
Simulation und wissenschaftliches Rechnen II

(SiwiR II)
Sommersemester 2017

Christoph Pflaum

Contents

1 Multigrid 2
1.1 Damped Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Jacobi Method with Damping Parameter . . . . . . . . 2
1.2 Multigrid algorithm on a Simple Structured Grid . . . . . . . 4
1.3 Multigrid Algorithm . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Debugging of MG . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Finite Elements 9
2.1 Linear Elements in 1D . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Streamline Diffusion in 1D . . . . . . . . . . . . . . . . . . . . 13
2.3 Linear and Bilinear Finite Elements in 2D . . . . . . . . . . . 14
2.4 Calculation of the Stiffness Matrix . . . . . . . . . . . . . . . . 18
2.5 General Formulation of PDE’s and Convergence . . . . . . . . 22
2.6 Operator Formulation . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Pure Neumann Boundary Conditions . . . . . . . . . . . . . . 27
2.9 Streamline Diffusion in 2D . . . . . . . . . . . . . . . . . . . . 29

3 Grids 30
3.1 Types of Grids . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Interpolation between Grids . . . . . . . . . . . . . . . . . . . 35

4 Structural Mechanics: Linear Elasticity 38

5 Fluid Dynamics 44
5.1 Navier Stokes Equations . . . . . . . . . . . . . . . . . . . . . 44
5.2 The Lattice Boltzmann Method . . . . . . . . . . . . . . . . . 47

5.2.1 Basic Physics . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 Lattice Boltzmann Discretization . . . . . . . . . . . . 48

1



6 Maxwell’s Equations 50
6.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Finite Difference Time Domain Discretization (FDTD) . . . . 51

1 Multigrid

1.1 Damped Jacobi Iteration

Let us consider the finite difference discretization of Poisson’s equation−△u =
f on Ω =]0, 1[2 with Dirichlet boundary conditions.

This leads to a matrix equation

Lhxh = fh,

where the diagonal is

D = E
4

h2

and Lh has eigenvalues

λν,µ =
4

h2

(
sin2

(
πνh

2

)
+ sin2

(
πµh

2

))
and eigenvectors eν,µ, ν, µ = 1, ...,m− 1.

1.1.1 Jacobi Method with Damping Parameter

Let us consider the iteration

xk+1
h = (E − h2

8
Lh)x

k
h +

h2

8
fh.

The algebraic error satisfies

xk+1
h − xh =

(
E − h2

8
Lh

) (
xk
h − xh

)
.

If the algebraic error is an eigenvector like

xk
h − xh = eν,µ,

2



then we get for ν = µ

xk+1
h − xh = (1− h2

8
λν,ν) eν,ν =

(
1− sin2

(
πνh

2

)) (
xk
h − xh

)
.

This means that the Jacobi Method with Damping Parameter
has the following properties

• Bad convergence for low frequencies.

• Good convergence for high frequencies.

The Gauss–Seidel method has similar properties as the damped Jacobi
method.

x x x

x x x x

x x x x

x x xA

B

Jacobi and Gauss-Seidel iteration need O(
√
n) = O(h−1) operations for

a correction in B due to a change of A.
The idea is to achieve a better correction by using coarser grids.

3



1.2 Multigrid algorithm on a Simple Structured Grid

Multigrid:

Figure 1: l=3 Figure 2: l=2 Figure 3: l=1

Let lmax be the number of levels such that lmax ∈ N and

ml = 2l

nl = (ml − 1)2

hl = 2−l

for l = 1 . . . lmax.
Let us assume that a PDE (e.g. Poisson’s equation) is given. Discretize

this equation by the grids Ωl := Ωhl
where l = 1, . . . , lmax. This leads to the

discrete matrix equations
Alxl = bl (1)

where bl, xl ∈ Sl and Sl = Rnl . The matrix Al is an invertible matrix of order
nl × nl.

Let an iterative solver for (1) be given as

xl
k+1 = Cl

relaxxl
k +Nlbl = Sl,bl(x

k
l ) (2)

Idea of Multigrid Algorithm:
Let x̃l be an approximate solution for (1). The algebraic error ẽl is defined
as

ẽl = xl − x̃l. (3)

4



Now ẽl has to be calculated in order to find xl. The following residual
equation is valid for ẽl,

Alẽl = rl, (4)

where rl is called the residual and is given by

rl = bl − Alx̃l. (5)

The aim is to find an approximate solution of the residual equation by
solving the equation approximately on a coarse grid Ωl−1. To this end, we
need the following matrix operators

• Restriction operator

I l−1
l : Sl 7→ Sl−1

• Prolongation operator

I ll−1 : Sl−1 7→ Sl

Two–grid Algorithm:

Two–grid Multigrid algorithm with parameters v1 and v2
Let xk

l be an approximate solution of (1) and v1 and v2 the parameters of
pre–smoothing and post–smoothing.

1. Step 1 (Pre–smoothing)

xk,1
l = S v1

l,bl
xk
l (6)

2. Step 2 (Coarse grid correction)
Residual calculation :

rl = bl − Alx
k,1
l (7)

Restriction :
rl−1 = I l−1

l rl (8)

Solve on coarse grid:
el−1 = Al−1

−1rl−1 (9)

Prolongation :
el = I ll−1el−1 (10)

Correction :
xk,2
l = xk,1

l + el (11)

5



3. Step 3 (Post–smoothing)

xk+1
l = S v2

l,bl
(xk,2

l ) (12)

Restriction and Prolongation Operators:

Figure 4: O–Coarse grid point and X+O–Fine grid point

Let us abbreviate xi,j = x(ihl−1,jhl−1) and set xi,j = 0 for i = 0 or j = 0
or i = ml−1 or j = ml−1.

Prolongation or Interpolation:

The interpolation or prolongation of xi,j given by wi,j = {I ll−1(x)}(ihl,jhl) is
defined by the following equations

w2i,2j =
1

2
xi,j (13)

w2i+1,2j =
1

4
(xi,j + xi+1,j) (14)

w2i,2j+1 =
1

4
(xi,j + xi,j+1) (15)

w2i+1,2j+1 =
1

8
(xi,j + xi+1,j + xi,j+1 + xi+1,j+1) (16)

Pointwise Restriction:
Piecewise restriction is rarely applied and defined by

{İ l−1
l (x)}(ihl−1,jhl−1) = x2i,2j (17)

6



The quality of this restriction operator is not very good.

Weighted Restriction:

Weighted restriction or full weighting is defined by

{I l−1
l (x)}(ihl−1,jhl−1) =

1

8
(x2i+1,2j+1 + x2i−1,2j+1 + x2i+1,2j−1 + x2i−1,2j−1) +

1

4
(x2i+1,2j + x2i−1,2j + x2i,2j+1 + x2i,2j−1) +

1

2
x2i,2j

Remark

(I l−1
l )

T
= I ll−1 (18)

1.3 Multigrid Algorithm

Multigrid algorithm MGM(xk
l , bl, l) with parameters (v1,v2,µ)

Let xk
lmax

be an approximate solution of (1). Then,

xk+1
lmax

= MGM(xk
lmax

, xlmax , lmax)

is the approximate solution of (1) calculated by the multigrid algorithm with
an initial vector xk

lmax
. The multigrid algorithm can then be described as

If l = 1 then MGM(xk
l , bl, l) = A−1

l bl.

