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1 Multigrid

1.1 Damped Jacobi Iteration

Let us consider the finite difference discretization of Poisson’s equation —Au =
f on Q =)0, 1[? with Dirichlet boundary conditions.
This leads to a matrix equation

Lyxn = fa,
where the diagonal is
4

and Lj has eigenvalues

4 h h
)\1/,/,1 = ﬁ (Sin2 <%) + Sin2 <%)>

and eigenvectors e, ,, v,u=1,...,m — 1.

1.1.1 Jacobi Method with Damping Parameter
Let us consider the iteration

h? h?
ZL’;CLJ'_I = (E — th)ZEfL + gfh

The algebraic error satisfies

$Z+1 —Xp = (E — g[;h) (.Z’i — .Z’h) .

If the algebraic error is an eigenvector like

k
Tp — Th = Cyp,



then we get for v = p

2

This means that the Jacobi Method with Damping Parameter
has the following properties

e Bad convergence for low frequencies.

e Good convergence for high frequencies.

0.5 4
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2 .o
The Gauss-Seidel method has similar properties as the damped Jacobi
method.

X X X B
X X X X
X X X X
A X X X

Jacobi and Gauss-Seidel iteration need O(y/n) = O(h™!) operations for
a correction in B due to a change of A.

The idea is to achieve a better correction by using coarser grids.



1.2 Multigrid algorithm on a Simple Structured Grid

Multigrid:
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Figure 1: 1=3 Figure 2: 1=2 Figure 3: I=1

Let l,,.x be the number of levels such that [, € N and

forl=1... 1.

Let us assume that a PDE (e.g. Poisson’s equation) is given. Discretize
this equation by the grids € := Qj,, where [ =1, ..., ;4. This leads to the
discrete matrix equations

All’l = bl (1)

where b, x; € S; and S; = R™. The matrix A; is an invertible matrix of order
n; X ny.
Let an iterative solver for (1) be given as

xlk+1 _ Clrelaxxlk + Nlbl = Slf’l (xf) (2>

Idea of Multigrid Algorithm:
Let 7; be an approximate solution for (1). The algebraic error ¢; is defined
as

€ = — 1. <3>



Now ¢; has to be calculated in order to find x;. The following residual
equation is valid for ¢,

Ala =T, (4>
where 7; is called the residual and is given by

T = bl — Alfl. (5)

The aim is to find an approximate solution of the residual equation by
solving the equation approximately on a coarse grid 2;_;. To this end, we
need the following matrix operators

e Restriction operator

[llil : Sl — Sl,1

e Prolongation operator

[ll—l : Sl,1 — Sl

Two—grid Algorithm:

Two—grid Multigrid algorithm with parameters v; and v
Let 2F be an approximate solution of (1) and v; and v, the parameters of
pre-smoothing and post-smoothing.

1. Step 1 (Pre-smoothing)

k1
Iy = Sz,i?xf (6)

2. Step 2 (Coarse grid correction)
Residual calculation :

r;=b — Alzvf’l (7)
Restriction :
ry =17ty (8)
Solve on coarse grid:
elo1 = A (9)
Prolongation :
er =11 ey (10)
Correction :
)t =)t e (11)
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3. Step 3 (Post—smoothing)

v k,2
wf“ = Sz,bl2 (z;%) (12)

Restriction and Prolongation Operators:

X X X X X X X
X O X O X O X
X X X X X X X
X O X O X O X
X X X X X X X
X O X O X O X
X X X X X X X

Figure 4: O—Coarse grid point and X+O-Fine grid point

Let us abbreviate x;; = x@n,_, jn,_,) and set z;; =0fori=0o0r 7 =0
or ¢ =my_q 0r j =m_1.

Prolongation or Interpolation:

The interpolation or prolongation of z;; given by w;; = {I}]_1(2)}an,jn) 18
defined by the following equations

1

Wai,25 = ZLij5 (13>
2
1
wair12j = 7 (@i + 1) (14)
1
waigjr1 = 7 (Tig + Tig) (15)
1
W2i4+1,2j4+1 = g(xw + Ti1j + i + Tig101) (16)
Pointwise Restriction:
Piecewise restriction is rarely applied and defined by
{171 @) Yt ) = 212 (17)



The quality of this restriction operator is not very good.

Weighted Restriction:

Weighted restriction or full weighting is defined by

{1, l_l(x)}(ihl_l,jhl_l) = §($2i+1,2j+1 + Toi—1,2j+1 + Taip1,2j—1 + Toic1,2j-1) +
Z(z21+1,2j + T2i—1,2j + T2i2j41 + T2ij—1) +
1
§!Ezi,2j
Remark
_\T
(L) =1, (18)

1.3 Multigrid Algorithm
Multigrid algorithm MGM (zf,b;,1) with parameters (vi,vq,u1)

Let 27 be an approximate solution of (1). Then,
x;f:alz = MGM($Z,“M’ Llpaz lmaz)

is the approximate solution of (1) calculated by the multigrid algorithm with
an initial vector ¥ . The multigrid algorithm can then be described as

lmaz
If | = 1 then MGM (zf,b,1) = A 'b.
If I > 1 then
Step 1 (vi-pre-smoothing)
rt = Sipy (=f)
Step 2 (Coarse grid correction)

Residual : 7, = b — Al:vf’l

Restriction : r_; = Ill’lrl

Recursive call:



0o _
61—

fori=1...pu
6;_1 = MGM(@}:}, rl—bl - 1)
€l—1 = eéL_l
Prolongation : ¢; = 11_16171

. k.2 k1
Correction : ;" = ;" + ¢

Step 3 (va-post—smoothing)

MGM (zf, by, 1) = S, (z}7%)

V-cycle and W-cycle:

The algorithm g = 1 is called V-cycle.
The algorithm p = 2 is called W-cycle.
Homework: Describe the multigrid algorithm as a finite state machine,
where every state is a smoothing step and an operation is a restriction or
prolongation. Then, the finite state machine of a V-cycle looks like a “V”
and the finite state machine of a W-cycle looks like a “W”.

