& b_;

public:

DExprSum(const A& a, const B& b)

: a_(a), b_(b){}

double operator[](int i) const {

return a_.[i] + b_.[i]; };

}

Now, we can implement the operator+ in the following short way:

template <class A, class B>

inline DExprSum<A,B> operator+ (const Expr<A>& a, const Expr& b){

return DExprSum<A,B>(~a,~b);

}

Observe, that we do not need an additional implementation of the operator+
for arguments like vector and Expr or vector and vector.

cg with Expression Templates:
This example shows how to implement the cg algorithm by expression tem-
plates:

r = A*u - f;

d = -r;

delta = product(r,r);

for(i=1;i<=iteration && delta > eps;++i) {

g = A*d;

tau = delta / product(d,g);

r = r + tau*g;

64

u = u + tau * d;

delta_prime = product(r,r);

beta = delta_prime / delta;

delta = delta_prime;

d = beta*d - r;

}

Automatic Parallelization:

code

application

serial
library

parallel
library

Automatic parallelization means that only a change of the included li-
brary leads to a parallel code.

Example:

template <class A>

void vector::operator=(const Expr<A>& a) {

#pragma omp parallel for

for(int i=0;i<length;++i) {

p[i] = (~a).[i];

}

}

In some cases a straight forward implementation of expression templates
leads to less an efficient codes than a direct implementation. The reason is
that the compiler cannot see a difference between expressions like

a = b+b+b+b;

65

and

a = b+c+d+e;

To avoid this problem one can construct enumerated variables.

variable<1> a;

variable<2> b;

....

Here the class variable<n> has an additional template parameter n.

4.5 Interfaces with Expression Templates

Expression Templates for Vectors:

Construct operators for operations between

• vectors

• matrix and vector and

• matrices.

Blitz++ is such a library.

Expression Templates on Structured Grids:

Let us assume that we want to perform finite difference operations on a
2D-structured grid Ωh.

Implement expression templates such that

u[I][J] = 0.25*(u[I+1][J]+u[I-1][J]+

u[I][J+1]+u[I][J-1]);

performs a red black Gauss-Seidel iteration for Poisson’s equation on Ωh.
Here,

• u a vector on the grid Ωh

• u[I][J] represents u(ih, jh)

66

• u[I + 1][J] represents u((i+ 1)h, jh)

• ...

Automatic parallelization of the above expression template implementation
is possible.

A Jacobi-iteration for Poisson’s equation has to be implemented as fol-
lows:

r[I][J] = 0.25*(u[I+1][J]+u[I-1][J]+

u[I][J+1]+u[I][J-1]);

u[I][J] = r[I][J];

One also can implement an operator Laplace FD(u) representing the
mathematical operator

1

h2

(

4 ∗ u(ih, jh) −u((i+ 1)h, jh)− u(ih, (j + 1)h)

−u((i− 1)h, jh)− u(ih, (j − 1)h)
)

.

Let Laplace FD diag() be the corresponding diagonal coefficient vector of
Laplace FD(u) :

(

h2

4

)−1

.

Then, a Gauss-Seidel iteration for −△u = f can be implemented as follows

u = u - (Laplace_FD(u)+f)/ Laplace_FD_diag();

and Jacobi by

r = u - (Laplace_FD(u)+f)/ Laplace_FD_diag();

u = r;

Consider the following implementation of Gauss-Seidel:

u[I][J] = 0.25*(u[I+1][J]+u[I-1][J]+

u[I][J+1]+u[I][J-1]);

Problems:

67

• What is the range of I and J?

• How, to set values at the boundary?

• How, to implement boundary conditions?

A suitable language for implementing PDE solvers is a current research
topic. An optimal interface language is unknown up to now!

Suggestions:

• geometric objects - algebraic objects

• restriction operator to connect geometric objects and algebraic objects.

• vectors on grids and pure algebraic vectors.

Geometric objects are objects in R3. To describe geometric objects one
can apply any method which is used in CAD (computer added design). Let
us present a simple example:

Geometric objects:

vector3D Ma(0.0,2.0,1.0);

vector3D Mb(0.0,0.0,1.0);

Ball ball_a(1.0, Ma);

// domain with radius 1.0 at point Ma

Ball ball_b(1.2, Mb);

// domain with radius 1.2 at point Mb

...

Domain domain = ball_a || ball_b;

Here the operator || calculates the union of two geometric objects.
Algebraic objects are vectors for example. There exist natural mathe-

matical operators for these objects like +:
Algebraic objects:

vector v1(1000), v2(1000), v3(1000);

...

v3 = v1 + v2;

68

In scientific simulation we need discretization grids on domains. Thus,
discretization grids are objects which depend on a geometric object and a
discretization method. The simplest discretization is a rectangular grid of
mesh size h. In the following example Ω̄a

h is a rectangular discretization grid
on the domain Ωa with meshsize h.

// Geometric objects:
Domain domain a = ...; // Ωa

Domain domain b = ...; // Ωb

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Subgrid subgrid(grid,domain b); // Ω̄a
h ∩ Ωb

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h

Boundary subgrid Dirichlet(boundary,domain b);

// Γa
h ∩ Ωb

For implementing algorithms on a discretization grid we need variables
on discretization grid. These are vectors, such that every component of the
vector corresponds to a grid point. Then, the operator | connects an alge-
braic and a geometric object.

// Geometric objects:
Domain domain a = ...; // Ωa

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h = Ω̄a

h\∂Ωa

// Variable: vector on a grid (algebraic vector with geometric information)

Variable u(&grid), f(&grid); // u, f ∈ R|Ω̄a
h|

coordinate x X; coordinate y Y; // coordinates

// Application of the restriction operator

u = X*X*Y*Y | boundary;

Here the operator | connects the algebraic expression u = X*X*Y*Y with
the geometric object boundary. Therefore, the mathematical meaning of the

69

last line of the above code is:

u(x, y) = x ∗ x ∗ y ∗ y ∀(x, y) ∈ Γa
h = Ω̄a

h ∩ ∂Ωa

This mathematical expression can also be described in the following notation:

u(x, y) = x ∗ x ∗ y ∗ y
∣

∣

∣

Γa
h

.

Now, let us present an example for solving approximatively Poisson’s equa-
tion on a domain using the finite difference discretization and 50 Gauss-Seidel
relaxations.

// Geometric objects:
Domain domain a = ...; // Ωa

Grid grid(domain a,h); // Ω̄a
h

// grid on domain a with meshsize h

Boundary subgrid boundary(grid); // Γa
h = Ω̄a

h ∩ ∂Ωa

Interior subgrid interior(grid); // Ωa
h = Ω̄a

h\∂Ωa

// Variable: vector on a grid (algebraic vector with geometric information)

Variable u(&grid), f(&grid); // u, f ∈ R|Ω̄a
h|

coordinate x X; coordinate y Y; // coordinates

// Application of the restriction operator

u = X*X*Y*Y | boundary;

f = -2*(X*X+Y*Y) | interior;

for(int i=1;i<50;++i)

u = u-(Laplace_FD(u)+f) / Laplace_FD_diag() | interior;

5 Parallelization

5.1 Introduction

One can distinguish the following parallelization concepts:

• Shared memory parallelization

– Parallelization with one main memory and several different pro-
cessors (see Figure 11)

70

memory memory memorymemory

Crossbar

proc 1 proc 2 proc 3 proc 4

Figure 19: Distributed Memory Computer Architecture.