If l > 1 then

Step 1 (v1-pre–smoothing)

xk,1
l = S v1

l,bl
(xk

l )

Step 2 (Coarse grid correction)

Residual : rl = bl − Alx
k,1
l

Restriction : rl−1 = I l−1
l rl

Recursive call:

7



e0l−1 = 0

for i = 1 . . . µ

eil−1 = MGM(ei−1
l−1, rl−1, l − 1)

el−1 = eµl−1

Prolongation : el = I ll−1el−1

Correction : xk,2
l = xk,1

l + el

Step 3 (v2-post–smoothing)

MGM(xk
l , bl, l) = S v2

l,bl
(xk,2

l )

V-cycle and W-cycle:
The algorithm µ = 1 is called V-cycle.

The algorithm µ = 2 is called W-cycle.
Homework: Describe the multigrid algorithm as a finite state machine,
where every state is a smoothing step and an operation is a restriction or
prolongation. Then, the finite state machine of a V-cycle looks like a “V”
and the finite state machine of a W-cycle looks like a “W”.

Convergence of Multigrid:
Let N be the number of unknowns. The computational amount of the
V-cycle and W-cycle is O(N).
The theory of multigrid algorithms shows that there is a constant ρ such
that the convergence rate of the multigrid algorithm satisfies

ρ(CMGM,l) ≤ ρ < 1

independent of l.

1.4 Debugging of MG

• command out parts of the code (recursive coarse grid call, correction
step, ...)

• often the coarse grid matrix is defined by

AH := IHh AhI
h
H , IHh = (IhH)

T .

8



Then, the following equation must hold for all coarse grid vectors v, w:

vTAHw = (IhHv)
TAhI

h
Hw.

Test this equation for w = 1 and other simple test functions.

• In case of Neumann boundary conditions and Poisson’s equation:

AH1 = 0.

2 Finite Elements

2.1 Linear Elements in 1D

Definition 1. q is a linear function on the interval ]a, b[, if there exist
c, d ∈ R such that

q(x) = cx+ d ∀x ∈]a, b[.
Let h = 1

m
, m ∈ N.

Then, the space of functions

Vh := {uh ∈ C([0, 1]) | uh|]ih,(i+1)h[ is linear ∀i = 0, ...,m− 1 }

is called the finite element space of linear functions.
Define

◦
V h:= {uh ∈ Vh | uh(0) = uh(1) = 0}.

Let us consider Poisson’s equation in 1D:

−u′′ = f on ]0, 1[,

u(0) = u0, u(1) = u1.
Geht
Ablei-
tung
u′??
Wie
sieht sie
aus?

Then, we get ∫ 1

0

u′v′h dx =

∫ 1

0

fvh dx ∀vh ∈
◦
V h .

Definition 2. Let uh ∈ Vh such that∫ 1

0

u′
hv

′
h dx =

∫ 1

0

fvh dx ∀vh ∈
◦
V h,

uh(0) = u0, uh(1) = u1.

uh is called the finite element discretization with linear finite elements.

9



Let

Ωh = {ih | i = 0, ...,m},
◦
Ωh = {ih | i = 1, ...,m− 1}.

Definition 3. The nodal basis of
◦
V h is

vh1, ..., vh(m−1) ∈
◦
V h

where
vp(q) = δpq ∀p, q ∈ Ωh.

Stiffness Matrix:
For reasons of simplicity let us assume u0 = u1 = 0. Then, let us write

uh =
∑
q∈

◦
Ωh

xqvq,

where xh = (xq)q∈ ◦
Ωh

∈ Rm−1.

Define the 1D local stiffness matrix and load vector as follows

Ah =

(∫ 1

0

v′qv
′
p dx

)
p,q∈

◦
Ωh

fh =

(∫ 1

0

fvp dx

)
p∈

◦
Ωh

.

Then, we get
Ahxh = fh.

The local stiffness matrix and the load vector can be calculated exactly or
numerically.
Numerical integration leads to a matrix equation

Ãhxh = f̃h.

Example of Stiffness Matrices:

10



Let us consider linear finite elements in 1D.
The stiffness matrix corresponding to∫ 1

0

u′v′ dx

is

Ah =
1

h


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 .

The stiffness matrix corresponding to∫ 1

0

u′v dx

is

Ah =
1

2


0 1
−1 0 1

. . . . . . . . .

−1 0 1
−1 0

 .

The corresponding operator is

u 7→ u′.

The stiffness matrix corresponding to∫ 1

0

uv′ dx

is

Ah =
1

2


0 −1
1 0 −1

. . . . . . . . .

1 0 −1
1 0

 .

11



The corresponding operator is

u 7→ −u′.

The stiffness matrix corresponding to∫ 1

0

uv dx

is

Ah =
h

6


4 1
1 4 1

. . . . . . . . .

1 4 1
1 4

 .

The corresponding operator is

u 7→ u.

Example 1: Poisson’s Equation in 1D:

−u′′ = f on ]0, 1[,

u(0) = 0, u(1) = 0.

Discretize this equation by Ahxh = f̃h where

Ah =

(∫ 1

0

v′qv
′
p dx

)
p,q∈

◦
Ωh

, f̃h =

(∫ 1

0

Ih(f)vp dx

)
p∈

◦
Ωh

.

This means

1

h


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2




x1

.

.

.
xm−1

 =
h

6


4 1
1 4 1

. . . . . . . . .

1 4 1
1 4




f(h)
.
.
.

f(1− h)

 .

12



2.2 Streamline Diffusion in 1D

The discretization of
u 7→ u′

by finite elements leads to a discretization similar to the central difference
discretization

Ah =
1

2


0 1
−1 0 1

. . . . . . . . .

−1 0 1
−1 0

 .

How do we get something similar to FD upwind?
Consider the convection diffusion equation in 1D:

−u′′ − bu′ = f, u(0) = u(1) = 0

Multiply this equation by v = vh − ρhv′h sgn b, where vh ∈
◦
V h and integrate.

Assuming b > 0, this yields∫ 1

0

(
u′v′h + hρbu′v′h − bu′vh

)
dx+ ρh

∫ 1

0

u′′v′hdx =

∫ 1

0

f(vh − ρhv′h)dx.

In the streamline diffusion discretization, we neglect the term of third order
and replace u by uh:∫ 1

0

(
(1 + hρb)u′

hv
′
h − bu′

hvh
)
dx =

∫ 1

0

f(vh − ρhv′h)dx.

Let ρ = 1
2
. Then, the stencil corresponding to the term∫ 1

0

(
hρbu′

hv
′
h − bu′

hvh
)
dx = b

∫ 1

0

(1
2
hu′

hv
′
h − u′

hvh
)
dx

is

b


1 −1
0 1 −1

. . . . . . . . .

0 1 −1
0 1

 .

This shows that the finite element streamline diffusion discretization is
similar to the FD upwind discretization.

13



2.3 Linear and Bilinear Finite Elements in 2D

Definition 4. T = {T1, . . . , TM} is a conform triangulation of Ω if

• Ω =
∪M

i=1 Ti, Ti is
a triangle or quadrangle (in 2D) or tetrahedron, hexahedron, prism, or
pyramid (in 3D)

• Ti ∩ Tj is either

– empty or

– one common corner or

– one common edge.

Remark.

• Let us write Th, if the diameter hT of every element T ∈ Th is less or
equal h:

hT ≤ h.

• A family of triangulations {Th} is called quasi-uniform, if there exists
a constant ρ > 0 such that the radius ρT of the largest inner ball of
every triangle T ∈ Th satisfies

ρT > ρh.