Convergence of Multigrid:

Let N be the number of unknowns. The computational amount of the
V-cycle and W-cycle is O(N).

The theory of multigrid algorithms shows that there is a constant p such
that the convergence rate of the multigrid algorithm satisfies

p(Creny) <p <1

independent of [.

1.4 Debugging of MG

e command out parts of the code (recursive coarse grid call, correction
step, ...)

e often the coarse grid matrix is defined by

A = IFALLY, I = (17T,



Then, the following equation must hold for all coarse grid vectors v, w:

v Agw = (1) Ayl .
Test this equation for w = 1 and other simple test functions.
e In case of Neumann boundary conditions and Poisson’s equation:

Apl=0.

2 Finite Elements

2.1 Linear Elements in 1D

Definition 1. ¢ is a linear function on the interval |a,b|, if there exist
c,d € R such that
q(z) =cx+d Vz €la,b|.

Let h = %, m € N.
Then, the space of functions

Vi i= {un, € C([0,1]) | wnljin,i41yn is linear Vi = 0,...,m — 1 }

is called the finite element space of linear functions.

Define

Vii={up € Vi | un(0) = uy(1) = 0}.
Let us consider Poisson’s equation in 1D:

—u" = f on]0,1],
u(0) = uy, u(l) = uy.

Then, we get
1 1 .
/ u'v), dx = / fop doz Nu, €V, .
0 0
Definition 2. Let u, € V}, such that
1 1 .
/ upvy, dv = / fop dz Yv, €V,
0 0
un(0) = uy, up(1) = uy.

up, 1s called the finite element discretization with linear finite elements.

9
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Let
Q, = {ih|i=0,..,m},
Qn = {ih]i=1,...m—1}.

Definition 3. The nodal basis of X;h is

o
Un1y -3 Un(m—1) €EVh

where
Vp(q) = 0pg VD, q € Q.

Stiffness Matrix:
For reasons of simplicity let us assume uyg = uy; = 0. Then, let us write

up = E TqUq,

[o]
q€ Qp

where z, = (x o € R™ L
h ( Q)qe Qn €

Define the 1D local stifflness matrix and load vector as follows

1
A, = (/ VU, dx)
0 pac O
1
fn = (/ fvpdx) o
0 pE Uy

Apzy, = fo.

Then, we get

The local stiffness matrix and the load vector can be calculated exactly or
numerically.
Numerical integration leads to a matrix equation

Ahxh = f}r

Example of Stiffness Matrices:

10



Let us consider linear finite elements in 1D.
The stiffness matrix corresponding to

1
/ u'v' dx
0

is

The stiffness matrix corresponding to

1
/ u'v dx
0

18

0 1
) -1 0 1
Ah = 5 te
-1
The corresponding operator is
w—

The stiffness matrix corresponding to

1
/ wv' dx
0

is

11



The corresponding operator is

Uu— —u.

The stiffness matrix corresponding to

1
/ uv dx
0

18

4 1
h 1 4 1
Ap = 6
1 4 1
1 4
The corresponding operator is
U u.
Example 1: Poisson’s Equation in 1D:
—u" = f on]0,1],

u(0) = 0, u(1) = 0.

Discretize this equation by Apz, = f, where

1 1
Ay = (/ VU, dx) s fa= </ In(f)v, dx) -
0 P,q€ 0 p€ Qp

This means

2 -1 a:1 4
-1 2 -1 1

1
h

—1 2 Tm—1

12



2.2 Streamline Diffusion in 1D

The discretization of
w— u

by finite elements leads to a discretization similar to the central difference
discretization

oo L

How do we get something similar to FD upwind?
Consider the convection diffusion equation in 1D:

—u" =t =f, w0)=u(l)=0

Multiply this equation by v = v, — phv}, sgn b, where vy, E‘j'h and integrate.
Assuming b > 0, this yields

1
/ (w'vy, + hpbu'vy, — bu'vy,) dz + ph/ u"vydr = / f(vy, — phvy)dx
0

In the streamline diffusion discretization, we neglect the term of third order
and replace u by up:

1 1
/ ((1 4 hpb)uy,v, — buj,vy) do = / f(on — phvy,)dz.
0 0

Let p = % Then, the stencil corresponding to the term

1 1
/ (hpbuy,v;, — buj,vy) do = b/ ( huyvy, — upvp) do
0 0

is

This shows that the finite element streamline diffusion discretization is
similar to the FD upwind discretization.

13



2.3 Linear and Bilinear Finite Elements in 2D
Definition 4. 7 = {1\, ..., Ty} is a conform triangulation of ) if

e O=U" T, Tis
a triangle or quadrangle (in 2D) or tetrahedron, hexahedron, prism, or
pyramid (in 3D)

o T, NTj is either

— empty or
— Oone cOmmon Corner or

— one common edge.

Remark.

e Let us write 7y, if the diameter hr of every element T' € T}, is less or

equal h:
hr < h.

e A family of triangulations {7} is called quasi-uniform, if there exists
a constant p > 0 such that the radius pr of the largest inner ball of
every triangle T € T, satisfies

pr > ph.

14



bad approximation

good

B——

bad for Gauss—Seidel

Definition 5. Let T, be a triangulation of Q). Then, let V}, be the space of
linear finite elements defined as follows:

Vi, = {veCO(ﬁ)

U|T is linear for every T € 771}

Vi = VN Hy(Q)
V|, is linear means that v|T(x, y) = a+bx + cy.

Definition 6 (Bilinear elements on a Cartesian 2D grid). Let Q =|0, 1[?,
h=2L and

75 = {ln -4 1] i G+ 1))

i,ij,...,m—l}.
The space of bilinear finite elements on ) is defined as follows

Vi, = {v € C'(Q)

U}T 15 bilinear for every T € TH} :

V| is bilinear means that v’T(az, y) =a+ br + cy + dry.

