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Basic Elements of a Laser

o -

laser consists mainly of the following three elements :
1. Laser medium: collection of atoms, molecules, ions or a
semiconductor crystal:
# gas laser
# solid state lasers
#® semiconductor lasers
o fiber laser
2. Pumping process to excite the atoms (molecules) into
higher quantum mechanical energy levels.
3. Suitable optical feedback elements
# as a laser amplifier (one pass of the beam)

# as a laser oscillator (bounce back and forth of the
L laser beam) J
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Model and Simulation

- .

1. Population inversion

2. Amplification of light (electromagnetic radiation) within a
certain narrow band of frequencies. The amplification
depends on the population inversion.

3. Oscillation: There must be more gain than loss of the
beam. Reasons of loss are:
# loss by medium
#® not accurate construction of the mirrors
& output

4. Eigenmodes of a laser (e.g. Gauss modes ).
# deformation of the crystal
# gain, lenses
L o different refraction index J
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Atomic Energy Levels

o .

ight of a certain wavelength is emitted if a transition
between two energy levels F>; — E; takes place
“ jump of electrons “ .

Formula 1. The frequency of the emitted light is

Eo — B
h )

(1) w91 =
where

h
h = 9 h=6.626 - 107°*Js Planck’s constant.
s

Notation for wavelength: 1um = 10000 A

o -
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Energy which leads to a Transition

fT

ransition from Es — FE; takes place
only with a little additional energy:

=

# spontaneous emission: energy from small movements
of the atoms

# stimulated emission: energy from absorption
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Spontaneous Emission

o .

et NV; be the number of atoms with energy level E,.
Within a short period of time a certain percentage of atoms
make a transition to a lower level.
This can be described by the following ODE:

dN 2 N 2
dt spon T

where
# ~ is called energy-decay rate and

o T = % is called lifetime.

The solution of this ODE is:

N Ny(t) = Na(0)e™~ o
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Stimulated Transition

- .

f an external radiation signal is applied to the atom, then
stimulated transitions occur: “ atom reacts like an antenna “.
Let n(t) be the photon density of the radiation.

Then, there is a constant K such that

dNo |
T = Kn(t)Nq(t absorption
dt |stim.upward n( ) 1( )’ ( P )
dNo | .
TR = —Kn(t)No(t stimulated emission).
dt |stim.downward n( ) 2( ) ( )
This implies:
dNo AN,
— = Kn(t)(N1(t) — No(t)) — v9o1No(t) = —— .
dt total TL( )( 1( ) 2( )) 721 2( ) At —_

o -
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Energy Transfer of Stimulated Transition

fT

he energy transfer of stimulated transition by a signal is T

dU,
dt

Kn(t)(N1(t) — No(t)) - Fiwo,

where U, is the energy density.

The energy transfer changes the photon density of the
signal by:

(2) d?;(tt) = —K(Ny(t) — Na(t)) - n(t).

# Absorption (attenuation):  Ny(t) > Na(t)

# Population inversion: Ni(t) < Na(t)
L — net amplification of a signal J

.~ p.9/11



Boltzmann’s Principle

|7Theorem 1 (Boltzmann’s Principle). In case of equilibrium the
populations N1 and N9 depend on the temperature:

No Eo — Eq
— =exp | — .
N, b kT

This implies

-
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Pumping Process

L

® R, be the pumping rate (atoms/sec),

et

» 1, the pumping efficiency such that R, = n,R,, and
® ~;; the decay rate from level E; to £;.
The following formulas describe the pumping process :

d N

d—t2 = Ry — 721Nz
dN

d—tl = 721NV2 — v10V1

If 4% = 0, then we get

L Ny > Ny (population inversion) < 79 < 1 J
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Scalar Rate Equations

L

et us abbreviate
g2 N1

g1
then, the scalar rate equations are

N =N, —

ON N + Ngot(y — 1) n

(3) il —~vNnoc — o Ry(Niot — N)
w P = Nooe- "4
— = noc — — :
ot Te
The unknowns of these equations are
g2 N1

# N: population inversion N = Ny — pd

L’ n: photon density

-
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Traveling of an Optical Wave

. .

et us assume that the optical wave can be modeled by

E(z,t) = exp(jwt)E(z)
E(z) = exp(—jkz+ amz) =exp(—jkz)u(z)
u(z) = explamz).