14



bad for Gauss−Seidel

bad approximation

good

Definition 5. Let Th be a triangulation of Ω. Then, let Vh be the space of
linear finite elements defined as follows:

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v∣∣T is linear for every T ∈ Th

}
◦
V h = Vh ∩H1

0 (Ω)

v
∣∣
T
is linear means that v

∣∣
T
(x, y) = a+ bx+ cy.

Definition 6 (Bilinear elements on a Cartesian 2D grid). Let Ω =]0, 1[2,
h = 1

m
and

Th =

{
[ih, (i+ 1)h]× [jh, (j + 1)h]

∣∣∣∣i, j = 0, . . . ,m− 1

}
.

The space of bilinear finite elements on Ω is defined as follows

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v∣∣T is bilinear for every T ∈ TH

}
.

v
∣∣
T
is bilinear means that v

∣∣
T
(x, y) = a+ bx+ cy + dxy.

FE Discretization of Poisson’s equation:

−∆u = f

u
∣∣
δΩ

= 0.

15



Thus, for every vh ∈
◦
V h, we get:

−∆u vh = f vh

⇓∫
Ω

∇u ∇vh d(x, y)−
∫
Γ

∂u

∂n⃗
vh d(x, y) =

∫
Ω

f vh d(x, y)

⇓∫
Ω

∇u ∇vh d(x, y) =

∫
Ω

f vh d(x, y) ∀vh ∈
◦
V h .

FE Discretization: Find uh ∈
◦
V h such that∫

Ω

∇uh ∇vh d(x, y) =

∫
Ω

f vh d(x, y) ∀vh ∈
◦
V h . (19)

Definition 7. Let Vh be the space of linear or bilinear finite elements on Th

and Nh the set of corners of Th. Then, define the nodal basis function
vq ∈ Vh at the point q by:

vq(x) =

{
1 if x = q
0 if x ̸= q

for x ∈ Nh

Observe that

Vh = span

{
vq

∣∣∣∣ q ∈ Nh

}
This means that every function uh ∈ Vh can be represented as

uh =
∑
q∈Nh

λqvq

Stiffness matrix:

ap.q :=

∫
Ω

∇vq ∇vp d(x, y), fp :=

∫
Ω

f vp d(x, y)

Ah := (ap,q)
p,q∈

0
Nh

,
0

Nh:= Nh ∩ Ω

uh =
∑
q∈

0
Nh

λq vq.

16



Then, (19) implies∑
q∈

0
Nh

λq

∫
Ω

∇vq ∇vp d(x, y) =

∫
Ω

f vp d(x, y) for all q ∈
0

Nh

⇓∑
q∈

0
Nh

λq ap,q = fp ∀p ∈
0

Nh

⇓

Ah Uh = Fh where
Uh = (λq)

q∈
0

Nh

Fh = (fp)
p∈

0
Nh

The matrix Ah is called the stiffness matrix of the FE discretization.
Example: Bilinear Elements on a Structured Grid
Consider the structured grid on Ω =]0, 1[2:

Th =

{
[ih, (i+ 1)h]× [jh, (j + 1)h]

∣∣∣∣i, j = 0, . . . ,m− 1

}
.

Nh is the set of corresponding nodal points (corner points).
Observe that the nodal basis functions can be decomposed as

vpxpy(x, y) = vpx(x) · vpy(y).

Thus, ∫
Ω

∇vqxqy ∇vpxpy d(x, y) =

∫ 1

0

∂vpx
∂x

∂vqx
∂x

dx

∫ 1

0

vpyvqy dy

+

∫ 1

0

∂vpy
∂y

∂vqy
∂y

dy

∫ 1

0

vpxvqx dx.

This shows that the discretization stencil for Poisson’s equation is:

1

h

(
−1 2 −1

)
· h
6

 1
4
1

 +
1

h

 −1
2
−1

 · h
6

(
1 4 1

)

=
1

3

 −1 −1 −1
−1 8 −1
−1 −1 −1


17



and for the right hand side the stencil is:

h

6

(
1 4 1

)
· h
6

 1
4
1

 =
h2

36

 1 4 1
4 16 4
1 4 1

 .

2.4 Calculation of the Stiffness Matrix

Since Ω =
∪M

i=1 Ti, we obtain∫
Ω

∇vq ∇vp d(x, y) =
M∑
i=1

∫
Ti

∇vq ∇vp d(x, y).

For linear or bilinear elements, we obtain∫
Ti

∇vq ∇vp d(x, y) ̸= 0 ⇔ p, q ∈ Ti.

Definition 8. The matrix(∫
Ti

∇vq ∇vp d(x, y)

)
p,q∈Ti

is called local stiffness matrix at Ti.

Remark:
Observe that the local stiffness matrix is a 3× 3 matrix for linear elements
on triangles and a 4× 4 matrix for bilinear elements.

Reference Element:

To calculate the local stiffness matrices we need a reference element T̂ and
a mapping

Ψi : T̂ → Ti

for every i.

Example 1. A reference element for triangles is:

T̂ = {(ξ, η) | ξ + η ≤ 1 and ξ, η ≥ 0}.

If Ti consists of the corners P1, P2, P3, then

Ψi(ξ, η) = P1 + (P2 − P1)ξ + (P3 − P1)η.

18



Example 2. A reference element for quadrangles is:

T̂ = {(ξ, η) | 0 ≤ ξ, η ≤ 1}.

Calculation of Local Stiffness Matrices:
Now, the local stiffness element can be calculated by∫

Ti

∇vTq ∇vp d(x, y) =

=

∫
T̂

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi| d(ξ, η).

Example 3. Consider triangles. Then, describe the mapping Ψi by

Ψi(ξ, η) = P1 +

(
a
b

)
ξ +

(
c
d

)
η.

Then,

DΨi =

(
a c
b d

)
.

In case of complicated 3D elements like prisms, it may be that (DΨi)
−T is a

rational polynomial, but no pure polynomial in ξ, η.

Numerical Integration:
Calculate the integral∫

T̂

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi| d(ξ, η).

by Gauss quadrature rule.

Example 4. Consider triangles and choose the above reference element.
Then, the first Gauss quadrature rule implies:∫

T̂

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi| d(ξ, η)

≈ 1

2

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi|

(
1

3
,
1

3

)
.

19



Calculation of Stiffness Matrix:
Consider the triangulation:

�
�
�
�
aaaaaaa(((((((((((aaaaaaa�

�
�
�A

A
A
A
A
À``````

P1

P2

P3

P4 P5

A

B
C

Observe:

{1, 2, 3} = N (A)

{1, 3, 4} = N (B)

{4, 3, 5} = N (C)

The stiffness matrix of this
triangulation is:

Ah =
lA11 + lB11 lA12 lA13 + lB13 lB14 0

lA21 lA22 lA23 0 0
lA31 + lB31 lA32 lA33 + lB33 lB34 + lC34 lC35

lB41 0 lB43 + lC43 lB44 + lC44 lC45
0 0 lC53 lC54 lC55



Algorithmic Calculation of Stiffness Matrix:

The calculation of stiffness matrix has to be performed in two steps:

1. Step: Calculate the local stiffness matrix.

2. Step: Calculate the stiffness matrix.

But there exist two approaches:

1. First compute and store the whole local stiffness matrix.

Then, calculate the stiffness matrix.