FE Discretization of Poisson’s equation:

—Au = f

“‘m

15



Thus, for every v, €V}, we get:

—Auv, = fu,

=

/Vu Vo, d(z,y) — % v d(z,y) = /f vy d(,y)
Q Q

o

=

/ Vu Vo, d(z,y) = / fon d(z,y) Yoy, EX;;L .
Q Q

FE Discretization: Find uy E‘;h such that

/ Vuy, Vo, d(z,y) = / f o d(z,y) Yoy, EI;h . (19)
Q Q

Definition 7. Let V), be the space of linear or bilinear finite elements on T
and Ny, the set of corners of Ty,. Then, define the nodal basis function
vy € Vi, at the point q by:

vq(x):{é Zi;g for z € Ny,

Observe that
Vi, = span{vq q € Nh}

This means that every function uy, € Vi can be represented as

up, = Z AgVq

qEN},

Stiffness matrix:

Apg = /QVvq Vo, d(z,y), fp = /vap d(z,y)
0

A, = (a , Nu:= N, NQ
h ( pﬂ)p,qe/\(}h h h
up, = Z Ag Vg

qE/\(}h

16



Then, (19) implies
0
Z )\q/ Vo, Vo, d(z,y) = / f v, d(z,y) for all ¢ €N},
0 Q Q
4

qEN,

0
d Ny = o Vp eN;,

0
qEN},
U
Uo=(\) o
Ah Uh = Fh where 9€Nn
Fy = (fp) 0
pEN,

The matrix Ay is called the stiffness matrix of the FE discretization.
Example: Bilinear Elements on a Structured Grid
Consider the structured grid on Q =|0, 1[*:

i,j:(),...,m—l}.

N, is the set of corresponding nodal points (corner points).
Observe that the nodal basis functions can be decomposed as

T = {[ih, (¢ + 1)h] x [jh, (7 + 1)h]

Upepy (z,y) = vp, () - Up, (v).

Thus,
L ov,, Ov,, !
o vquqy vazpy d(z,y) = ; r or dx ; Upy Vg, dy
1 o o 1
o Oy Oy 0
This shows that the discretization stencil for Poisson’s equation is:
1 -1
1 h 1 h
—(-12 —-1)-=-| 4 -1 2 |-=(1 41
h ( ) 6 + h 6 ( )
1 -1
-1 -1 -1
= | -1 8 -1
-1 -1 -1

17



and for the right hand side the stencil is:

o) =
NN

(14 1)-

o >

2.4 Calculation of the Stiffness Matrix

Since Q0 = UM, T}, we obtain

M
/ Vv, Vv, d(z,y) = Z/ Vv, Vv, d(z,y).
Q = JT
For linear or bilinear elements, we obtain

/ Vv, Vo, d(z,y) #0 < p,qeT.
T.

k3

Definition 8. The matrix

(/ Vv, Vo, d(:r;,y))
Ti p.a€T;

1s called local stiffness matrixz at Tj.

Remark:
Observe that the local stiffness matrix is a 3 x 3 matrix for linear elements
on triangles and a 4 x 4 matrix for bilinear elements.

Reference Element:

To calculate the local stiffness matrices we need a reference element 7" and
a mapping

for every 1.

Example 1. A reference element for triangles is:
T={En|E+n<1 and &n=>0}.

If T; consists of the corners Py, Py, Py, then

i(€,n) =P+ (P — P)§+ (Ps — Pu)n.

18



Example 2. A reference element for quadrangles is:

T={¢&n]0<&En< 1)

Calculation of Local Stiffness Matrices:
Now, the local stiffness element can be calculated by

/T‘ V! Vo, d(z,y) =
— /T ((qui)-qu)T (DW;)""Vd,) | det DY,| d(&,n).

Example 3. Consider triangles. Then, describe the mapping V; by

‘Pi(ﬁ,n)zPﬁ(Z)SJr(;)n-

a ¢
pu - (1 5).

In case of complicated 3D elements like prisms, it may be that (D¥;)~7 is a
rational polynomial, but no pure polynomial in &, 7.

Then,

Numerical Integration:
Calculate the integral

/T (DY) TVo,)" (DW;)"TV5,) | det DW;| d(£, 7).

by Gauss quadrature rule.

Example 4. Consider triangles and choose the above reference element.
Then, the first Gauss quadrature rule implies:

/T ((D\IJ,-)_TV&])T((D\IIZ-)_TV@I,)| det DW;| d(€,m)

~ 3'3

% (DW,)"TVa,)" ((DW,)"TV4e,)| det DY,| (1 1) .

19



Calculation of Stiffness Matrix:
Consider the triangulation:

Py
P The stiffness matrix of this
s triangulation is:
P, q
1 A, =
P, b
Observe: lﬁ —Z lﬁ lﬁz Z?S —Z l% lﬁ 0
| Al21B l?42 Al23B BOC g
131‘gl31 14, lgg,—l—l363 l:,]gl—i—l:,,c4 1305
l 0 s+ 15 +15 1
{1,2,3} = N(4) 11 43 T lgz gy Ty g
0 0 15, I, 15

{1,3,4} = N(B)
{4,3,5} = N(C)

Algorithmic Calculation of Stiffness Matrix:

The calculation of stiffness matrix has to be performed in two steps:

1. Step: Calculate the local stiffness matrix.

2. Step: Calculate the stiffness matrix.

But there exist two approaches:

1. First compute and store the whole local stiffness matrix.
Then, calculate the stiffness matrix.

Advantage: The local stiffness matrices can be used for coarsening the
local stiffness matrices in a multigrid algorithm.

Faster code for some non-linear problems.

2. After the calculation of the local stiffness matrix of one element 7',
add these integrals to the whole stiffness matrix.

Advantage: Less storage requirement.

Data Structure for (Local) Stiffness Matrix:

20



1. Local stiffness matrix: Let ny be the number of degrees of freedom for
an element 7' € T, (3 for triangle). Then, for every T € T, a ny X np
matrix has to be stored.

Data structure: list or array for storing T' € T,. Each entry must
contain ny and a pointer to a ny X ny matrix.