This implies that

~

E(z,t) = exp(jwt) - exp(—jkz + am2)

Thus, a constant phase shift is obtained at wt = kz.
Since t = z/c in vacuum, we get

L —

0y
C

L(By k? = pew? in Section 2?2, we obtain ¢ = \/% in vacuum.) J
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Amplification of the Optical Wave

N .

ow, let us model the optical wave by

E(z,t) = exp(jwt)E(z)
E(z) = exp(—jwz/c+ anmz) =exp(—jwz/c)u(z)
u(z) = explamz).

Let r; be the reflection coefficient at the mirrors M,;,7 = 1, 2.
Let L,, be the length of the amplification medium.
Let L be the length of the laser medium. Then, we get

rire exp(2a,, Ly, — j2wL/c) =1 and K(Ny — N1) = 2au,c.
Consequences:
2wL/c € 277 = only certain frequencies!
L c 1 | ( 1 1 ) J
n

20mLm) =1 = Ny—Nj > — ~ 1=
|T1T2|€Xp( @ ) 2 ! K 2LM 1 T2 —p.14/11




Scalar Rate Equations

ON N + . — 1
O Nnoe— 2T oty = 1) | Ry(Niot — N)
ot T¢

on n

~ = Nnoc——+S8

ot noe Te +

N(0) =Ny and n(0) = nyg.
To discretize the unknowns
#® N: population inversion N = Ny — Nj.
# n: photon density
let us use an explicit / implicit Euler discretization with

Lmeshsize T.

-
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The peak of the photon density after switching on the laser
resonator leads to the construction of pulsed lasers.
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Maxwell’s Equations

VxE = -9 Faraday’s law

VxH = 4] Maxwell-Ampere law
V-D = o Gauss’s law
V-B = 0 Gauss’s law - magnetic
vV-J = -% equation of continuity

and constitutive relations:

—

ﬁzeﬁ, ézuﬁ, J=0E

o -

.~ pA7M11



Maxwell’s Equations

B

# 4 IS roughly constant.

y the assumptions:

® p=0
® J=0
we get
V x E —%—lf Faraday’s law
VxH = %—? Maxwell-Ampere law
V-D = 0 Gauss’s law
V-B = 0 Gauss’s law - magnetic
D = ¢E
; g

= uH J
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Vector-Helmholtz Equation

s

ince u is constant, we get from Maxwell’s equations:

0

VxVxE = —uanﬁ
N ”§t<%?+j>
Thus, we get
2
VXVXE——M%(GE)—M%j

o

=

-
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Assumptions for the Scalar Helmholtz E.

L

et us assume the ¢ is constant. Then, we get T

eV-E=V-D=p=0.
This implies
(5) V(V-E)=0.

But, ¢ is not constant! Therefore, we assume (??).
Then, we get

—

VXVXE=V(V-E)—AE=—-AE
Furthermore, we assume that

e IS constant with respect to time.
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Scalar Helmholtz Equation

N .

ow, the vector-Helmholtz equation
VXVXEZ—N—(GE).

and the assumption (??) imply

Assumption (??) is satisfied for the TE-wave (transversal electric wave):

E(QZ’, Y, Z) — E(ZE, Y, Z)ex o E(ya X, Z)ey

For this wave, we get the scalar Helmholtz equation:

o

-
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Time Periodic Solution

L

et us assume that E is time periodic. This means:
E(z,y,z2,t) = exp(iwt) E(z,y, 2).

Inserting in the scalar Helmholtz equation, leads to

—~AE —k’E =0,

where k? = pew?.

This is the Helmholtz equation for time periodic solutions.

o

-
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Paraxial Approximation

L

et ko be an average value of k. Inserting the ansatz
E = e %020 (g, y, 2)

in the scalar Helmholtz equation leads to

]
— AT + 275/430%— + (ks — K*)¥ = 0.
4

In the case that &£ = kg is constant, we obtain

Y
—A\If + 27,]{()8 0
0z

In the paraxial approximation, we neglect the term %27‘5’. This leads to:

O*U 9% o
T ¥ gy )
L or?  0y? i 0z . J

.~ p.23/11




Lowest Order Gauss-Mode

To solve the paraxial approximation,
0*°U  9*0 oV
— — 2ik— = 0.
Jz?  Oy? 2k 0z .

let us make the ansatz

U(x,y,z) = A(z) exp (—ik 24(2)

where A(z) and ¢(z) are unknown functions.
This equation leads to the ODE’s

dg 0A 1
5, = 1 and 5_—/1-5.

o -
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Lowest Order Gauss-Mode

The unique solutions of % = 1 and %—f =—A- % are
® ((z) =qo+ 2z, where ¢y and zy are constants.
— g0