Advantage: The local stiffness matrices can be used for coarsening the
local stiffness matrices in a multigrid algorithm.

Faster code for some non-linear problems.

2. After the calculation of the local stiffness matrix of one element T ,
add these integrals to the whole stiffness matrix.

Advantage: Less storage requirement.

Data Structure for (Local) Stiffness Matrix:

20



1. Local stiffness matrix: Let nT be the number of degrees of freedom for
an element T ∈ Th (3 for triangle). Then, for every T ∈ Th a nT × nT

matrix has to be stored.

Data structure: list or array for storing T ∈ Th. Each entry must
contain nT and a pointer to a nT × nT matrix.

2. Stiffness matrix: For every unknown (grid point) the discretization
stencil has no fixed size. Data structure: Sparse matrix.

Sparse Matrix Format:

2.row1.row

1 n1 nk−1

+nk−2

+...+ n1

n1 n2 nk

i = 1 i = 2 i = k

n2+
n1

1 n1 n2 + ... nk−1 + ...

k.row

Algorithm (Stiffness Matrix Calculation):
Let N (T ) be the corner points of the triangle T .

1. Calculate local stiffness matrix (lTij)i,j∈N (T ) for every finite element
T ∈ Th.

2. Calculate the number of neighbour points mi for every point i. This
gives the value ni =

∑i
s=1ms + 1 in the sparse matrix of the the

stiffness matrix.

3. Go to every grid point i and iterate over the neighbour element
T ∈ Th, i ∈ N (T ). Add the lTij to aij for every j ∈ N (T ).

21



⇒ Later we explain how to obtain a suitable data structure for the
discretization grid.

Data Structure of the Discretization Grid:

Array (or list) of objects of type Triangle. Every triangle has an id.

class Triangulation_grid {

int number_triangles;

Triangle* triangles; // id is number in list

int number_points;

Points* points; // id is number in list

}

class Triangle {

int id_point_1, id_point_2, id_point_3;

}

class Points {

double x,y; // coordinate of point

int number_neighbour_points;

int* id_neighbour_points;

}

In certain cases it is important to store the id of each neighbour triangle at
every point. Tafel:

Schreib
kurz
Code
für Iter-
ation

2.5 General Formulation of PDE’s and Convergence

Let V be a vector space and

a : V × V → R

a symmetric positive definite bilinear form. a induces the “energy” norm

∥u∥E =
√

a(u, u).

Furthermore, let
f : V → R

be a ∥ · ∥E continuous linear functional and let V be complete with respect
to ∥ · ∥E .

22



Problem 1. Find u ∈ V such that a(u, v) = f(v) ∀v ∈ V.

Theorem 1. The above problem has a unique solution u.

Examples of PDEs with Weak Formulation:

Example 5 (Poisson’s Equation with Reaction Term). Let
V = H1

0 (Ω) := {u ∈ L2(Ω) | ∇u ∈ L2(Ω)} and c ≥ 0.

a(u, v) =

∫
Ω

(
∇u∇v + cuv

)
d(x, y).

Example 6 (Linear Elasticity). Let V = (H1
0 (Ω))

3, u ∈ V , C a suitable
6× 6 matrix and Du the vector of symmetric derivatives (see section 4).

a(u, v) =

∫
Ω

(Du)TCDv d(x, y, z).

Example 7 (Maxwell’s Equations). Let V be a suitable vector space
similar to (H1

0 (Ω))
3 and c ≥ 0.

a(u, v) =

∫
Ω

(∇× u)T (∇× v) + cuv d(x, y, z).

Let Vh be a subspace of V .

Problem 2. Find uh ∈ Vh such that a(uh, vh) = f(vh) ∀vh ∈ Vh.

Theorem 2.
∥u− uh∥E ≤ inf

vh∈Vh

∥u− vh∥E

Example 8. Consider Poisson’s equation. Let Vh be the space of linear
elements corresponding to a a familiy of quasi-uniform triangulations.
Furthermore, assume that u ∈ C2(Ω) (H2(Ω)) is the weak solution of
Poisson’s equation. Then, there is a constant C such that

∥u− uh∥E ≤ hC

for every h, where uh ∈ Vh is the finite element solution.

Remark: In case of H2(Ω)-regularity, one can prove ∥u− uh∥L2 ≤ h2C .

23



2.6 Operator Formulation

Let Vh be a finite element space and (vq)q∈Nh
the corresponding nodal basis.

Let u,f be vectors of length |Nh|. Then,

f = Laplace_FE(u);

means

f = (fp)p∈Nh
=

(∫
Ω

∇(
∑
q∈Nh

uqvq)∇vp d(x, y)

)
p∈Nh

and

f = Helm_FE(u);

means

f = (fp)p∈Nh
=

(∫
Ω

(
∑
q∈Nh

uqvq)vp d(x, y)

)
p∈Nh

.

Thus,

Laplace_FE( ), Helm_FE( )

are operators. Let

Diag_Laplace_FE( ), Diag_Helm_FE( )

be the corresponding diagonal operators.
Let

interior, boundary

represent the interior and boundary points of the domain and

product(u,v)

the scalar product of u and v.
For testing you FE-code one can do the following tests:

Test 1: Volume Calculation:

Now let us implement the above operators by expression templates.
Then, the code

24



u = 1.0;

f = Helm_FE(u);

cout << product(u,f) << endl;

calculates the volume of the domain.

Test 2: Volume Calculation:

Now let us implement the above operators by expression templates.
Then, the code

u = X;

f = Poisson_FE(u);

cout << product(u,f) << endl;

calculates the volume of the domain.
Here, let X be the x-coordinate.

Dirichlet Boundary Conditions:
The problem

Problem 3. Find u ∈ H1(Ω) such that

−△u = f on Ω,

u|Γ = g

can approximatively be solved by finite elements and the Gauss-Seidel
iteration as follows:

u = Helm_FE(f);

f = u;

u = g | boundary;

for(i=0;i<i_max;++i)

u = u - (Laplace_FE(u)-f)/Diag_Laplace_FE()

| interior_points;

Using a Direct Solver:
Let us assume that there is a good direct solver ui=Inverse(S,fi) which

calculates
ui = S−1fi.

Then, apply the code

25



u = Helm_FE(f);

f = u;

u = 0.0 | interior;

u = g | boundary;

f = f - Laplace_FE(u) | boundary;

u = 0.0 | boundary;

S = Sparse_matrix(Laplace_FE, interior);

fi = vector(f,interior);

ui = vector(u,interior);

ui = Inverse(S,fi);

u = g | boundary;

2.7 Boundary Conditions

Let us consider the equation

− div µ grad u = f on Ω,

u = g on ΓD,
∂u

∂n⃗
= 0 on ΓN ,

∂u

∂n⃗
+ β(u− uref ) = 0 on Γthird,

here Ω is a domain and

∂Ω = ΓD ∪ ΓN ∪ Γthird

is a disjunct subdivision of the boundary, where ΓD ̸= ∅.
Furthermore, let µ : Ω → R be a piecewise constant parameter and
0 < β ∈ R.
Define the finite element space

V̄h := {vh ∈ Vh | vh
∣∣
ΓD

= 0}.