2. Stiffness matrix: For every unknown (grid point) the discretization
stencil has no fixed size. Data structure: Sparse matrix.

Sparse Matrix Format:

1l.row 2.row k.row
1 ny not Ng—1
n +ng_o
—|— + nq
ny ) N
;=1 1=2 1=k
1 ny o + ... N1+ ...

Algorithm (Stiffness Matrix Calculation):
Let N (T') be the corner points of the triangle T'.

1. Calculate local stiffness matrix (liTj)iij () for every finite element

TeT,.

2. Calculate the number of neighbour points m; for every point 7. This
gives the value n; = "', my + 1 in the sparse matrix of the the

stifflness matrix.

3. Go to every grid point 7 and iterate over the neighbour element

T € Tp,i € N(T). Add the I]; to ag; for every j € N(T).

21



= Later we explain how to obtain a suitable data structure for the
discretization grid.

Data Structure of the Discretization Grid:

Array (or list) of objects of type Triangle. Every triangle has an id.

class Triangulation_grid {
int number_triangles;
Triangle* triangles; // id is number in list

int number_points;
Points* points; // id is number in list
X
class Triangle {
int id_point_1, id_point_2, id_point_3;
+
class Points {
double x,y; // coordinate of point
int number_neighbour_points;
int* id_neighbour_points;

}

In certain cases it is important to store the id of each neighbour triangle at

every point. Tafel:
Schreib

2.5 General Formulation of PDE’s and Convergence lé‘“z

ode

Let V' be a vector space and fiir Iter-

ation

a:VxV-=R
a symmetric positive definite bilinear form. a induces the “energy” norm

[ulle = v a(u, u).

Furthermore, let
f:V-oR

be a || - ||z continuous linear functional and let V' be complete with respect
to |- 1e -

22



Problem 1. Find u € V such that a(u,v) = f(v) YveV.

Theorem 1. The above problem has a unique solution u.

Examples of PDEs with Weak Formulation:

Example 5 (Poisson’s Equation with Reaction Term). Let
V =H}Q) ={ue L*Q)| Vue L*(Q)} and c > 0.

a(u,v) = /Q (VuVv + cuv) d(z, y).

Example 6 (Linear Elasticity). Let V = (H} ()3, u € V, C a suitable
6 X 6 matriz and Du the vector of symmetric derivatives (see section 4).

a(u,v) = /Q(Du)TCDU d(x,y, z).

Example 7 (Maxwell’s Equations). Let V' be a suitable vector space
similar to (H}(Q))? and ¢ > 0.

a(u,v) = /Q(V x u)"(V x v) + cuv d(z,y, 2).

Let V}, be a subspace of V.
Problem 2. Find u;, € V), such that a(up,vp) = f(un) Yo, € V.
Theorem 2.

_ < inf _
Ju =il < inf_flu = onlls

Example 8. Consider Poisson’s equation. Let V}, be the space of linear
elements corresponding to a a familiy of quasi-uniform triangulations.
Furthermore, assume that w € C*(QY) (H?*(Y)) is the weak solution of
Poisson’s equation. Then, there is a constant C' such that

||u — uhHE S hC
for every h, where u, € Vy, is the finite element solution.

Remark: In case of H?(Q)-regularity, one can prove |u — uyl|z2 < h2C' .

23



2.6 Operator Formulation

Let V}, be a finite element space and (v,),en; the corresponding nodal basis.
Let u,f be vectors of length |[N}|. Then,

f = Laplace_FE(u);

means

£ = (fp)pen, = (/Q V(Z UqUq) Vp d(x,y))
PENS

qeEN},

and
f = Helm_FE(u);

means

= (fp)pens, = (/Q(Z UqUq)Up d(a:,y)) :
PEN},

qEN,
Thus,
Laplace_FE( ), Helm_FE( )
are operators. Let
Diag_Laplace_FE( ), Diag_Helm_FE( )

be the corresponding diagonal operators.
Let

interior, boundary
represent the interior and boundary points of the domain and
product (u,v)

the scalar product of u and v.
For testing you FE-code one can do the following tests:

Test 1: Volume Calculation:

Now let us implement the above operators by expression templates.
Then, the code

24



u=1.0;
f = Helm_FE(u);
cout << product(u,f) << endl;

calculates the volume of the domain.

Test 2: Volume Calculation:

Now let us implement the above operators by expression templates.
Then, the code

u = X;
f = Poisson_FE(u);
cout << product(u,f) << endl;

calculates the volume of the domain.
Here, let X be the x-coordinate.

Dirichlet Boundary Conditions:
The problem

Problem 3. Find u € H'(Q) such that
—Au = f onf),

U|F=9

can approximatively be solved by finite elements and the Gauss-Seidel
iteration as follows:

u = Helm_FE(f);
f = u;
u = g | boundary;

for(i=0;i<i_max;++1i)
u = u - (Laplace_FE(u)-f)/Diag_Laplace_FE()
| interior_points;

Using a Direct Solver:
Let us assume that there is a good direct solver ui=Inverse(S,fi) which
calculates

ui = S~ fi.
Then, apply the code

25



u = Helm_FE(f);

f =u;

u = 0.0 | interior;

u=g | boundary;

f = f - Laplace_FE(u) | boundary;

u = 0.0 | boundary;

S = Sparse_matrix(Laplace_FE, interior);

fi = vector(f,interior);
ui = vector(u,interior);
ui = Inverse(S,fi);
u =g | boundary;

2.7 Boundary Conditions

Let us consider the equation

—divpgradu = f on (),

u = g onlp,
0
a_;‘ — 0 onTy,

ou
% + B(U - uref) = 0 on Fthird>
here 2 is a domain and
O =Tp Uy UTpira

is a disjunct subdivision of the boundary, where I'p # ().
Furthermore, let 1 : 2 — R be a piecewise constant parameter and
0<pelR

Define the finite element space

Vh = {Uh c Vh | Uh‘FD = O}

Then, we obtain

/Vuquhd(w,y) + ﬁu/ uvy, do = ﬁu/ UpegUh do + /fvhd(x,y)
) Tthird Q

Cinira

26



for every v, € V.
FE Discretization
Find uj, € V), such that

/Vuhquhd(xvy) + ﬁu/ upvp do = BM/ Upefp do + /fvhd(l“,y)
Q Cihird Q

Tinira

Yy, € Vh,
up(z) = g(z) VzeQ,NTp.