Thus, lowest order Gauss mode is

E(x,y,2) = e *W(x,y,2)
2 | 2
Ag 10 exp(ik (—z— Y ))
Go + 2 2(qo0 + 2)

Let us normalize the amplitude of this mode by ¢yAy = 1. Then,

1 2 2
E(r,y,z) = exp (—ik (z—|— Y ))

go + 2 2(qo + 2)

o -
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Definition of Spot Size
o

efinition 1. The spot size is defined by the radius r such that




Spot Size and Beam Waist

B 1 e z? + y°
Blz,y,2) = q0+zexp( k( ' 2(q0+2)))
Write
S SN SR
Ggo+z q(z2) R(z) mw(z)
where \_/
R(z) = (Re(qy) + 2) (1 + (RGIESO) 2)2) w(z)

Phase shift: exp (—z‘k ( "*“2*?‘/2))

.~ p.27111



Energy of the Beam
A

short calculation shows:

|Im(q
o + 22 = TR0
and:
Aoqol? 7 7
E|2d(z :‘ —
o PP = a0y 2 328

Thus, the energy at a slice z =constant is independent of -.

o -
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Types of Resonators

=

There exists several types of resonators . Here, let us study a one way
resonator. Other resonators can be transformed to a one way resonator.

Let Q@ = Qs x [0,L] be a res-
onator geometry.

Let us assume that there are

n apertures in the resonator.
The start points of these aper-

tures are | free spacel free spacel free spacel free spacel
20 1 Z3 zZ5 27
— <z <2< ..< 2z, =L 22 21 % _
0 A0 21 > %2> %n L start lense mirror lense mirror

ey (e (e 2<qz-x+2 <+y—>>))

Lwhere A; = A;q;. J

.~ p.29/11
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ABCD Matrices

fThe change of the Gauss-mode is described by ABCD

matrices
M, = A. B.
ct Dt

Then, the beam parameter ¢; changes as follows

A'gi—1 + B
L= - =: M;lg;,_1].
q; Cigii + D z[(]z 1]

Lemma 1.

M; 1| M;|gi—1]] = (M1 M;)|qi-1]

o -
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Ray Optics and ABCD Matrices

o .

® the radius r(z) and
® the slope r'(z).

n optical ray can be described by

The change of an optical ray is described by
Tout ¢ D "in

Example 1 (Ray-matrix of free space).

Tout _ 1 nLO Tin
L 50 R U 1 1 A

.~ p.31/11




ABCD matrix of free space

- .

ormula 2 (ABCD matrix of free space).

A B B 1 27 — Zi—1
c D) \o 1

Ai = Ai—1exp(ik(—(zi — zi-1)))

and



ABCD Matrix of a Lense
o

ormula 3 (ABCD matrix of a lense).

A B I 0 1
= 1 and A; = A;,_1 T
C' D —F 1 1 — 7%’—1

.- p.33/11



ABCD Matrix of a Mirror
o

ormula 4 (ABCD Matrix of a mirror).

(¢5)=(57)




Other ABCD Matrices

fFormula 5 (ABCD Matrix of a Duct).
Letk = w,/uen(x), where n(x) = ng — sngx?. Then

A B _ cos(72) (noy) Sil”l(”YZ))
C D —(ngy) sin(vy2) cos(vz) ’

where v* = ns /ng.



Ray (or Beam) Matrix of the Resonator

o .

Using the ABCD matrix M; of each aperture on can
calculate the ABCD matrix of the whole resonator by

‘ A B
vl (27)

Lemma 2.

A B
det< ) = det(M) =1
C D

Proof. Observe that for every aperture the corresponding ABCD matrix
M; satisfies det(M;) = 1. H

\—Let 7o be a start vector. Consider J

TS — MSTO . —p.36/111



Stability Ray of the Resonator
-

fLet qa, qp D€ the eigenvectors of M.
Then,

s = Ca)\ZQa + Cb)\ng-
o Stable Laser: —1 < |m| < 1. Then,

where A\, =e-"".
# Unstable Laser: |m| > 1. Then,

rs = Msca(]a + M_Scb%a

where M = \,, 27 = \py M =m + vVm? — 1.

o -
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Exact Solution in a Gaussian ‘““Duct’’

- .

he refraction index of a Gaussian duct is :

1
k = ko(l — 57227“2)

The paraxial approximation and neglecting the small high order term
in3r? leads to
oV
Axy\lf — 22]{?08— — ]{ZQTLQT v =0

An exact solution of this equation is:

2 2 \
U(x,y,z) = exp (_51: +2y + Z—Z)
where wi = 2—— \/_ and \ =

o -
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The Guoy Phase Shift
-

Let us define the Guoy phase shift ¢/(z) by:

ilg(2)] _ exp(ih(2)).