– NUMA architecture (Non-Uniform Memory Access).

• Distributed memory parallelization (see Figure 19)

• Hybrid parallelization with a shared memory and a distributed memory

• Vectorization. One processor can perform parallel computations on
long vectors.

5.2 MPI - Message Passing Interface

• MPI is a library language for C, C++ and FORTRAN.

• There exist different MPI libraries. MPICH and MPI-LAM are one of
them.

• The MPI library is included by mpi.h.

Run an MPI code by

mpirun -np p code

71

Here p is the number of processors.

• Every processor runs the same program with a different rank.

• Data are send by MPI-functions from one processor to the other.
All MPI-functions have the prefix MPI .

• Data are send from one processor to the other of a certain communi-
cator. The rank of the processor depends on the communicator.
Here, we use only the communicator MPI COMM WORLD which is of type
MPI Comm.

First MPI - Functions:
Let us describe the most elementary MPI functions:

int MPI_Init(int *argc, char ***argv);

int MPI_Comm_size(MPI_Comm comm, int *size);

int MPI_Comm_rank(MPI_Comm comm, int *rank);

int MPI_Comm_Finalize();

size is the total number p of processors and
rank the number from 0, ..., p− 1.

The return value of these function is an information about the error. This
will be discussed later.

MPI Bcast and MPI Reduce:
MPI Bcast sends data from processor with number root to all other proces-
sors.

MPI Reduce applies an operation to data of all processors. The result is
sent to root.

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,

int root, MPI_Comm comm);

int MPI_Reduce(void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op,

int root, MPI_Comm comm);

Pointers (like buf) point to arrays of type datatype and length count.
Possible data types for MPI Datatype are:

72

MPI_INT, MPI_DOUBLE, MPI_LONG, MPI_CHAR, ...

Example Numerical Integration:
The trapezoidal rule is the following rule for numerical integration:

∫ 1

0

f(x)dx ≈ h
n

∑

i=1

f
(

h(i− 0.5)
)

where h = 1
n
. To parallelize this formula let us assume that n = kp, where p

is the number of processors. Then, we get

∫ 1

0

f(x)dx ≈
p

∑

j=1

h

k
∑

i=1

f
(

h(((j − 1)k + i)− 0.5)
)

A parallel code using MPI is:

#include "mpi.h"

#include <math.h>

double f(double x) {

return x*x+sin(x);

}

int main(int argc, char** argv) {

int n,k;

double h, my_integral, integral;

ifstream PARAMETER;

int my_rank; // Rank of process

int p; // Number of processes

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &p);

if(my_rank==0) {

PARAMETER.open("para.dat",ios :: in);

73

PARAMETER >> k; // problem size

PARAMETER.close();

}

MPI_Bcast(&k,1,MPI_INT,0,MPI_COMM_WORLD);

n = p*k;

h = 1.0 / n;

my_integral = 0.0;

for(int i=1;i<=k;++i)

my_integral = my_integral + f(h*((k*my_rank+i)-0.5));

MPI_Reduce(&my_integral,&integral,1,MPI_DOUBLE,

MPI_SUM,0,MPI_COMM_WORLD);

integral = integral *h;

if(my_rank==0)

cout << "Integral is: " << integral << endl;

MPI_Finalize();

return 0;

}

Send and Receive with Blocking:
MPI send sends data to the processor with destination rank dest and with
tag (german: Anhänger, Etikett): tag.

Valid tags are values from 0 to 32767.
MPI Recv receives data from processor with source rank source. This

function returns the status status.

int MPI_Send(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm);

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,

int source, int tag,

MPI_Comm comm, MPI_Status *status);

status provides the following informations:

74

• status.MPI SOURCE

• status.MPI TAG

For other functions, status can provide informations about the error.

Example for Send and Receive:

MPI_Reduce(&my_integral,&integral,1,MPI_DOUBLE,

MPI_SUM,0,MPI_COMM_WORLD);

if(my_rank!=0)

MPI_Send(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD);

else {

double source_integral;

MPI_Status status;

integral = my_integral

for(int source=1;source<p;++source) {

MPI_Recv(&source_integral,1, MPI_DOUBLE,source,

10+source, MPI_COMM_WORLD, &status);

integral = integral + source_integral;

cout << " I got message from: " << source << endl;

}

}

Improvement by MPI ANY...:
The computations of processor 1 might be more time consuming than the
computations of processor p. In this case, the following code is more efficient:

if(my_rank!=0)

MPI_Send(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD);

else {

double source_integral;

MPI_Status status;

75

integral = my_integral

for(int source=1;source<p;++source) {

MPI_Recv(&source_integral,1, MPI_DOUBLE,MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

integral = integral + source_integral;

cout << " I got message from: "

<< status.MPI_SOURCE << endl;

}

}

Send and Receive without Blocking:
The difference between MPI Isend and MPI send is that MPI Isend does not
block the execution of commands after calling MPI Isend.

The handler request provides informations about finishing MPI Isend.
This information can be obtained by MPI Test using *flag.

MPI Wait waits until MPI Isend is finished.
MPI Waitall waits until several MPI Isend and MPI Irecv are finished.

These functions are defined as follows:

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Request *request);

int MPI_Test(MPI_Request *request, int *flag,

MPI_Status *status);

int MPI_Wait(MPI_Request *request, MPI_Status *status);

int MPI_Waitall(int count,MPI_Request *array_of_request,

MPI_Status *array_of_statuses);

:
Instead of

MPI_Reduce(&my_integral,&integral,1,MPI_DOUBLE,

MPI_SUM,0,MPI_COMM_WORLD);

76

one can write

double *source_integral;

MPI_Request *req; MPI_Status *status;

req = new MPI_Request[p-1];

status = new MPI_Status[p-1];

source_integral = new double[p];

if(my_rank!=0) {

MPI_Isend(&my_integral,1, MPI_DOUBLE,0,

10+my_rank, MPI_COMM_WORLD,&req[0]);

MPI_Waitall(1,req,status); }

else {

source_integral[0] = my_integral;

for(int source=1;source<p;++source) {

MPI_Irecv(&source_integral[source],1, MPI_DOUBLE,source,

10+source, MPI_COMM_WORLD, &req[source-1]);

}

MPI_Waitall(p-1,req,status);

integral=0.0;

for(int source=0;source<p;++source) {

integral = integral + source_integral[source];

} }

Error Handlers:
There are two different error handlers:

• MPI ERRORS ARE FATAL (default): This error handler forces to abort all
MPI processes.

• MPI ERRORS RETURN: Now, the MPI-function returns an error informa-
tion.

One can set the handler MPI ERRORS RETURN by

MPI_Errhandler_set(MPI_COMM_WORLD,

MPI_ERRORS_RETURN);

Error Handler MPI ERRORS RETURN:
Let errcode be a return value of an MPI-function. Then,

77

• errcode==MPI SUCCESS (This means there is no error.), or

• errcode can be decoded by

int MPI_Error_class(int errcode,

int *errorclass)

Possible values for *errorclass depend on the MPI implementation. In
MPI-1 the following classes are defined:

MPI_SUCCESS

MPI_ERR_RANK

MPI_ERR_BUFFER

...