Observe that the bilinear form
a(u,v) ::/VuuV’ud(x,y) + ﬁu/ uv do
Q Cinira

is symmetric positive definite on the space

{ve HY(Q) | U‘FD = 0}.

Operator Formulation:

Let us implement the operators in section 2.6 by expression templates.

Let A_FE be the operator corresponding to the bilinear form a(u,v).

The previous problem can be solved by the Gauss-Seidel iteration as follows:

u = Helm_FE(f);
f = u;
u = g | boundary_D;

for(i=0;i<i_max;++i)
u=1u - (A_FE(u)-f)/Diag_A_FE() | grid_space;

Here grid_space represents the interior points and the boundary points
which are no Dirichlet boundary points.

2.8 Pure Neumann Boundary Conditions

Let us consider the equation

—Au = f onf, (20)
ou
i 0 onlI. (21)
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A short calculation shows
/Q f d(.y) = 0. (22)

Thus, we assume (22).
Furthermore, observe that the constant function v = 1 satisfies

—Au = 0 on €,
0
a—; = 0 onl.

Thus, we need an additional assumption to guarantee a unique solution of
(20). There are different possibilities like

/Qu d(xz,y) =0

/Fu d(xz,y) =0

and other conditions, which factor out the constants.
A natural way to obtain a well-defined problem is:

or

Problem 4. Find u € H () such that
—Au = f onQ,
Ou _ 0 onl cmd/ud(:c,y):(),
0

on
where we assume

/Qf d(z,y) = 0.

Operator Formulation:
Let us implement the operators in section 2.6 by expression templates.
The previous problem can be solved by Gauss-Seidel iteration as follows:

Eins = 1.0; // set up for normalization
IntE = Helm_FE(Eins);
Eins = Eins / product(Eins, IntE);
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f = f - Eins * product(f,IntE);
Helm_FE(f);
f = u;

for(int i=0; i<N;++i) {
u - (A_FE(uw) -f) / Diag A_FEQ);
u - Eins * product(u,IntE);

u

u

by

2.9 Streamline Diffusion in 2D

Consider the convection diffusion equation in 1D:

—Au—l;gradu = f

U‘E)Q = 0

where b : Q — R is a vector field. B B i
Multiply this equation by v = v, — phbo Vv, ||b|5", where v, €V}, and
integrate

/ (Vu o Vuy, + hpl;o Vu bo Vuy, ||Z;||2_1 —boVu vh> d(z,y)
Q
—ph/ Aubo Vuy, d(z,y) ||b]|;" —/f(vh—phzowh 1b]|5 1) d(z, y).
Q Q

In the streamline diffusion discretization, we neglect the term of third order

and replace u by uy: Discretization: Find u;, €V} such that

/ <Vuh o Yoy, + hpb o Vuy, bo Vuy, ||bl|l;* — b o Vuy, vh> d(z,y)
Q

= [ s ol Vo [l )dlzy)
Q

(o]
for every v, €Vp,.
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3 Grids

3.1 Types of Grids

There exist
e Cartesian grids
e block structured grids
e unstructured grids
o ..

to discretize a domain §).

Cartesian Grid:

Example of an Cartesian grid:

Qnr = {(ih,jk)+ (zo,%0) | i=0,....m, j=0,...

where h, k > 0.

Data structure: Array!

Block Structured Grid:

Let

Q) = {(ih,jh) |i,5=0,...,n},

where h = % Furthermore, let 7 = {T3,...,Ty} be a subdivision by

quadrangles (2D) and
\Ifk : [0, 1]2 — Tk
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smooth bijections such that 2 = Ukle U ([0,1]*) A
Then,

is a block structured grid.
(Generalizations in 3D and for different mesh sizes are possible.)

Data structure: Unstructured grid of quadrangles, each block by array.

Simple Interpolation:

A simple construction of the mapping
Uy, 0 0,1 — Ty
is
Vi(n,§) = Psw+ (Psg — Psw)n + (Pvw — Psw)§ +

(Png — Psp — Pyw + Psw )én.
Prw Py

0 Pg

PSE

Transfinite Interpolation:

Let By, Bs, Bw, B : [0,1] — R? be parameterizations of the north, south,
west and east boundary. Then, the transfinite interpolation is:

Ui(n, &) = Bs(n) + (By(n) — Bs(n)§
+Bw (&) + (Be(§) — Bw(&))n
—Psw — (Psg — Psw)n — (Pnw — Psw)§
—(Pnve — Psg — Pvw + Psw)&n.
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Unstructured Grid:

An example of an unstructured grid is:

Data structure for an unstructured grid:
e list or array of corners (information of coordinates)

e list or array of triangles, quadrangles, ... with pointers to corners and
number of corners.

By this information one can construct:

e list or array of edges and faces (in 3D).

Visualization of an Unstructured Grid:

Examples of powerful 3D visualization programs are:
e AVS (commercial)
e OpenDx (public domain)
e ParaView (uses vtk Toolkit, public domain)

AVS supports structured grids and unstructured grids. An unstructured
grid may consist of geometric elements
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e point (0D)

e line (1D)

e triangle, quadrangle (2D)

e tetrahedron, hexahedron, prism, pyramid (3D).

An unstructured grid can be described by an UCD file format. In this file
format, every geometric element must be numbered in a certain orientation

(see handbook of AVS or OpenDx.)