Then, we obtain∫
Ω

∇uµ∇vh d(x, y) + βµ

∫
Γthird

uvh dσ = βµ

∫
Γthird

urefvh dσ +

∫
Ω

fvhd(x, y)

26



for every vh ∈ V̄h.
FE Discretization
Find uh ∈ Vh such that∫
Ω

∇uhµ∇vh d(x, y) + βµ

∫
Γthird

uhvh dσ = βµ

∫
Γthird

urefvh dσ +

∫
Ω

fvhd(x, y)

∀vh ∈ V̄h,

uh(z) = g(z) ∀z ∈ Ωh ∩ ΓD.

Observe that the bilinear form

a(u, v) :=

∫
Ω

∇uµ∇v d(x, y) + βµ

∫
Γthird

uv dσ

is symmetric positive definite on the space

{v ∈ H1(Ω) | v
∣∣
ΓD

= 0}.

Operator Formulation:
Let us implement the operators in section 2.6 by expression templates.
Let A FE be the operator corresponding to the bilinear form a(u, v).
The previous problem can be solved by the Gauss-Seidel iteration as follows:

u = Helm_FE(f);

f = u;

u = g | boundary_D;

for(i=0;i<i_max;++i)

u = u - (A_FE(u)-f)/Diag_A_FE() | grid_space;

Here grid space represents the interior points and the boundary points
which are no Dirichlet boundary points.

2.8 Pure Neumann Boundary Conditions

Let us consider the equation

−△u = f on Ω, (20)

∂u

∂n⃗
= 0 on Γ. (21)

27



A short calculation shows ∫
Ω

f d(x, y) = 0. (22)

Thus, we assume (22).
Furthermore, observe that the constant function u = 1 satisfies

−△u = 0 on Ω,
∂u

∂n⃗
= 0 on Γ.

Thus, we need an additional assumption to guarantee a unique solution of
(20). There are different possibilities like∫

Ω

u d(x, y) = 0

or ∫
Γ

u d(x, y) = 0

and other conditions, which factor out the constants.
A natural way to obtain a well-defined problem is:

Problem 4. Find u ∈ H1(Ω) such that

−△u = f on Ω,
∂u

∂n⃗
= 0 on Γ and

∫
Ω

u d(x, y) = 0,

where we assume ∫
Ω

f d(x, y) = 0.

Operator Formulation:
Let us implement the operators in section 2.6 by expression templates.
The previous problem can be solved by Gauss-Seidel iteration as follows:

Eins = 1.0; // set up for normalization

IntE = Helm_FE(Eins);

Eins = Eins / product(Eins,IntE);

28



f = f - Eins * product(f,IntE);

u = Helm_FE(f);

f = u;

for(int i=0; i<N;++i) {

u = u - (A_FE(u) -f) / Diag_A_FE();

u = u - Eins * product(u,IntE);

}

2.9 Streamline Diffusion in 2D

Consider the convection diffusion equation in 1D:

−△u− b⃗ grad u = f

u
∣∣
∂Ω

= 0.

where b⃗ : Ω → R2 is a vector field.
Multiply this equation by v = vh − ρh⃗b ◦ ∇vh ∥⃗b∥−1

2 , where vh ∈
◦
V h and

integrate∫
Ω

(
∇u ◦ ∇vh + hρ⃗b ◦ ∇u b⃗ ◦ ∇vh ∥⃗b∥−1

2 − b⃗ ◦ ∇u vh

)
d(x, y)

−ρh

∫
Ω

△u b⃗ ◦ ∇vh d(x, y) ∥⃗b∥−1
2 =

∫
Ω

f(vh − ρh⃗b ◦ ∇vh ∥⃗b∥−1
2 )d(x, y).

In the streamline diffusion discretization, we neglect the term of third order

and replace u by uh: Discretization: Find uh ∈
◦
V h such that∫

Ω

(
∇uh ◦ ∇vh + hρ⃗b ◦ ∇uh b⃗ ◦ ∇vh ∥⃗b∥−1

2 − b⃗ ◦ ∇uh vh

)
d(x, y)

=

∫
Ω

f(vh − ρh⃗b ◦ ∇vh ∥⃗b∥−1
2 )d(x, y)

for every vh ∈
◦
V h.

29



3 Grids

3.1 Types of Grids

There exist

• Cartesian grids

• block structured grids

• unstructured grids

• ...

to discretize a domain Ω.

Cartesian Grid:

Example of an Cartesian grid:

Ωh,k = {(ih, jk) + (x0, y0) | i = 0, ...,m, j = 0, ..., n},

where h, k > 0.

Data structure: Array!

Block Structured Grid:

Let

Ω0
h = {(ih, jh) | i, j = 0, ..., n},

where h = 1
n
. Furthermore, let T = {T1, . . . , TM} be a subdivision by

quadrangles (2D) and
Ψk : [0, 1]

2 → Tk

30



smooth bijections such that Ω =
∪M

k=1Ψk([0, 1]
2).

Then,

Ωh =
M∪
k=1

Ψk(Ω
0
h)

is a block structured grid.
(Generalizations in 3D and for different mesh sizes are possible.)

Data structure: Unstructured grid of quadrangles, each block by array.

Simple Interpolation:

A simple construction of the mapping

Ψk : [0, 1]
2 → Tk

is

Ψk(η, ξ) = PSW + (PSE − PSW )η + (PNW − PSW )ξ +

(PNE − PSE − PNW + PSW )ξη.

(((((((

Q
Q

Q
Q

Q
Q

Q

0 1
0

1

PSW

PNW PNE

PSE

Transfinite Interpolation:

Let βN , βS, βW , βE : [0, 1] → R2 be parameterizations of the north, south,
west and east boundary. Then, the transfinite interpolation is:

Ψk(η, ξ) = βS(η) + (βN(η)− βS(η))ξ

+βW (ξ) + (βE(ξ)− βW (ξ))η

−PSW − (PSE − PSW )η − (PNW − PSW )ξ

−(PNE − PSE − PNW + PSW )ξη.

31



Q
Q
Q

(((

Q
Q
Q

(((

Unstructured Grid:

An example of an unstructured grid is:

Data structure for an unstructured grid:

• list or array of corners (information of coordinates)

• list or array of triangles, quadrangles, ... with pointers to corners and
number of corners.

By this information one can construct:

• list or array of edges and faces (in 3D).

Visualization of an Unstructured Grid:

Examples of powerful 3D visualization programs are:

• AVS (commercial)

• OpenDx (public domain)

• ParaView (uses vtk Toolkit, public domain)

AVS supports structured grids and unstructured grids. An unstructured
grid may consist of geometric elements

32



• point (0D)

• line (1D)

• triangle, quadrangle (2D)

• tetrahedron, hexahedron, prism, pyramid (3D).

An unstructured grid can be described by an UCD file format. In this file
format, every geometric element must be numbered in a certain orientation
(see handbook of AVS or OpenDx.)

Example of file in UCD format for AVS:

# UCD file format for AVS

22 44 1 0 0

0 0.292053 0.292053 0.292053

1 0.292053 0.292053 0.892053

...

21 0.292053 0.292053 1.00005

1 1 tet 12 2 7 0

...

43 1 tet 19 21 17 1

44 1 tet 21 19 18 1

1 1

variable

0 0.433753

1 -0.296865

...

21 -0.369419

Example of file in dx format for OpenDx:

# dx file format for OpenDx unstructured grid

object 1 class array type float rank 1 shape 3 items 22 data follows

0.292053 0.292053 0.292053

...

33



0.292053 0.292053 1.00005

object 2 class array type int rank 1 shape 4 items 44 data follows

12 2 7 0

20 0 17 1

...