Example:

int dest, errorclass;

if(developer_version)

MPI_Errhandler_set(MPI_COMM_WORLD,

MPI_ERRORS_RETURN);

...

errcode = MPI_Send(...,dest,...);

if(developer_version)

if(errcode != MPI_SUCCESS) {

MPI_Error_class(errcode,&errorclass);

if(errorclass==MPI_ERR_RANK)

cout << " MPI send rank error: " << dest << endl;

if(errorclass==MPI_BUFFER)

cout << " MPI send buffer error. " << endl;

...

}

Test Incoming Message:
Sometimes a process would like to know, whether there is a process sending
a message. This can be tested by MPI Iprobe.

Example

78

if(my_rank==0) {

MPI_Status status; int flag = false;

MPI_Iprobe(MPI_ANY_SOURCE,2,MPI_my_rank,

&flag, &status);

if(flag==true) {

int rank_from = status.MPI_SOURCE;

MPI_Recv(buffer, num_data,

MPI_DOUBLE,rank_from,

2,MPI_my_rank, &status); }}

Debugging:
A parallel debugger is totalview.

The running state on every processor is reported on a different window.

5.3 Distributed Memory Parallelization of PDE-Solvers

Let us assume that a PDE is discretized on the discretization grid Ωh. If |Ωh|
is very large, than the data stored on this grid cannot be stored in the main
memory. In this case, one has to apply a distributed memory parallelization
concept.

A distributed memory parallelization of algorithms on Ωh is based on a
partition of Ωh:

Ωh =

p
⋃

i=1

Ωi
h.

An optimal partitioning depends on

• the “sequential flow” of the algorithm,

• the amount of data to be sent, and

• the amount of computations, which have to be performed on each parti-
tion. This computational amount should be balanced on the partitions
(load balancing).

Optimal Partitioning for Relaxation Methods:

79

P2

P1

P3

P4

P1

P2 P3

P4

point approach cell approach

Cell Partitioning:

P2

P1

P3

P4

Ωh = {(ih, jh) | i, j = 0, ..., N−1},

where h = 1
N−1

and
N =

√
pn, n,N ∈ N.

Ωk,s
h = {((kn+ i)h, (sn + j)h) | i, j = 0, ..., n− 1},

where k, s = 0, ...,
√
p− 1. Then,

Ωh =

√
p−1
⋃

k,s=0

Ωk,s
h .

Cell Partitioning:

PM

PN PNE

PE

PSEPSPSW

PW

PNW For the evaluation of stencil
operators, data of points on
neighbor processors are
needed.
These are the data at ghost points:

Ω̂k,s
h \Ωk,s

h

80

where

Ω̂k,s
h = {((kn+ i)h, (sn + j)h) | i, j = −1, ..., n} ∩ Ωh

for k, s = 0, ...,
√
p− 1.

Update of Data for Jacobi Iteration:

PM

PN PNE

PE

PSEPSPSW

PW

PNW

In a Jacobi iteration,
data have to be sent and received
from neighbor processors. Let
N, S,NW, ... be the indices of the
neighbor processor with index M =
(k, s).

Then, before every Jacobi iteration the data
at points Ω̂M

h ∩ ΩP
h have to be sent from processor P

to processor M .
Let us denote this procedure Send(P);

Example Code:
Implement first MPI Irecv then MPI Isend!

num_message = 0;

if(rank_source != -1 && number_receive>0) {

MPI_Irecv(receive_info ,number_receive,

MPI_DOUBLE,rank_source,26,comm,

&req[num_message]);

++num_message;

}

if(rank_destination != -1 && number_send>0) {

MPI_Isend(send_info,number_send,

MPI_DOUBLE,rank_destination,26,comm,

&req[num_message]);

++num_message;

}

MPI_Waitall(num_message,req,status);

81

Two Sending Approaches:

• 1. Approach

Send(E); Send(W); Send(N); Send(S);

Send(NE); Send(NW); Send(SE); Send(SW);

Waitall();

• 2. Approach

Send(E); Send(W);

Waitall();

Send_(N); Send_(S);

Waitall();

This approach updates data also from NE,NW,..., if Send also sends
the updated data from processor E,W.

Sending for 4 Color Gauss-Seidel:

NE point

SE point

NW point

SW point

NENNW

W

SW S SE

EM

Assume that data at the ghostpoints of W,S are updated. Then,

Relax(SW);

Send_(E); Waitall();

Relax(SE);

Send_(N); Waitall();

Relax(NE);

Send_(W); Waitall();

Relax(NW);

Send_(S); Waitall();

82

This is the minimal communication needed Gauss-Seidel relaxation on a
structured grid.

Point Partitioning:

P1

P2 P3

P4

point approach

Ωh = {(ih, jh) | i, j = 0, ..., N},

where h = 1
N

and H = 1√
p

N =
√
pn, n,N ∈ N. Define

Ω̄k,s = [Hk,H(k + 1)]× [Hs,H(s+ 1)]

Ω̂k,s = [Hk,H(k + 1)[×[Hs,H(s+ 1)[

Ωk,s
h = Ωh ∩

(

Ω̄k,s\⋃(k′,s′)6=(k,s) Ω̂
k′,s′

)

. Then, Ωh =
⋃

√
p−1

k,s=0 Ω
k,s
h .

Load Balancing:

P2

P1

P3

P4

Ωh = {(ih, jh) | i, j = 0, ..., N − 1},

where h = 1
N
. Let p = p1p2.

Make a partitioning with
p1 processors in x-direction and
p2 processors in y-direction .

• Same load balancing for every processor.

• Dsend = 2N
p1

+ 2N
p2

= 2N(1
p1

+ 1
p2
) data to be sent.

Example:

• p1 =
√
p, then Dsend = 4N 1√

p
.

• p1 = p, then Dsend = 2N(1
p
+ 1) .

83

5.4 Automatic Parallelization with MPI and Expres-

sion Templates

Let us consider the cg iteration:

r = A*u - f;

d = -r;

delta = product(r,r);

for(i=1;i<=iteration && delta > eps;++i) {

g = A*d;

tau = delta / product(d,g);

r = r + tau*g;

u = u + tau * d;

delta_prime = product(r,r);

beta = delta_prime / delta;

delta = delta_prime;

d = beta*d - r;

}

When is an update of ghost values needed?

enum Update_typ { no_update, update };

class vector : public Expr<vector> {

public:

vector(int l) { update_var = no_update; };

Update_typ expression_update_typ() const {

return update_var; };

private:

Update_typ update_var;

int id;

... };

Update_typ DExprSum::expression_update_typ() const {

return a_.expression_update_typ() ||

b_.expression_update_typ() };

Update_typ DExprLaplace_FD::expression_update_typ() const {

return update; };

class Update_handler;

84

template <class A>

void vector::operator=(const Expr<A>& a) {

if((~a).expression_update_typ()) {

Update_handler handler_update;

(~a).Give_update_data(handler_update);

handler_update.Make_update();

}

for(int i=0;i<lenghth;++i) {

p[i] = (~a).[i];

}

}

6 Raytracing

Raytracing is used in

• Computer graphics: How does light look at an image plane?