Example of file in UCD format for AVS:

# UCD file format for AVS
2244 1 00

0 0.292053 0.292053 0.292053
1 0.292053 0.292053 0.892053

21 0.292053 0.2920563 1.00005
1 1 tet 12 2 7 O

43 1 tet 19 21 17 1
44 1 tet 21 19 18 1
11

variable

0 0.433753

1 -0.296865

21 -0.369419

Example of file in dx format for OpenDx:

# dx file format for OpenDx unstructured grid
object 1 class array type float rank 1 shape 3 items 22 data follows
0.292053 0.292053 0.292053
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0.292053 0.292053 1.00005

object 2 class array type int rank 1 shape 4 items 44 data follows
12 2 7 0

20 0 17 1

21 19 18 1

attribute "element type" string "tetrahedra"

attribute "ref" string "positions"

object 3 class array type float rank O items 22 data follows
0.433753

-0.369419

attribute "dep" string "positions"

object "irregular positions irregular connections" class field
component "positions" value 1

component "connections" value 2

component "data" value 3

end

Example of file in dx format for OpenDx:

# dx file format for OpenDx structured grid

object 1 class gridpositions counts 10 10 10

origin 0.005 0.000 0.005

delta 0.010 0 O

delta 0 0.010 O

delta 0 0 0.010

object 2 class gridconnections counts 100 101 99

attribute "element type" string '"cubes"

attribute "ref" string "positions"

object 3 class array type float rank O items 1000 data follows
-0.200

-0.369419
attribute '"dep" string '"positions"
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object 4 class field

component "positions" value 1
component "connections" value 2
component "data" value 3

end

3.2 Interpolation between Grids
Assume that a finite element function u is given on a triangulation 7p,.
e How to find the values of u on a grid 2,7

e How to find the triangles T, for every p € €2,?

Test for one Triangle:

Let Py, P,, P3 be the corners of one triangle.
Is a certain point P contained in the triangle P, P, P3?
Let (£,m) be such that

P:P1—|—(P2—P1)€+(P3—P1)77
Then P is contained in the triangle P, P, P if and only if
§+n<1 and &n>0.

Such a test for all points P € €0y, and triangles 7, is very time consuming.

From Structured to Unstructured Grid:
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Let the structured grid be

U, = {(wo + hai,yo + h1j) | 4,5 =0,..., N}

Then, by a simple indices calculation one obtains the index 4, ' such that

p € (@0, yo) + halt', " + 1] x hy[y’, 7"+ 1].
N

N

AN

\ Y/

NS
)

From Unstructured to Structured Grid:

Let the structured grid be

Uy = {(zo + hot,yo + hoj) | 4,5 =0,...,N.}

Now perform the following steps:

1.

For every triangle T' = T'((z1,41), (%2, 92), (x3,y3)) € Tp, consider the
quadrangle

Q = [(min(‘rlv X2, ZL‘3), min(yla Yo, y3))7 (max(xl, X2, 1'3), max(yla Y2, yS))]

For every p € Q N Qy,, set T'(p) =T, if p € T. This means store the
index of T" at p, if pe T.

Test if T'(p) is set for every p € Q. If not, then calculate the next
point ¢ € Qy, from p such that T'(q) is set and T'(p) = T'(q).

Interpolate data from €, to €, by using T'(p).
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N

From Unstructured to Unstructured Grid:

e Construct an auxiliary structured grid such that the domain of this
grid contains the domain of the two unstructured grids. The meshsize
of the auxiliary structured grid should roughly be the meshsize of the
two unstructured grids.

e Then, for every triangle T € 7T;,,, put T in the cell ¢ of the structured
grid, if ¢ intersects with 7'. (see “From Unstructured to Structured
Grid”). This means let T' € T,, if T Nc # (.

e For every p € (1, find the structured cell ¢ such that p € c¢. Then,
find triangle 7" € T, such that p € T

=
(N

=
-/

AN

—

(R

I
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4 Structural Mechanics: Linear Elasticity

(=4

Uy

original body heating of the body
leads to

deformed body

Let Q C R? be the domain of the body.

Let Ty € R be the original temperature of the body.

Let T : 2 — R be the temperature of the body after heating.

Uy

Let = | u, |:Q— R?Dbe the deformation vector of the body
uZ

after heating.

Problem: Let Q, Ty, T be given. Then, calculate « .

Definition 9. Let @ : Q — R3. The symmetric derivative is defined by:

Oug
X
Ouy

0
ot

0z 6
%+% Q=R
oy ox

Ouy Ouz
0z + dy
ou, ou,
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Another notation is

1
2
€11
€22
— €33
Du = ,
€12
€13
€23

where ® = {(1,1),(2,2), (3,3), (1,2), (2,3), (3, 1)}.

Symmetric Divergence:

. 1 80'1“ 8@-
dlv<<aij)(i,j)€<b) = 5 (Ej—ngel -+ Eza_xjej> .
j 7

div((aij)(ivj)@) is the adjoint operator of D in the following sense:

/diV((O’ij)(i,j)E(b)U d(z,y,z) = — /(Uij)(i,j)eéDU d(z,y,2)
Q Q
Observe, that for a symmetric matrix (0i;) j)co

(9025

diV((Uij)(i,j)GCI>> = Ej%ez.
J

Definition 10. Let E > 0 and 0 < v < % be the physical constants FE-Modul
and Poisson ratio.
Then, define the matriz

1l —v —v
v 1 —v 0
1 —v —v 1
-1 _ +
¢ - FE 14+v ’
0 1+v
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The inverse of this matrix is

A+2u A A
A A+ 2p A 0
C— A A A2 ,
2p
0 2u
24
where
N = vE
(14 v)(1-2v)
B E
b= oavy

The deformation vector of the body satisfies the equations:

(T —Ty) +C o,

So oL R R

div (o) = 0,
where
e « is a physical constant and
e o is called stress vector.
Define the bilinear form
a: (H'(Q) x (H(Q)* — R

(u,v) = /Q(Du)TCDv d(x,y, z).