This implies
Tw(z)?
R(z)\

Thus, ¥ (z) = 0 at the waist of the Gaussian beam.
Then, one can show

L g0 _ exp(i(y(2) — o))

tan(z) =

wo q(2) w(z)
~ where v = 1/(0) and gy = ¢(0).

Y,



Notation in ‘“‘Lasers and Electro-Optics”

. .

In this book the spot size at the waist 2z = 0 is:

wp(z) = <1+ <7$8> )

A (Re(qo) + 2)
ohe) =00 gy = 3 (M) + TR ) g,




Hermite-Gaussian Modes

b = " (v25) 1 (v22)

w w w

exp (—z’(kz — d) —r? (% + %))

where
1 [ Az
b(m,n,z) = (m+n+1)tan —
Ho(x) =1, Hi(z) =z,
Ho(z) =4 — 2, ...
2 dn 2
Hy(z)=(—-1)"e" dx—"(e_x ) n=0,1,

LThe set of these functions forms a basis.



The Laguerre-Gaussian Modes

-

[ 2 2
Unl = Eg <\/§L> L (2%) e“d cos(lo)

wp wD

where r, ¢ are the angle coordinates and
Li(z)=1 Lix)=14+1—-2z

L(z) = %(l +1)(1+2)—1+2)z+ %xQ

dn
Ly(x) :exﬁ(x"e_‘%) n=20,1,..

The set of these functions forms a basis.

o



Thermal lensing

fT

a) thermal lensing .

=

he refraction index n.(x) of a laser crystal changes by

b) internal change of the refraction index caused by
deformation

c) deformation of the end faces of the laser crystal

o -
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Thermal lensing

=

fa) The refraction index of a laser crystal changes by
temperature

# Let T, be the temperature before heating (refraction
index ny).

#® Let T be the temperature caused by the pumping
process (refraction index n).

Let nr be the thermal index gradient.
(Example: np =2.2-107%. °C~1 for Cr#t).
Then,

n(x, Y, Z) = Ng + UT(T(Ia Y, Z) _ TO)

o -

.~ p.44/11



Deformation of a Laser Crystal

-

Let B C R be the original domain of the laser crystal.
Let T : B — R? be the mapping of the laser deformation such that

=

{T(z)+z |z e B}

is the deformed domain of the laser crystal.
®» Heat and
® deformation

of the crystal lead to a refraction index

ne(x), r B

such that k.(x) = w\/pen.(x).

o -
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Parabolic Fit

fAssume that B = Dx|0, L[, L length of the laser crystal. T
b) The parabolic fit of the refraction index is

® Subdivide |0, L[ in N intervals of meshsize h = £

2

® Let Dy be the discretization grid.
® Foreveryi=0,...,N — 1: Find ng ;, na; such that:

o 1
’n,c(ilf,y, h(/[’ + §>> T (nO,i — 5”2,7;(332 + y2)>

12(Dn)

® Each of the parameters n ;, no ; lead to a matrix

COS Y; 2 noYy; Lsin~, 2

A; =

N7, SINY; 2 COSY; 2

Lc) Additionally, perform a parabolic fit of T'(z,y,0) and T'(x, y, L). J

.~ p.46/11



Beam Propagation Method BPM

. .

he paraxial approximation leads to

0*U  9*V OV
——— — —— + 2tkg— k2 — k)0 = 0.
Ox? 8y2+2082+(0 )

Let us write this equation as follows:

oU  0°U 9%V
ho— = — + — — (ki — k*)W.
2iko 0z  Ox? i Oy? (% )

Let (2 = Dx]|0, L|, then one can apply
® FE or FD in «, y-direction
# Crank-Nicolson in z-direction.

o -
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Beam Propagation Method BPM
-

Let U/(x,y) be the approximation of ¥ (z,y, 71), where 7 is
the time step. Then, U!(z, y) is defined by the equations:

\Ijl—i—l . \Ifl 1 a?qjl—i—l aZ\IJH_l
9 _ k2—k2 \IjH_l
iho L (G + T + (- R
82\Ifl 82\I/l
5zt o +(/~c§—k2)\1ﬂ)
U0(z,y) = winitiay ) (initial condition)

# Additional boundary conditions are needed .
# Lenses and mirrors can be discretized by a phase shift.

o -
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Iteration Method of Fox and Li
N o

Let winitial he an initial condition at the left mirror. By the
BPMethod calculate

# the beam configuration at the right mirror and the

» reflected beam configuration ¥e"d .— p(yinitialy gt the
left mirror.
If pinitial — yend then pinltial j5 an eigenvector U€'98N of the

BPM operator 5.
The iteration method of Fox and Li is a power iteration

method for the eigenvalue problem of the BPM operator B.
This means:

pl — \Dinitialj pstl — B(\Pinitial,s)

B v i .