• Simulation of light in engineering applications: How is ight absorded
in a medium (example: laser crystal).

The main idea of ray tracing is that light is modeled by several rays of
light.

Forward and Backward Raytracing:

• Forward Raytracing: Light propagates from a light source in several
directions until either vanishes by absorpion or it impings at the image
plane or leaves out of the computational domain.

• Backward Raytracing: Find the rays which imping at the image plane
by back tracing rays beginning from all points of the image plane in all
possible directions.

Concept of Forward Raytracing:

A ray starts at a point P and propagates in direction ~d with intensity I. The
path of the ray can be described by

P + λ~d, λ ∈ R

85

The following situations can happen:

• The ray propagates out of the computational domain.

• The ray impings at an object and vanishes.

• The ray impings at an objects and is reflected in one or more directions.

• The ray progagates from a medium A to medium B with different
refraction indices.

• Light of the ray is absorbed while propagating through a medium.

Ray out of the Computational Domain:

computational

P

domain

~d

Ray Impings on Object:

P

86

The behaviour of a ray impinging on an object, depends on the surface.
To analyze the behaviour of the ray let

• I be the incident ray,

• N normal vector of the surface of the object,

• R reflected ray

• R tansmitted ray.

Obviously N ·N = 1, since N is normal vector.

Perfect Specular Reflection:

P

αin

αout

In case of perfect specular reflection, there is only one reflected ray which
satisfies:

αin = αout.

The refected ray R has to be contained in the plane spanned by N and I
as follows:

R = I + βN.

Then, we get

cos(αin) = cos(αout)

−I ·N = N · R
= N · (I + βN)

= (N · I) + β.

This implies:
R = I − 2(N · I)N.

87

Perfect Diffuse Reflection:
The Lambert refection describes a diffusive reflection of light by several rays:

P

The intensity of light is the same independent of the angle of the reflected
ray. To reduce computational amount one should discretize Lambert refec-
tion by a stochastic reflection. This means that the angles of the reflected
rays are choosen randomly.

Perfect Specular Transmission:

P

αt

iαin

na

nb

Perfect specular transmission satisfies Snell’s law:

αin · nA = αt · nB.

To calculate the direction of the transmitted ray, let us choose

‖I‖ = ‖T‖ = 1.

Then, the refected ray R has to be contained in the plane spanned by N and
I as follows:

R = αI + βN.

Furthermore, we use the abbreviations:

Si = sin(αin),

88

St = sin(αt),

Ci = cos(αin) = N · (−I),

Ct = cos(αt) = (−N) · T,

ηit =
St

Si
.

Since S2 + C2 = 1, we get

(1− C2
i)η

2
it = S2

i eta
2
it

= S2
t = (1− C2

t).

This implies

1− (1− C2
i)η

2
it = C2

t

= ((−N) · T)2
= ((−N) · (αI + βN))2

= (αCi − β)2.

Furthermore, we get

1 = T · T
= (αI + βN) · (αI + βN)

= α2 − 2αβCi + β2.

These two equations have 4 solutions for α and β. Comparing these solutions,
one can show that only the following solution is physically correct:

α = ηit

β = ηitCi −
√

1 + η2it(C
2
i − 1)

= ηit cos(αin)−
√

1− η2it sin
2(αin)

R = αI + βN.

89

Perfect Diffusive Transmission:

P

In case of perfect diffusive transmission, light is transmitted in all transmitted
direction with the same power. One should apply stochastic ray tracing to
simulate perfect diffusive transmission.

General Situation:

P

αt

ain

nA

nB

In reality light is often partly reflected and partly transmitted. Furthermore,
reflected and transmitted light contains a ceratin portion of specular and
diffusive light.

Light Sources:
There exist different kind of light sources:

• point light source

• multimode light source

• Gaussian beam light of low oder (not multimode).
→ This kind of light cannot be modeled by ray tracing.

90

Point Light Sources:

P
P

one direction several directions

Multimode Light Sources:
Set of rays starting at points Pi, i = 1, ..., n to every direction with angle φ
between −α and α:

P1

Pi

Pn

α

The numerical aperture NA is defined by:
NA = nr · sin(α), where nr refraction index of the medium.
Example: Light of multimode fiber.

Discretization of Light Source:
Assume that a light source consists of an infinite number of rays starting at
points Pi ∈ Ωsource in directions ~di ∈ ΦPi

.
Assume that the intensity of the light source is constant close to the light

source.
To discretize the light source, we approximate the light source by a finite

number of rays:

91

N rays starting at Pi in direction ~di,
where i = 1, ..., N .

If the total power of the light source is I, then the power of each discretized
ray is I/N .

Often, the starting points Pi and the directions ~di can be chosen by ran-
dom numbers.

Random Numbers:
Assume that Pi ∈ Ωsource ⊂ [ax, bx]× [ay, by] and

~di ∈ ΦPi
= [aφ, bφ].

Then, random values for Pi and the directions ~di can be constructed by
a random number generator for an interval [a, b].

Absorption of Light:
Assume that light propagates through absorbing medium.

P

A
Bcell

Discretize absorbing medium by cells of meshsize h. The power of light
absorbed in a cell is:

Pabs(cell) = P (A)(1− exp(−αAB)).

92

7 Finite Differences

7.1 Stability Analysis

7.1.1 Discretization of Stiff ODE’s

Let us assume that the ODE

y′(t) = f(t, y(t)), t ≥ t0

y(t0) = y0

is given, where y : [t0,∞[→ Rn.
To discretize this ODE, let τ > 0 be a time step.
Let us denote yi the approximation of y(ti), where ti := τi+ t0.

Types of solvers:

• simplest method: Euler method

• Runge Kutta methods (one step method)

• multi-step methods

• implicit, explicit methods

Examples:

• explicit Euler: yi+1 = yi + τf(ti, yi).
p = 1. Explicit one step method.

• implicit Euler: yi+1 = yi + τf(ti+1, yi+1).
p = 1. Implicit one step method.

• classical Runge Kutta method

k1 = τf(xi, yi)

k2 = τf(xi + 1/2τ, yi + 1/2k1)

k3 = τf(xi + 1/2τ, yi + 1/2k2)

k4 = τf(xi + τ, yi + k3)

yi+1 = yi + 1/6k1 + 1/3k2 + 1/3k3 + 1/6k4.

p = 4. Explicit one step method.

93

• Simpson’s method:

yi+1 − yi−1 =
τ

3
(f(ti+1, yi+1) + 4f(ti, yi) + f(ti−1, yi−1)).

p = 4. Implicit multi-step method.

• Middle point method: yi+1 − yi−1 = 2τf(ti, yi).
p = 2. Explicit multi-step method.

Stability of a Multi-Step Method:
To analyze the stability of a multi-step method of length s, consider the ODE

y′ = 0, y(0) = y0.

Assume that the multi-step method leads to the recursion formula

s
∑

i=0

aiyi+j = 0 ∀j ∈ N0.

for this ODE.

Definition 3. The multi-step method is stable, if for all start values y0, ...ys−1,
the sequence yi is bounded.