40



Let v € (H}(Q2))3. Then, we obtain

a
o
a(u,v) = / divC g (T —Tp) v d(x,y,z).
Q
0
0
Matrix of Linear Elasticity:
A short calculation shows that
a(u,v) =
Ouy Ay Ou, Ovy ] Ouy  Juy,
:S{F [ +v g, ?DI+V i’)z (?'):c""%(l_%) oz df)y+
+ (1 —2p) 9 Oy +

D1 2w) e G 3 (1—20) G G 4w G Gy

(1—v) G2 G +v e Go b b (1—20) 9= Fu 4 1 (1—20) G2 Guqt
L(1—2v) Qe 0t 1 (1 2p) e Ot g L (1 0y) O Oy
L(1—2w) Qe Qe gy G By T O g (1 —w) P D] d(g,y, 2),

For the implementation of this bilinear form, it is helpful to sort the terms
of this bilinear form by a 3 x 3 matrix:
Miy My
My My Mo
Mz Msy  Mss

RHS of Linear Elasticity:

The right hand side can be written as

v, \ v,
— [ F|(14+v)ar AT (?'—i— +(1+1,/)(11‘AT(,1“
Ox 0z

d(x,y, 2).

(23)
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For the implementation of the right hand side, it is helpful to sort the

above terms:
Fy

Boundary Conditions for Linear Elasticity:

Let I'p C 092 be the fixed boundary of the deformation process. Let the
rest of the boundary be free.
Then, define

V={ve H(Q)|v|, =0}

Problem 5 (Weak formulation with boundary condition). Find u € V
such that

a(u,v) = /Q divC (T —Tp) v d(z,y, 2)

oo oL 00

for every v € V.

FE Discretization of Linear Elasticity:
Let V}, be the space of trilinear finite elements. Then, define

Vi ={7 € (Vi) | ¥lr,, = 0}.

Problem 6 (Weak formulation with boundary condition). Find uy € Vi,
such that

alup,vp) = / divC (T —Tp) v, d(z,y, 2)
Q

(=N eNelollolNoe)

for every vy, € V.
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Rigid Body Modes:
Consider the vector space functions

1 0 0 Y 0 z
M = span oY, 11,101}, —x |, z , 0
0 0 1 0 —y —T

M is the kernel of the bilinear form a. This means
a(m,v) =0 Ym e M, Vv e V.

Therefore, in case of Neumann boundary conditions, we have to construct
V such that V. N M = {0}.
In case of pure boundary conditions, define V' as follows:

V={veH Q)| (m)=0 Vme M}

Superconvergence of the Gradient:

The stress ¢ has to be calculated by D1.
The finite element theory for linear and trilinear finite elements shows

1D@ — Diiy|,2 = O(h).

This is a slow convergence. But one can prove the following
superconvergence of the gradient in case of structured grids:

Let X;, be the cell points of the structured grid. Then, for a sufficient
smooth solution « and a not complicated boundary I', we obtain:

wax | (D@ — Diiy)(p)]| = O(k?).

pEX
Therefore, in case of linear elasticity, apply
e trilinear elements on a block-structured grid or

e quadratic finite elements.
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5 Fluid Dynamics

5.1 Navier Stokes Equations

Let us describe a two dimensional flow by:
e u x-component of the velocity vector of the flow,
e v y-component of the velocity vector of the flow,

e p pressure of the flow.
(u,v)
v

u

Navier-Stokes-Equations:
The Navier-Stokes-equations are:

ou dp Ow?)  Ow) 1
ot * o * ox * dy  Re Au
ov  Op Ouww)  I(v?) 1
— + = = —A
ot * dy * Ox * dy Re "
oo
or oy

There exist different kind of boundary conditions:
input, output, slip, and no-slip boundary conditions.

Boundary Conditions::

e input boundary condition: Dirichlet boundary condition.

Usually it is

(u,v) ot =0.
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e output boundary condition: Neumann boundary condition or better
boundary conditions.

e no-slip boundary condition: Dirichlet boundary condition:

e slip boundary condition:

0(u,v) of_

on 0.

(u,v) o7 =0,

Here t and 7 are the tangential and normal boundary vectors.

Stokes-Equations::
The Stokes equations are:

dp
dp
—AU+ a—y == fy,
% + @ — 0
or oy

There exist several different kind of implicit, semi-implicit, and explicit
discretizations of the Navier-Stokes equations.

Important is the stability of these discretizations in space and time.
Stability in time can be analyzed by Fourier analysis.

Checkerboard Function:
Let us discretize Stokes equations by finite difference discretization as
follows:

e all unknowns at the grid points:
o ={(L)h | 5j=0,..m},

e five point stencil for Au, and

e central difference for % and g—z.

45



Then, the pressure function

T T
®>oT®T
T T
»oT®T
T T

is contained in the kernel of the discrete Stokes operator.
Unstable discretization!

Staggered Grid:
Let us define the following three kind of grids:

Oy = {(z’,j 05k i=0,.m, = 1,...,m},
Qo = {(i—0.5,j)h li=1,..,m, ij,...,m},
Oy = {(i 05,5 —05)h | i, j =1, m}
Apply the discretization:
e five point stencil for Au at Qj,,, and for Av at Q,,,

e central difference for 22 and 2 at Q,
ox dy 2

; Ou Ou
e central difference for F 4+ 7= at €, p.

Here apply the central difference discretization with respect to the meshsize
h

-
Stable discrei\:/ization!
N
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The finite difference discretization on a staggered grid leads to

ou Ov U —uw +UN — Vs
(a‘f‘a_y) (x,y) ~ h =0.

\

e

The finite difference discretization on a staggered grid leads to

—A?J(l',y) + g_];(xay) ~

—UN—US—UE—Uw+4vM+pN—pS

h2 h :fy(xvy)

e The staggered grid discretization is similar to the finite volume
discretization.

e There exist several stable finite element discretizations.

5.2 The Lattice Boltzmann Method
5.2.1 Basic Physics

Definition 11 (Particle Distribution). The fundamental variable in
kinematic theory is the particle distribution f(x,&,t) with respect to velocity
& at spatial coordinate x and time t. This means that the density of

particles at point x and time t, which move with velocity &, is f(x,&,1).
Here, x € Q C R3 and &£ € R3.