21 19 18 1

attribute "element type" string "tetrahedra"

attribute "ref" string "positions"

object 3 class array type float rank 0 items 22 data follows

0.433753

...

-0.369419

attribute "dep" string "positions"

object "irregular positions irregular connections" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

Example of file in dx format for OpenDx:

# dx file format for OpenDx structured grid

object 1 class gridpositions counts 10 10 10

origin 0.005 0.000 0.005

delta 0.010 0 0

delta 0 0.010 0

delta 0 0 0.010

object 2 class gridconnections counts 100 101 99

attribute "element type" string "cubes"

attribute "ref" string "positions"

object 3 class array type float rank 0 items 1000 data follows

-0.200

...

-0.369419

attribute "dep" string "positions"

34



object 4 class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

3.2 Interpolation between Grids

Assume that a finite element function u is given on a triangulation Th1 .

• How to find the values of u on a grid Ωh2?

• How to find the triangles Tp for every p ∈ Ωh2?

Test for one Triangle:
Let P1, P2, P3 be the corners of one triangle.

Is a certain point P contained in the triangle P1P2P3?
Let (ξ, η) be such that

P = P1 + (P2 − P1)ξ + (P3 − P1)η.

Then P is contained in the triangle P1P2P3 if and only if

ξ + η ≤ 1 and ξ, η ≥ 0.

Such a test for all points P ∈ Ωh2 and triangles Th1 is very time consuming.

From Structured to Unstructured Grid:

35



Let the structured grid be

Ωh1 = {(x0 + h1i, y0 + h1j) | i, j = 0, ..., N}

Then, by a simple indices calculation one obtains the index i′, j′ such that

p ∈ (x0, y0) + h1[i
′, i′ + 1]× h1[j

′, j′ + 1].

From Unstructured to Structured Grid:

Let the structured grid be

Ωh2 = {(x0 + h2i, y0 + h2j) | i, j = 0, ..., N.}

Now perform the following steps:

1. For every triangle T = T ((x1, y1), (x2, y2), (x3, y3)) ∈ Th1 consider the
quadrangle

Q = [(min(x1, x2, x3),min(y1, y2, y3)), (max(x1, x2, x3),max(y1, y2, y3))].

2. For every p ∈ Q ∩ Ωh2 , set T (p) = T , if p ∈ T . This means store the
index of T at p, if p ∈ T .

3. Test if T (p) is set for every p ∈ Ωh2 . If not, then calculate the next
point q ∈ Ωh2 from p such that T (q) is set and T (p) = T (q).

4. Interpolate data from Ωh1 to Ωh2 by using T (p).

36



From Unstructured to Unstructured Grid:

• Construct an auxiliary structured grid such that the domain of this
grid contains the domain of the two unstructured grids. The meshsize
of the auxiliary structured grid should roughly be the meshsize of the
two unstructured grids.

• Then, for every triangle T ∈ Th1 , put T in the cell c of the structured
grid, if c intersects with T . (see “From Unstructured to Structured
Grid”). This means let T ∈ Tc, if T ∩ c ̸= ∅.

• For every p ∈ Ωh2 , find the structured cell c such that p ∈ c. Then,
find triangle T ∈ Tc such that p ∈ T .

37



4 Structural Mechanics: Linear Elasticity

�
�
� �

�
�

�
�

�

��

�
�

�

�
�

�

T
T
T
T
T
T

original body

deformed body

heating of the body

leads to

ux

uyuz

• Let Ω ⊂ R3 be the domain of the body.

• Let T0 ∈ R be the original temperature of the body.

• Let T : Ω → R be the temperature of the body after heating.

• Let u⃗ =

 ux

uy

uz

 : Ω → R3 be the deformation vector of the body

after heating.

Problem: Let Ω, T0, T be given. Then, calculate u⃗ .

Definition 9. Let u⃗ : Ω → R3. The symmetric derivative is defined by:

Du⃗ :=



∂ux

∂x
∂uy

∂y
∂uz

∂z
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
1
2

(
∂uy

∂z
+ ∂uz

∂y

)
1
2

(
∂ux

∂z
+ ∂uz

∂x

)
.


: Ω → R6

38



Another notation is

ϵij :=
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
(i,j)∈Φ

Du⃗ :=


ϵ11
ϵ22
ϵ33
ϵ12
ϵ13
ϵ23

 ,

where Φ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (3, 1)}.

Symmetric Divergence:

div
(
(σij)(i,j)∈Φ

)
:=

1

2

(
Σj

∂σij

∂xj

ei + Σi
∂σij

∂xi

ej

)
.

div
(
(σij)(i,j)∈Φ

)
is the adjoint operator of Du⃗ in the following sense:∫

Ω

div
(
(σij)(i,j)∈Φ

)
v d(x, y, z) = −

∫
Ω

(σij)(i,j)∈ΦDv d(x, y, z)

Observe, that for a symmetric matrix (σij)(i,j)∈Φ :

div
(
(σij)(i,j)∈Φ

)
= Σj

∂σij

∂xj

ei.

Definition 10. Let E > 0 and 0 < ν < 1
2
be the physical constants E-Modul

and Poisson ratio.
Then, define the matrix

C−1 =
1

E


1 −ν −ν
−ν 1 −ν 0
−ν −ν 1

1 + ν
0 1 + ν

1 + ν

 ,

39



The inverse of this matrix is

C =


λ+ 2µ λ λ

λ λ+ 2µ λ 0
λ λ λ+ 2µ

2µ
0 2µ

2µ

 ,

where

λ =
νE

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)
.

The deformation vector of the body satisfies the equations:

Du⃗ =


α
α
α
0
0
0

 (T − T0) + C−1σ,

div (σ) = 0,

where

• α is a physical constant and

• σ is called stress vector.

Define the bilinear form

a : (H1(Ω))3 × (H1(Ω))3 → R

(u, v) 7→
∫
Ω

(Du)TCDv d(x, y, z).

40



Let v ∈ (H1
0 (Ω))

3. Then, we obtain

a(u, v) =

∫
Ω

div C


α
α
α
0
0
0

 (T − T0) v d(x, y, z).

Matrix of Linear Elasticity:
A short calculation shows that

a(u⃗, v⃗) =

=
∫
Ω

F
[
(1− ν) ∂ux

∂x
∂vx
∂x

+ ν ∂uy

∂y
∂vx
∂x

+ ν ∂uz

∂z
∂vx
∂x

+ 1
2
(1− 2ν) ∂uy

∂x
∂vx
∂y

+

1
2
(1− 2ν) ∂ux

∂y
∂vx
∂y

+ 1
2
(1− 2ν) ∂uz

∂x
∂vx
∂z

+ 1
2
(1− 2ν) ∂ux

∂z
∂vx
∂z

+

1
2
(1− 2ν) ∂ux

∂y

∂vy
∂x

+ 1
2
(1− 2ν) ∂uy

∂x

∂vy
∂x

+ ν ∂ux

∂x

∂vy
∂y

+

(1− ν) ∂uy

∂y

∂vy
∂y

+ ν ∂uz

∂z

∂vy
∂y

+ 1
2
(1− 2ν) ∂uz

∂y

∂vy
∂z

+ 1
2
(1− 2ν) ∂uy

∂z

∂vy
∂z

+

1
2
(1− 2ν) ∂ux

∂z
∂vz
∂x

+ 1
2
(1− 2ν) ∂uz

∂x
∂vz
∂x

+ 1
2
(1− 2ν) ∂uy

∂z
∂vz
∂y

+

1
2
(1− 2ν) ∂uz

∂y
∂vz
∂y

+ ν ∂ux

∂x
∂vz
∂z

+ ν ∂uy

∂y
∂vz
∂z

+ (1− ν) ∂uz

∂z
∂vz
∂z

]
d(x, y, z).