Theorem 3. A multi-step method is stable if all roots of the polynomial

s
∑

i=0

aiz
i

are simple roots and contained in the disc

{z ∈ C | |z| ≤ 1}.
(A more general stability theorem is given in Stoer/Burlisch, Einführung

in die Numerische Mathematik II).
To determine whether an ODE is an stiff ODE, one has to linearize the

ODE.
Let us linearize f(y, t′) at a certain point t̂, ŷ by Taylor series in y direc-

tion:
f(ŷ, t̂) ≈ b+ A(y − ŷ).

The ODE is a stiff ODE, if A has negative eigenvalues of different size.

94

Definition 4. The ODE solver is a stable ODE solver for stiff equation
systems, if

lim
i→∞

yi = 0 ∀τ > 0 and yi > 0 ∀τ > 0, i ∈ N

for the ODE
y′ = λy, y(0) = 1,

where λ < 0.

Example 5. y1 concentration of O3 in atmosphere and
y2 concentration of O in atmosphere.

∂y1
∂t

= −y1 − y1y
2
2 + 294y2

∂y2
∂t

= (y1 − y1y2)/98− 3y2

where ŷ1(0) = 0 and ŷ2(0) = 0. The linearization of this ODE at (1, 1) leads
to

(

y′1
y′2

)

=

(

−1 294
−1/98 −3

)(

y1
y2

)

.

The eigenvalues are 0 and −2.

Example 6. Consider the following rate equation in laser simulation:

∂N

∂t
= −10−15Nn− 105N + C

∂n

∂t
= 7 · 10−16Nn− 1.7 · 107n + S

The discretization of this equation leads to numerical difficulties.

Apply a given ODE solver to the ODE

y′ = λy, y(0) = 1.

Often this leads to an iteration formula of the form

yi+1 = yig(λτ).

Then, stability means

|g(z)| < 1 ∀Re(z) < 0.

95

• explicit Euler: (not stable for stiff ODE’s)

yi+1 = yi + hf(ti, yi)

• implicit Euler: (stable for stiff ODE’s)

yi+1 = yi + hf(ti+1, yi+1).

7.1.2 Discretization of Parabolic PDE’s

Let Ω ⊂ Rd be a domain.
The standard parabolic PDE is:

∂u

∂t
= α2△u+ f(t, ~x), ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, initial condition

u(t, ~x) = g(t, ~x), ~x ∈ ∂Ω, t ≥ t0, boundary condition

where, g, f, u0 are given functions.

Example 7. Ω =]0, π[2, f = 0, g = 0, and u0(x, y) = sin(x) sin(y).
Then, the exact solution is

u(t, x, y) = e−α2t sin(x) sin(y).

• Let Ω̄h ⊂ Ω̄ be a discretization grid.

Let Ωh = Ω̄h ∩ Ω.

• ti := τi+ t0.

• Let us denote ūh(ti, ~xh), i ∈ N0, ~xh ∈ Ωh

the approximate solution.

Furthermore, let us abbreviate uh(ti) = (ūh(ti, ~xh))~xh∈Ωh
.

• Let us discretize △w by
L̄hwh,

where L̄h is a |Ωh| × |Ω̄h| matrix and wh ∈ R|Ωh|.

(e.g. finite difference discretization).

96

• In case of homogeneous boundary conditions (g = 0)
L̄h can be replaced by the |Ωh| × |Ωh| matrix Lh.

uh(t0, ~xh) = u0(~xh) ~xh ∈ Ω̄h

uh(ti, ~xh) = g(ti, ~xh) ~xh ∈ Ω̄h\Ωh, i ∈ N0.

• forward difference method (explicit Euler)

ūh(ti+1) = ūh(ti) + τ(α2L̄hūh(ti) + fh(ti)).

• backward difference method (implicit Euler)

ūh(ti+1) = ūh(ti) + τ(α2L̄hūh(ti+1) + fh(ti+1)).

• Crank-Nicolson

ūh(ti+1) = ūh(ti) + τ
1

2
(α2L̄hūh(ti) + fh(ti) +

α2L̄hūh(ti+1) + fh(ti+1)).

To analyze the stability of the previous discretization, let us consider

∂u

∂t
= α2△u, ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, initial condition

u(t, ~x) = 0, ~x ∈ ∂Ω, t ≥ t0, boundary condition

Ω :=]0, π[2.

The exact solution of this PDE is

u(t, (x, y)) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy) e−α2(ν2+µ2)(t−t0), where

u0(x, y) =

∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy).

Observe that u(t, (x, y)) ≥ 0, if aν,µ ≥ 0∀ν, µ.
Let Ωh := {h(i, j) | i, j = 1, m− 1} be the discretization grid.

97

Lemma 1. Lh has the eigenvectors

eν,µ =
(

sin(νπxi) sin(µπyj)
)

(xi,yj)∈Ωh

, where ν, µ = 1, · · · , m− 1,

with eigenvalues

λν,µ = − 4

h2

(

sin2

(

πνh

2

)

+ sin2

(

πµh

2

))

.

The eigenvalues can be estimated by

8

h2
> −λν,µ > 2π2.

The functions (eν,µ)ν,µ=1,...,m−1 form a basis of R|Ωh|. Thus we can write

u0 =
m−1
∑

ν,µ=1

cν,µ(t0)eν,µ.

Definition 5. The discretization of the parabolic equation is stable, if the
following condition holds:

Let the coefficients cν,µ(t0) be nonnegative.
Then, the coefficients of the approximate solution for f = 0, g = 0 are

nonnegative
cν,µ(t) ≥ 0 ∀ν, µ, t > t0.

Analysis of Forward Difference Method:

• The Fourier analysis of the forward difference method

uh(ti+1) = uh(ti) + τ(α2Lhuh(ti) + fh(ti)).

leads to the explicit Euler formula (f = 0, g = 0):

cν,µ(ti+1) = (1 + τα2λν,µ)cν,µ(ti).

98

• Stability is obtained if |1 + τα2λν,µ| < 1 and therefore

τ <
2

α2|λν,µ|
.

Thus the condition

τ <
2

α2 8
h2

=
2h2

8α2

is sufficient for the stability of the forward difference method.

Analysis of Backward Difference Method:

• The analysis of the backward difference method

uh(ti+1) = uh(ti) + τ(α2Lhuh(ti+1) + fh(ti+)).

leads to the implicit Euler formula (f = 0, g = 0):

cν,µ(ti+1) = cν,µ(ti) + τα2λν,µcν,µ(ti+1).

This implies:

cν,µ(ti+1) = cν,µ(ti)
1

1− τα2λν,µ
.

• Stability is obtained independent of τ since

0 <
1

1− τα2λν,µ
< 1.

Analysis of Crank-Nicolson :

• The analysis of Crank-Nicolson

uh(ti+1) = uh(ti) + τ
1

2
(α2L̄huh(ti) + fh(ti) +

α2L̄huh(ti+1) + fh(ti+1))

99

leads to the formula (f = 0, g = 0):

cν,µ(ti+1) = cν,µ(ti) + τ
1

2
α2λν,µ(cν,µ(ti) + cν,µ(ti+1)).

This implies:

cν,µ(ti+1) = cν,µ(ti)
1 + 1

2
τα2λν,µ

1− 1
2
τα2λν,µ

.

• Stability is obtained independent of τ since

∣

∣

∣

∣

1 + 1
2
τα2λν,µ

1− 1
2
τα2λν,µ

∣

∣

∣

∣

< 1.