Obviously, the density of the fluid is

plx.1) = / F(x.€.1) de (25)
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and the velocity can implicitly be calculated by

u(x, £)p(x, £) = / EF(x.6.1) de

Kinematic theory tells that a gas tends to reach state of equilibrium which
statisfies the Boltzmann distribution:

1 32 2/(2RT
[ v t) =p (m) elvI"/(2RT) (26)

where T is the temperature, v is the velocity, and R is the specific gass
constant. The Boltzmann equation is

df _ 1
=)= —

where Q(f) is called collision operator and 7 relaxation time.
Observe, that Z—{ is the totel derivative:

df _of  .of
o Toax

(f - feq(x’ |V‘vt))’ (27)

5.2.2 Lattice Boltzmann Discretization

Here, we explain the Lattice Boltzmann discretization using the D2Q9
scheme. It applies a discretization grid €2, of meshsize h with cell center
points x;, (see Figure 5.2.1). Motivated by the particle distribution
f(x,&,t), Lattice Boltzmann discretization uses 9 functions

fi(xk7 t)?

where i € {0,1,2,3,...,8}. The discrete distribution function f;(xg,t) is
related to the discrete velocities ¢; (see Table 5.2.2) The discretized density
1s

pn(Xp, ) = Z fi(xp, t) (28)

and the discretized velocity is implicitly defined by

8

W (Xe, ) o (Xs 1) = Y €ifi (%, 1) (29)

1=0
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|.---=---1- discretization
o cell

|- discrete
47| velocities

Figure 5: Lattice Boltzmann Grid.

Observe the property:
X, + he; € €y, for all interior points x; € .

The Boltzmann distribution (26) can be discretized as follows

u,e o (wpe)?  uuy
.eq X 71',' = W; X ,t ]. + - )
[ (%, t) = wipp(xe, t) | 1+ 2 Icl 202
where ¢, is speed of sound and the discetization constants w; are given in
Table 5.2.2.

Furthermore, the Boltzmann equation (27) is discretized by

fi(Xk+hCi,t+At> —fi(Xk,t) . 1 ~ geq
At - _;(fz fz (Xkat))v

where At is the time step related to the velocities ¢; and meshsize h.
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i 0 1 2 3 4 d 6 7 8
¢ | (0,0) (1,0) (0,1) (-1,0) (0,-1) (1,1) (-1,1) (-1,-1) (1,-1)

4 1 1 1
Wi 9 9 9 9 9 36 36 36 36

Algorithm 1 (Lattice Boltzmann Algorithm).

1. Calculate density and velocity by (28) and (29).

2. Calculate collision term by

() = =24~ £, )

3. Calculate streaming by
fi(xn + hei, t + At) = fi(xp, ) + Q(f).

Remark: Observe that f; might take negative values. This clearly shows
that f; is not a discretization of f. Instead f; is an auxilliary variable which
has simular properties like f (e.g. see (25) and (28)). Nevertheless the
important unknows velocity u, and density p, converge to the physical
quantities u and p under suitable conditions.

Properties of Lattice Boltzmann discretization: The basic Lattice
Boltzmann discretization is easier to implement and to parallelize than
finite difference discretization. However, a large number of time step is
need, since At is bounded by the meshsize and the disctrete velocities.
Therefore, Lattice Boltzmann discretization is less suitable for stationary
fluid dynamic problems, since a large number of iterations is needed until
convergence is reached. On the other side, a finite difference discetization
can apply a multigrid method in order to obtain fast convergence.

6 Maxwell’s Equations

6.1 Maxwell’s Equations
The solution of Maxwell’s equations in 3D is

e [: the electrical field and

50



e H: the magnetic field.
Given are
e ;i magnetic permeability,
e ¢: clectric permittivity,
o M: equivalent magnetic current density,

e J: electric current density.

Maxwell’s equations are:

o 1o p-o
ot It It
E 1 . .
8_ = —VxH—lj.
ot € €

6.2 Finite Difference Time Domain Discretization
(FDTD)

Let 7 be a time step.
Time approximation:

e E|™t2: approximation at time point (n -+ I
o H |": approximation at time point nr.

Furthermore, let us use the following abbreviation:

— 1 1 — —
AP+t = (AP A,
. 1/ ,
B = 5(157|”+%+E|”—%).

Let h be a mesh size.
Space approximation:

x|Z;rf%’k+%: at point (ih, (j + 2)h, (k + 3)h) (yz-face) .
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y|;++fj pe1t at point ((i+ Dh, jh, (k+ 3)h) (xz-face).

Z|Z:r§,j+%,k: at point ((i + 2)h, (j + 3)h, kh) (xy-face).

H,[!, . i at point ((i + 2)h, jh, kh) (x-edge).
30

o Hy|:’tj+%,k: at point (ih, (j + 3)h, kh) (y-edge).

H, Zj7k+%: at point (ih, jh, (k + £)h) (z-edge).
EZ H
Y y Z
Ho 1.
X ,/, 1 H y
P : , Z X
LN
1 1
HZ : HZ L0 Ey
____________ 4 1
E !
o
I H
1 X
(i.J.k) H
y

Now, the Maxwell’s equations

OB, 1 (8Hy OH. J)
€ x

ot

is discretized as follows:

1 1
|n+§ . ’n—5
Clij+g.kts Clijtghkts
T
H " — H | H.|™ —H.I?
1 y|z@j+$,k+1 y’m‘%,k gk kg
€ijt 3okt h h

n
_‘]x|i7j+%,k+§)
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The other Maxwell’s equations are discretized analogously.
J has to be composed as follows:

j: J_;ource +OE>

where o is the electric conductivity.
E is approximated by

N | —

Reflecting boundary conditions can be modeled by pure Dirichlet boundary
conditions.

Non-reflecting boundary conditions can be discretized by the Perfect
Matched Layer (PML) method. These are not Neumann boundary
conditions!
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