For the implementation of this bilinear form, it is helpful to sort the terms
of this bilinear form by a 3× 3 matrix: M11 M12 M13

M21 M22 M23

M31 M32 M33

 .

RHS of Linear Elasticity:

The right hand side can be written as

−
∫
Ω

F

[
(1 + ν) αT ∆T

∂vx
∂x

+ (1 + ν) αT ∆T
∂vy
∂y

+ (1 + ν) αT ∆T
∂vz
∂z

]
d(x, y, z).

(23)

41



For the implementation of the right hand side, it is helpful to sort the
above terms:  F1

F2

F3

 . (24)

Boundary Conditions for Linear Elasticity:
Let ΓD ⊂ ∂Ω be the fixed boundary of the deformation process. Let the

rest of the boundary be free.
Then, define

V = {v ∈ H1(Ω) | v|ΓD
= 0}.

Problem 5 (Weak formulation with boundary condition). Find u ∈ V
such that

a(u, v) =

∫
Ω

div C


α
α
α
0
0
0

 (T − T0) v d(x, y, z)

for every v ∈ V .

FE Discretization of Linear Elasticity:
Let Vh be the space of trilinear finite elements. Then, define

V⃗h = {v⃗ ∈ (Vh)
3 | v⃗|ΓD

= 0}.

Problem 6 (Weak formulation with boundary condition). Find uh ∈ V⃗h

such that

a(uh, vh) =

∫
Ω

div C


α
α
α
0
0
0

 (T − T0) vh d(x, y, z)

for every vh ∈ V⃗h.

42



Rigid Body Modes:
Consider the vector space functions

M := span


 1

0
0

 ,

 0
1
0

 ,

 0
0
1

 ,

 y
−x
0

 ,

 0
z
−y

 ,

 z
0
−x


M is the kernel of the bilinear form a. This means

a(m⃗, v⃗) = 0 ∀m⃗ ∈ M, ∀v⃗ ∈ V.

Therefore, in case of Neumann boundary conditions, we have to construct
V such that V ∩M = {⃗0}.
In case of pure boundary conditions, define V as follows:

V = {v ∈ H1(Ω) | ⟨v, m⃗⟩ = 0 ∀m⃗ ∈ M}.

Superconvergence of the Gradient:

The stress σ has to be calculated by Du⃗.
The finite element theory for linear and trilinear finite elements shows

∥Du⃗−Du⃗h∥L2 = O(h).

This is a slow convergence. But one can prove the following
superconvergence of the gradient in case of structured grids:
Let Σh be the cell points of the structured grid. Then, for a sufficient
smooth solution u⃗ and a not complicated boundary Γ, we obtain:

max
p∈Σh

∥(Du⃗−Du⃗h)(p)∥ = O(h2).

Therefore, in case of linear elasticity, apply

• trilinear elements on a block-structured grid or

• quadratic finite elements.

43



5 Fluid Dynamics

5.1 Navier Stokes Equations

Let us describe a two dimensional flow by:

• u x-component of the velocity vector of the flow,

• v y-component of the velocity vector of the flow,

• p pressure of the flow.

�
�
�
�
�
�
�
�
�
��
�v

u

(u,v)

Navier-Stokes-Equations:
The Navier-Stokes-equations are:

∂u

∂t
+

∂p

∂x
+

∂(u2)

∂x
+

∂(uv)

∂y
=

1

Re
∆u

∂v

∂t
+

∂p

∂y
+

∂(uv)

∂x
+

∂(v2)

∂y
=

1

Re
∆v

∂u

∂x
+

∂v

∂y
= 0

There exist different kind of boundary conditions:
input, output, slip, and no-slip boundary conditions.

Boundary Conditions::

• input boundary condition: Dirichlet boundary condition.

Usually it is
(u, v) ◦ t⃗ = 0.

44



• output boundary condition: Neumann boundary condition or better
boundary conditions.

• no-slip boundary condition: Dirichlet boundary condition:

• slip boundary condition:

(u, v) ◦ n⃗ = 0,
∂(u, v) ◦ t⃗

∂n⃗
= 0.

Here t⃗ and n⃗ are the tangential and normal boundary vectors.

Stokes-Equations::
The Stokes equations are:

−∆u+
∂p

∂x
= fx,

−∆v +
∂p

∂y
= fy,

∂u

∂x
+

∂v

∂y
= 0.

There exist several different kind of implicit, semi-implicit, and explicit
discretizations of the Navier-Stokes equations.
Important is the stability of these discretizations in space and time.
Stability in time can be analyzed by Fourier analysis.

Checkerboard Function:
Let us discretize Stokes equations by finite difference discretization as

follows:

• all unknowns at the grid points:

Ωh =
{
(i, j)h | i, j = 0, ...,m

}
,

• five point stencil for △u, and

• central difference for ∂p
∂x

and ∂p
∂y
.

45



Then, the pressure function

a

a
b
b

b b

b

b b b

b
a

a

a
a
a
a

a
b a ...

...
is contained in the kernel of the discrete Stokes operator.
Unstable discretization!

Staggered Grid:
Let us define the following three kind of grids:

Ωh,u =
{
(i, j − 0.5)h | i = 0, ...,m, j = 1, ...,m

}
,

Ωh,v =
{
(i− 0.5, j)h | i = 1, ...,m, j = 0, ...,m

}
,

Ωh,p =
{
(i− 0.5, j − 0.5)h | i, j = 1, ...,m

}
.

Apply the discretization:

• five point stencil for △u at Ωh,u and for △v at Ωh,v,

• central difference for ∂p
∂x

and ∂p
∂y

at Ωh,p,

• central difference for ∂u
∂x

+ ∂u
∂y

at Ωh,p.

Here apply the central difference discretization with respect to the meshsize
h
2
.

Stable discretization!v
N

vS

uE
uW

p

46



The finite difference discretization on a staggered grid leads to(
∂u

∂x
+

∂v

∂y

)
(x, y) ≈ uE − uW + vN − vS

h
= 0.

v
N

p

p

v
S

v vvM EW

S

N

The finite difference discretization on a staggered grid leads to

−△v(x, y) +
∂p

∂y
(x, y) ≈ −vN − vS − vE − vW + 4vM

h2
+

pN − pS
h

= fy(x, y).

• The staggered grid discretization is similar to the finite volume
discretization.

• There exist several stable finite element discretizations.

5.2 The Lattice Boltzmann Method

5.2.1 Basic Physics

Definition 11 (Particle Distribution). The fundamental variable in
kinematic theory is the particle distribution f(x, ξ, t) with respect to velocity
ξ at spatial coordinate x and time t. This means that the density of
particles at point x and time t, which move with velocity ξ, is f(x, ξ, t).
Here, x ∈ Ω ⊂ R3 and ξ ∈ R3.