But for large |α2λν,µ|:
∣

∣

∣

1+ 1

2
τα2λν,µ

1− 1

2
τα2λν,µ

∣

∣

∣
→ 1.

7.1.3 Discretization of Hyperbolic PDE’s

Let Ω ⊂ Rd be a domain.
The standard hyperbolic PDE is:

∂2u

∂t2
= α2△u+ f(t, ~x), ~x ∈ Ω, t ≥ t0,

u(t0, ~x) = u0(~x), ~x ∈ Ω, 1. initial condition

∂u

∂t
(t0, ~x) = u1(~x), ~x ∈ Ω, 2. initial condition

u(t, ~x) = g(t, ~x), ~x ∈ ∂Ω, t ≥ t0, boundary condition

where, g, f, u0, u1 are given functions.

• Let Ω̄h ⊂ Ω̄ be a discretization grid.

Let Ω̄h = Ωh ∩ Ω.

• ti := τi+ t0.

• Let us denote ūh(ti, ~xh), i ∈ N0, ~xh ∈ Ωh

the approximate solution.

Furthermore, let us abbreviate uh(ti) = (ūh(ti, ~xh))~xh∈Ωh

100

• Let us discretize △w by
L̄hwh,

where L̄h is a |Ωh| × |Ωh| matrix and wh ∈ R|Ωh|.

(e.g. finite difference discretization).

• In case of homogeneous boundary conditions (g = 0)
L̄h can be replaced by the |Ωh| × |Ω̄h| matrix Lh.

First initial condition and boundary condition:

uh(t0, ~xh) = u0(~xh) ~xh ∈ Ω̄h

uh(ti, ~xh) = g(ti, ~xh) ~xh ∈ Ω̄h\Ωh, i ∈ N0.

Second initial condition:

uh(t1, ~xh) = u0(~xh) + τu1(~xh) +
1

2
τ 2α2△u0(~xh).

This initial condition can be derived by the following Taylor series:

u(t0 + τ, ~x) = u(t0, ~x) + τ
∂u(t0, ~x)

∂t
+

1

2
τ 2

∂2u(t0, ~x)

∂t2
+O(τ 3).

Discretization of the PDE:

uh(ti+1) = 2uh(ti)− uh(ti−1) + τ 2α2
(

L̄huh(ti) + fh(ti)
)

.

To analyze the stability of the previous discretizations, let us consider the
case f = 0, g = 0, u1 = 0. Then, the exact solution of this PDE is

u(t, (x, y)) =
∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy) cos
(

α(t− t0)
√

ν2 + µ2
)

, where

u0(x, y) =

∞
∑

ν,µ=0

aν,µ sin(νx) sin(µy).

Observe that

aν,µ sin(νx) sin(µy) cos
(

α(t− t0)
√

ν2 + µ2
)

101

is bounded for t → ∞.
The functions (eν,µ)ν,µ=1,...,m−1 form a basis of R|Ωh|. Thus, we can write

u0 =
m−1
∑

ν,µ=1

cν,µ(t0)eν,µ.

Definition 6. The discretization of the hyperbolic equation is stable, if the
following condition holds:

Assume that

cν,µ =

{

c 6= 0 for (ν, µ) = (ν ′, µ′)
0 for (ν, µ) 6= (ν ′, µ′)

.

Then, the approximate solution for f = 0, g = 0, u1 = 0 is bounded for
t → ∞.

Analysis of the Discretization:

• The Fourier analysis of the discretization

uh(ti+1) = 2uh(ti)− uh(ti−1) + τ 2α2
(

L̄huh(ti) + fh(ti)
)

leads to the formula (f = 0, g = 0, u1 = 0):

cν,µ(ti+1) = (2 + τ 2α2λν,µ)cν,µ(ti)− cν,µ(ti−1).

• Stability is obtained, if the roots of

z2 − (2 + τ 2α2λν,µ)z + 1

are simple and contained in the disc {z ∈ C | |z| ≤ 1}. To analyze
stability, let b = 2 + τ 2α2λν,µ. Then,

z2 − bz + 1 = 0

⇓

z =
b+−

√
b2 − 4

2

102

Recall that (see Lemma 1)

8

h2
> −λν,µ > 2π2.

There are 2 cases: b2 > 4 and b2 ≤ 4. If b2 > 4, then, there is a root
z which is not contained in the unit disc. Thus, we consider only the
case b2 ≤ 4. This implies

b2 ≤ 4

m
2 + τ 2α2λν,µ ≥ −2

m
4 ≥ −τ 2α2λν,µ

⇑
4 ≥ τ 2α2 8

h2

⇑
τ ≤ h

α
√
2
.

Since b2 ≤ 4, we obtain

|z|2 =
∣

∣

∣

∣

∣

b+− i
√
4− b2

2

∣

∣

∣

∣

∣

2

=
b2 + (4− b2)

4
= 1.

Thus, we get CFL (Courant, Friedrich, Lewy) condition (1928):

τ <
1√
2
h|α|−1.

7.2 Order of Consistency

Order of Consistency and Convergence:

• There are slightly different definitions of consistency for different types
of ODE solvers and types of PDE’s.

103

• There are different definitions for stability.

• In numerical analysis one proves:

consistency + stability ⇒ convergence

Order of Consistency for Elliptic PDE’s:

Definition 7. Let L(u) be a differential operator on Ω and Lh(uh) a discrete
approximation of this operator on the discretization grid Ωh. Furthermore,
let Rh : C(Ω̄) → R|Ωh| be the pointwise restriction operator. Then, the con-
sistency order of Lh is of order O(hp), if there exists a constant C > 0 such
that

‖Rh(L(u))− Lh(Rh(u))‖ ≤ Chp.

Example 8. Consider the differential operator ∂
∂x
.

The consistency order of central differences is O(h2)
and the consistency order of upwind or downwind differences is O(h).

Order of Consistency for ODE’s:

Definition 8. Let y′ = f(t, y) be an ODE on the domain [t0,∞[.
Let yi → Ψ(yi) = yi+1 be a mapping, which calculates an approximate

solution yi+1 at ti+1 = ti + τ for a given approximation yi at ti.
Then, the consistency error is of order O(τ p), if there exists a constant

C > 0 such that
∣

∣τ−1(yex(ti+1)− yi+1)
∣

∣ ≤ Cτ p,

where yex is an exact solution of the ODE with initial condition yex(ti) = yi.

Example 9. Explicit Euler formula:

yi+1 = yi + τf(xi, yi).

Then,

y(ti + τ)− yi+1

τ
= τ−1(y(ti + τ)− yi − τf(ti, yi))

= τ−1(τy′(ti) +
1

2
τ 2y′′(ξ)− τf(ti, yi))

=
1

2
τy′′(ξ).

104

This shows a consistency of order O(τ).

Consistency for Parabolic PDE:

Definition 9. Let y′ = f(t, y) be a parabolic PDE on the domain [t0,∞[.
Let yi → Ψ(yi) = yi+1 be a mapping, which calculates an approximate

solution yi+1 at ti+1 = ti + τ for a given approximation yi at ti.
Then, the consistency error is of order O(τ p), if there exists a constant

C > 0 such that
∥

∥τ−1(yex(ti+1)− yi+1)
∥

∥ ≤ Cτ p,

where yex is an exact solution of the parabolic PDE with initial condition
yex(ti) = yi.