Obviously, the density of the fluid is

ρ(x, t) =

∫
f(x, ξ, t) dξ (25)

47



and the velocity can implicitly be calculated by

u(x, t)ρ(x, t) =

∫
ξf(x, ξ, t) dξ

Kinematic theory tells that a gas tends to reach state of equilibrium which
statisfies the Boltzmann distribution:

f eq(x, |v|, t) = ρ

(
1

2πRT

)3/2

e|v|
2/(2RT ), (26)

where T is the temperature, v is the velocity, and R is the specific gass
constant. The Boltzmann equation is

df

dt
= Ω(f) := −1

τ
(f − f eq(x, |v|, t)), (27)

where Ω(f) is called collision operator and τ relaxation time.
Observe, that df

dt
is the totel derivative:

df

dt
=

∂f

∂t
+ ξ

∂f

∂x
.

5.2.2 Lattice Boltzmann Discretization

Here, we explain the Lattice Boltzmann discretization using the D2Q9
scheme. It applies a discretization grid Ωh of meshsize h with cell center
points xk (see Figure 5.2.1). Motivated by the particle distribution
f(x, ξ, t), Lattice Boltzmann discretization uses 9 functions

fi(xk, t),

where i ∈ {0, 1, 2, 3, ..., 8}. The discrete distribution function fi(xk, t) is
related to the discrete velocities ci (see Table 5.2.2) The discretized density
is

ρh(xk, t) =
8∑

i=0

fi(xk, t) (28)

and the discretized velocity is implicitly defined by

uh(xk, t)ρh(xk, t) =
8∑

i=0

cifi(xk, t) (29)

48



discretization
cell

discrete 

h

velocities

Figure 5: Lattice Boltzmann Grid.

Observe the property:

xk + hci ∈ Ωh for all interior points xk ∈ Ωh.

The Boltzmann distribution (26) can be discretized as follows

f eq
i (xk, t) = wiρh(xk, t)

(
1 +

uhci
c2s

+
(uhci)

2

4c4s
− uuuh

2c2s

)
,

where cs is speed of sound and the discetization constants wi are given in
Table 5.2.2.
Furthermore, the Boltzmann equation (27) is discretized by

fi(xk + hci, t+△t)− fi(xk, t)

△t
= −1

τ
(fi − f eq

i (xk, t)),

where △t is the time step related to the velocities ci and meshsize h.

49



i 0 1 2 3 4 5 6 7 8
ci (0,0) (1,0) (0,1) (-1,0) (0,-1) (1,1) (-1,1) (-1,-1) (1,-1)
wi

4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

Algorithm 1 (Lattice Boltzmann Algorithm).

1. Calculate density and velocity by (28) and (29).

2. Calculate collision term by

Ωi(f) := −△t

τ
(fi − f eq

i (xk, t))

3. Calculate streaming by

fi(xk + hci, t+△t) = fi(xk, t) + Ωi(f).

Remark: Observe that fi might take negative values. This clearly shows
that fi is not a discretization of f . Instead fi is an auxilliary variable which
has simular properties like f (e.g. see (25) and (28)). Nevertheless the
important unknows velocity uu and density ρh converge to the physical
quantities u and ρ under suitable conditions.

Properties of Lattice Boltzmann discretization: The basic Lattice
Boltzmann discretization is easier to implement and to parallelize than
finite difference discretization. However, a large number of time step is
need, since △t is bounded by the meshsize and the disctrete velocities.
Therefore, Lattice Boltzmann discretization is less suitable for stationary
fluid dynamic problems, since a large number of iterations is needed until
convergence is reached. On the other side, a finite difference discetization
can apply a multigrid method in order to obtain fast convergence.

6 Maxwell’s Equations

6.1 Maxwell’s Equations

The solution of Maxwell’s equations in 3D is

• E⃗: the electrical field and

50



• H⃗: the magnetic field.

Given are

• µ: magnetic permeability,

• ϵ: electric permittivity,

• M⃗ : equivalent magnetic current density,

• J⃗ : electric current density.

Maxwell’s equations are:

∂H⃗

∂t
= − 1

µ
∇× E⃗ − 1

µ
M⃗,

∂E⃗

∂t
=

1

ϵ
∇× H⃗ − 1

ϵ
J⃗ .

6.2 Finite Difference Time Domain Discretization
(FDTD)

Let τ be a time step.
Time approximation:

• E⃗|n+ 1
2 : approximation at time point (n+ 1

2
)τ .

• H⃗|n: approximation at time point nτ .

Furthermore, let us use the following abbreviation:

H⃗|n+
1
2 :=

1

2

(
H⃗|n+1 + H⃗|n

)
,

E⃗|n :=
1

2

(
E⃗|n+

1
2 + E⃗|n−

1
2

)
.

Let h be a mesh size.
Space approximation:

• Ex|
n+ 1

2

i,j+ 1
2
,k+ 1

2

: at point (ih, (j + 1
2
)h, (k + 1

2
)h) (yz-face) .

51



• Ey|
n+ 1

2

i+ 1
2
,j,k+ 1

2

: at point ((i+ 1
2
)h, jh, (k + 1

2
)h) (xz-face).

• Ez|
n+ 1

2

i+ 1
2
,j+ 1

2
,k
: at point ((i+ 1

2
)h, (j + 1

2
)h, kh) (xy-face).

• Hx|ni+ 1
2
,j,k

: at point ((i+ 1
2
)h, jh, kh) (x-edge).

• Hy|ni,j+ 1
2
,k
: at point (ih, (j + 1

2
)h, kh) (y-edge).

• Hz|ni,j,k+ 1
2

: at point (ih, jh, (k + 1
2
)h) (z-edge).

E
x

E
y

E
z

H
x

H
y

H
z

H
z

H
y

H
x

H
z

H
y

z

x
y

(i,j,k)

Now, the Maxwell’s equations

∂Ex

∂t
=

1

ϵ

(
∂Hy

∂z
− ∂Hz

∂y
− Jx

)
is discretized as follows:

Ex|
n+ 1

2

i,j+ 1
2
,k+ 1

2

− Ex|
n− 1

2

i,j+ 1
2
,k+ 1

2

τ
=

1

ϵi,j+ 1
2
,k+ 1

2

(
Hy|ni,j+ 1

2
,k+1

−Hy|ni,j+ 1
2
,k

h
−

Hz|ni,j+1,k+ 1
2

−Hz|ni,j,k+ 1
2

h

−Jx|ni,j+ 1
2
,k+ 1

2

)
52



The other Maxwell’s equations are discretized analogously.
J⃗ has to be composed as follows:

J⃗ = J⃗source + σE⃗,

where σ is the electric conductivity.
E⃗ is approximated by

E⃗|n =
1

2

(
E⃗|n+

1
2 + E⃗|n−

1
2

)
.

Reflecting boundary conditions can be modeled by pure Dirichlet boundary
conditions.
Non-reflecting boundary conditions can be discretized by the Perfect
Matched Layer (PML) method. These are not Neumann boundary
conditions!

References

[1] D. Braess. Finite Elemente. Springer, New York, Berlin, Heidelberg,
1997. English translation available.

[2] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A
Multigrid Tutorial, Second Edition. Frontiers in Applied Mathematics.
SIAM, Philadelphia, 2000.

[3] J. H. Ferziger and M. Peric. Computational Methods for Fluid
Dynamics. Springer, 1996.

[4] C.A.J. Fletcher. Computational Techniques for Fluid Dynamics.
Springer, Berlin, 2nd edition, 1991.

[5] A. Taflove and S. C. Hagness. Computational Electrodynamics. Artech
House, Boston, London, 2000.

53