7.3 Shortly-Weller Discretization for Curvilinear Bounded

Domains

Shortly-Weller Discretization:
The following Shortly-Weller discretization is used to discretize elliptic equa-
tions on curvilinear bounded domains:

• Let Ω ⊂]ax, bx[×]ay , by[= Q be an open bounded domain.

• Discretize Q by a structured grid Qh of meshsize h.

• Denote Ωh := Qh ∩ Ω the interior points.

• The set of regular points is:

Ωr
h := {z ∈ Ωh | z + (h, 0), z + (−h, 0), z + (0, h), z + (0,−h) ∈ Ωh}.

and the set of near boundary points: Ωn
h := Ωh\Ωr

h.

• Let the set of boundary points Γh be the set

{(x, y + τ) ∈ ∂Ω | (x, y) ∈ Ωn
h, (x, y + h) 6∈ Ωh,](x, y), (x, y + τ)[⊂ Ω}

∪ {(x, y − τ) ∈ ∂Ω | (x, y) ∈ Ωn
h, (x, y − h) 6∈ Ωh,](x, y), (x, y − τ)[⊂ Ω}

∪ {(x+ τ, y) ∈ ∂Ω | ...} ∪ {(x− τ, y) ∈ ∂Ω | ...}.

105

• For every point M = (x, y) ∈ Ωi
h denote the north point by

N :=

{

(x, y + τ) if (x, y + h) 6∈ Ωh

(x, y + h) if (x, y + h) ∈ Ωh.

Analogously, define the points N, S,W .

• Let the mesh sizes hN , hS, hW , hE be defined such that

N = (x, y + hN), where M = (x, y),

S = (x, y − hS), where M = (x, y),

E = (x+ hE, y), where M = (x, y),

W = (x− hW , y), where M = (x, y).

Let us discretize the equation

−△u = f, u|∂Ω = g

as follows

• u(z) = g(z) for all z ∈ Γh.

• For every z ∈ Ωi
h let

−△huh(M) =

(

2

hNhS
+

2

hWhE

)

u(M)

− 2

hN(hN + hS)
u(N)− 2

hS(hN + hS)
u(S)

− 2

hW (hW + hE)
u(W)− 2

hE(hW + hE)
u(E).

Observe that for points M,N, S,W,E ∈ Ωh, we obtain

−△huh(M) =
4uM − uE − uW − uN − uS

h2
,

where h = hE = hW = hN = hS.

Theorem 4. • In general, the discretization matrix of the Shortly-Weller
discretization is not symmetric.

106

• The order of consistency is:

‖(Rh(L(u))− Lh(Rh(u)))(M)‖ = O(h) ∀M ∈ Ωn
h

‖(Rh(L(u))− Lh(Rh(u)))(M)‖ = O(h2) ∀M ∈ Ωi
h.

• If u ∈ C4(Ω̄), then the convergence is of order O(h2):

‖Rh(u)− uh‖∞ = O(h2).

8 Nested Dissection

Direct Solvers for PDE’s:
FD discretization of Poisson’s equation Mx = b,
where M is a matrix of size N = nd, d dimension.

storage time
Gauss elimination N2 = n2d N3 = n3d

Band Gauss elimination Nnd−1 = n2d−1 Nn2(d−1) = n3d−2

at d = 2 n3 n4

at d = 3 n5 n7

Nested dissection d > 2 n2d−2 n3d−3

at d = 2 n2 log n n3

at d = 3 n4 n6

Iterative multigrid nd nd

Block Elimination:
Let us write Mx = b as

(

A B
C D

)(

t
xco

)

=

(

p
q

)

,

where

M =

(

A B
C D

)

, b =

(

q
p

)

, x =

(

t
xco

)

Here co is an abbreviation for coarse.

Block Elimination:
The block decomposition leads to

Mco := D − CA−1B

bco := p− CA−1q.

107

One has to solve

Mcoxco = bco (3)

t = A−1(q − Bxco) (4)

Here co is an abbreviation for coarse.
Equation (3) can be solved recursively or by Gauss-Elimination.
A−1 has to be calculated by Gauss-Elimination.

Block Elimination:
Let

{1, 2, ..., N} = A ∪ B

Then
R

N = VA ⊕ VB := {v + w | v ∈ VA and w ∈ VB}
where

VA =

{

∑

i∈A
eiλi | λi ∈ R

}

,

VB =

{

∑

i∈B
eiλi | λi ∈ R

}

.

Block Elimination:
Spaces decomposition: Vk = Wk ⊕ Vk−1.
Then: RN = Wkmax ⊕ ...⊕W1 ⊕ V0

Mk =

(

Ak Bk

Ck Dk

)

where

Ak : Wk → Wk, Bk : Vk−1 → Wk,

Ck : Wk → Vk−1, Dk : Vk−1 → Vk−1,

Mk : Vk → Vk

108

Nested Dissection:
0 0 0 0 0 0 0 0 0
0 3 2 3 1 3 2 3 0
0 2 2 2 1 2 2 2 0
0 3 2 3 1 3 2 3 0
0 1 1 1 1 1 1 1 0
0 3 2 3 1 3 2 3 0
0 2 2 2 1 2 2 2 0
0 3 2 3 1 3 2 3 0
0 0 0 0 0 0 0 0 0

Decomposition of discretization grid:

Ωh = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3

Nested Dissection:
Number the finest grid Ωh = {1, 2, ..., N}. Then, decompose:

{1, 2, ..., N} = Ω0 ∪ Ω1 ∪ Ω2 ∪ Ω3

Mk =

(

Ak Bk

Ck Dk

)

, xk =

(

tk
xk−1

)

, bk =

(

qk
pk

)

.

Mk−1 := Dk − CkA
−1
k Bk

bk−1 := pk − CKA
−1
k qk.

Mk−1xk−1 = bk−1

tk = A−1
k (qk − Bkxk−1)

M−1
0 and A−1

k have to be calculated by Gauss-Elimination.

Nested Dissection:
The computational amount of nested dissection is dominated by computation
of M−1

0 and A−1
k . Let us estimate this this computational amount:

Let n = 2kmax .
M0

is matrix of size O(2(d−1)kmax) = O(nd−1).
M−1

0 computation:

109

O(n2d−2) storage requirement.
O(n3d−3) computational requirement.

Nested Dissection:
Let n = 2kmax .

Ak

has a block-structure and consists of

2d(k−1)

blocks of size O(2(d−1)(kmax−k)).
Storage requirement for A−1

k computation:

O(
kmax
∑

k=0

2d(k−1)(2(d−1)(kmax−k))2) = O(N
kmax
∑

k=0

2(d−2)k)

= O(Nkmax) = O(n2 log(n)) if d = 2

= O(N2(d−2)kmax) = O(n2d−2) if d > 2

Nested Dissection:
Let n = 2kmax .

Ak

has a block-structure and consists of

2d(k−1)

blocks of size O(2(d−1)(kmax−k)).
Computational requirement for A−1

k computation:

O(

kmax
∑

k=0

2d(k−1)(2(d−1)(kmax−k))3) = O(N

kmax
∑

k=0

2(2d−3)k)

= O(n3d−3)

Implementation of Nested Dissection:
Implementation has to take into account that all matrices are block matrices.

110

→ recursive implementation is needed.

For reasons of simplicity assume d = 2, Ω = [0, 1]2.
Define the cells (Zelle)

Zk
i,j = [ihk, jhk]× [(i+ 1)hk, (j + 1)hk],

where hk = 2−k and

I = (i, j) ∈ Ik := {(i, j) | i, j = 0, ..., 2k − 1}.

Observe that Z0
0,0 = [0, 1]2 and

Zk
i,j = Zk+1

i,j ∪ Zk+1
i+1,j ∪ Zk+1

i,j+1 ∪ Zk+1
i+1,j+1.

Implementation of Nested Dissection:
Define

Akmax
i,j := Zkmax

i,j ∩ Ωh

Bk
i,j := Ak

i,j ∩ ∂Zk
i,j

Ik
i,j := Ak

i,j\Bk
i,j

Ak−1
i,j := Bk

i,j ∪ Bk
i+1,j ∪ Bk

i,j+1 ∪ Bk
i+1,j+1 for k ≤ kmax.

Furthermore, we can define

Ω0 := B0
0,0

Ωk := Ik−1
i,j .

Implementation of Nested Dissection:
Let

V (B) := span{ei | i ∈ B}
Then define matrices, which map spaces to spaces:

Ak
I : V (Ik

I) → V (Ik
I), Bk

I : V (Bk
I) → V (Ik

I),

Ck
I : V (Ik

I) → V (Bk
I), Dk

I : V (Bk
I) → V (Bk

I),

Mk
I : V (Ak

I) → V (Ak
I)

111

These matrices are stored with respect to the standard basis {ei}. Extend
matrix M : V (B) → V (A) according

M(ei) :=

{

M(ei) if ei ∈ V (B)
0 else.

Implementation of Nested Dissection:

Mk−1
i,j :=

∑

I=i,j,...,i+1,j+1

Dk
I − Ck

I (A
k
I)

−1Bk
I

bk−1
i,j :=

∑

I=i,j,...,i+1,j+1

pkI − CK
I (Ak

I)
−1qkI .

tkI = (Ak
I)

−1(qkI − Bk
Ix

k−1
I)

On coarsest grid one has to solve exactly

M0x0 = b0

Equation
Mk−1xk−1 = bk−1

has to be solved recurively from coarse to fine grid.

Implementation of Nested Dissection:
How to define

Mkmax
i,j ???

• In case of Finite Elements, these are the local stiffness matrices.

• In case of Poisson’s equation take the 4x4 matrix

1

h2









1 −0.5 0 −0.5
−0.5 1 −0.5 0
0 −0.5 1 −0.5

−0.5 0 −0.5 1









Lineare Algebra with Indizes:

112

class VectorIndex : public ExprAlg<VectorIndex> {

public:

template <class Ind> VectorIndex(const Ind& index) {

size = index.getSize(); Sn = index.getIndices();

data = new double[size];

s = new int; Smy = new int;

}

template <class A> void operator=(const ExprAlg<A>& a);

...

private:

double* data;

int size; // Laenge Vektor

int *Sn; // Nummern der globalen Indizes

int *Smy; // fuer Auswertung: globaler Index

int *s; // fuer Auswertung: lokaler Index };

Lineare Algebra with Indizes:

void VectorIndex::startI(int max_size) const {

(*s) = 0; if(size>0) (*Smy) = Sn[(*s)];

}

double VectorIndex::getValueI(int Sglobal) const {

while(Sglobal > (*Smy) && (*s) < size) {

++(*s); (*Smy) = Sn[(*s)]; }

if((*Smy) > Sglobal || (*s)>=size) return 0;

return data[(*s)];

}

template <class A>

void VectorIndex::operator=(const ExprAlg<A>& a) {

const A& ao(a); ao.startI(size);

for(int ss = 0;ss < size;++ss) {

data[ss] = ao.getValueI(Sn[ss]); }

} // ----> sorted Indizes!!!

Lineare Algebra with Indizes:
Implementation of matrices with Indizes:

class MatrixIndex : public ExprAlg<...> {

public:

template <class Ind>

MatrixIndex(const Ind& indexI,const Ind& indexJ);

....

}

Operators like =,+,- are implemented such that they can be applied to
vectors and matrices with respect to different index set:

v = b+ c

Here iteration is performed for the index set A of v.

113

If b or c is not defined at a certain index i ∈ A, then getValueI(i) return
0.0.

Lineare Algebra with Indizes:

• Observe that if v is defined for a index set A.
Then v is contained in the corresponding vector space:

v ∈ V (A)

• A class IndexSet is needed which

– stores indizes in a sequential order and

– allows union of two index set by merge sort.

Implementation of Nested Dissection:
The sets

Ak
I = Bk

I ∪ Ik
I

have to be represented by objects of class IndexSet and constructed re-
curively.

The matrices

Ak
I : V (Ik

I) → V (Ik
I), Bk

I : V (Bk
I) → V (Ik

I),

Ck
I : V (Ik

I) → V (Bk
I), Dk

I : V (Bk
I) → V (Bk

I),

Mk
I : V (Ak

I) → V (Ak
I)

have to be represented by objects of class MatrixIndex and constructed
recurively.

Implementation of Nested Dissection:

The sets Ak
I ,Bk

I , Ik
I and matrices Ak

I , B
k
I , C

k
I , D

k
I , and Mk

I have to be stored
as members of leaves in an quadtree.

class Leaf {

public:

Leaf(...); ...

114

VectorIndex* x; ///> W

...

MatrixIndex* A; ///> W -> W

MatrixIndex* B; ///> Vb -> W

...

private:

std::vector<Leaf*> children;

IndexVector allIndizes; ///> set A

IndexVector interiorIndizes; ///> set I

IndexVector boundaryIndizes; ///> set B

};

Implementation of Nested Dissection:

• Dested Dissection has to be implemented by traversing through a quadtree
with leaves of obeject class Leaf.

• Efficiency mainly depends on the efficient implementation of

– matrix multiplication and

– Gauss-algorithm implementation to compute A−1.

using a lineare algebra library on index sets. To this end cache efficient
implementation is very important!

References

[1] Goedecker und Adolfy Hoisie. Performance Optimization of Numerically
Intensive Codes. SIAM, 2001.

[2] J.L. Hennessy and D. A. Patterson Computer Architecture, A Quantita-
tive Approache. Third Edition. Morgan Kaufmann Publishers, 2003.

[3] A. S. Glassner . An Introduction to Ray Tracing. Morgan Kaufmann
Publishers, 2007.

[4] W. Gropp und E. Lusk und A. Skjellum. Using MPI. The MIT Press,
1999.

115

[5] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, R. Menon.
Parallel Programming in OpenMP. Morgam Kaufmann Publishers, 2001.

[6] A. Alexandrescu. Modern C++ Design. Generic Programming and De-
sign Patterns Applied.

[7] W. Hackbusch. Elliptic Differential Equations. Theory and Numeri-
cal Treatment. Springer Series in Computational Mathematics Vol.18,
Springer, 1992.

[8] R.L. Burden, J.D. Faires. Numerical Analysis. Brooks/Cole, 2001.

116