.~ p.49/11



Weak Formulation of the Helmholtz Equati
L o

et
V= {ve  H Q). =0}

Then,
—Au—kK*u = f
u|FM — O,
, ou
u - ik + %’FR = 0

transforms to:
Problem 1. Findu € V = {v € H'(Q) ‘ vlp,, = 0} such that

[ 0
VuVi—k*ut du—ik 25 dp = / fodu  foreveryv € V.J
Q r on Q



Weak Formulation of the Helmholtz Equati
- o

efine the bilinear form

a(u,v) = / VuVi — k*ut dp — ?@ dis
0 ron

Then, the week form of the Helmholtz equation is
transforms to:

Problem 2. Findu € V = {v € H'(Q) ‘ vlp,, = 0} such that

a(u,v) = / fodu  foreveryv € V.
Q)



Properties of a(u, v):

f8.

) The local part of a(u,v) is the bilinear form
aloc(u, V) = / VuVo — k*uv dp
Q

Let & be constant. Then, a'°C is not positive definite,
since

y

> () ifk1>]€
_|_.

e-tkzy =0 = ifk =k
<0 if/f1</€

_I_ .
CLIOC(G Tik1z

\

o -
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Properties of a(u, v):

Tikz

b) Let k£ be constant. Then, the functions e¢-""* are
contained in the local kernel of a. This means

a(ef“‘“,v) =0 foreveryve H}(Q).

-
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Properties of a(u, v):

- .

c) The bilinear form a(u,v) is H!'-coercive. This means
that there exist ¢, C' > 0 such that

Re(a(u, u)) + Cllul|2: > cf|ul/?: Yu € HY(Q)

o -
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Properties of a(u, v):

-

d) The problem
Find v € V such that

a(u,v) =0 for every v € V

has the unique solution v =0, if £ > 0.

o -
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Properties of a(u, v):

-

d) The problem
Find v € V such that

a(u,v) =0 for every v € V

has the unique solution v =0, if £ > 0.

o -

.~ p.56/11



Boundary Conditions

Let Q@ c RY, d =1,2,3 be an open d-dimensional open
bounded domain. Consider

“Au—k*u =0

The rays exp(ik m - x) are solutions of this equation, where

m = 1.

.—p.57111



Boundary Conditions in 1D

fF Then T

Irst, let us consider the 1D case d =1 and Q2 =|0, 1].

exp(ikz) and exp(—ikz)

are solutions of —9-% — k2u = 0.

Let us assume that the reflection of the ray exp(—ikz) at the
point 0 is avexp(ikz).

This means we need a boundary condition at 0 with solution

u(x) = exp(—ikz) + aexp(ikz).

A suitable boundary condition is

%
N ul,_o(1 — )ik + (1+a)a—z =0 -

.—p.58/11



Simple Boundary Conditions

- .

® Reflecting boundary condition:
u|z:0 =0
#® Non-reflecting boundary condition:

. Ou
u‘z:OZk T %‘z:() = 0.



Non-Reflecting Boundary Condition in 2D..
- o

® Observe that

lim exp(—i(k+ia) m-x) =0,

LT——00

where a > 0. This leads to the concept:

® Extend the PDE outside of the domain.
® Add an adsorbtion coefficient o outside of the domain.

# Put homogenous Dirichlet boundary conditions at a certain
distance for away from the boundary.

o -
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Difficulties of a Pure FE Discretization

-

# One difficulty is the large number of discretization grid

T
points which are needed in case of long resonators.
Difficulties occur, if 1em = L >> 5\ = 10um. Then, more
than 20 % 1000 = 20000 grid points are needed only in
z-direction.

The second difficulty is that « is not symmetric positive
definite and the resulting linear equation system cannot
efficiently be solved by multigrid or any other standard
iterative solver.

There exist several eigenvectors with eigenvalues close
to each other.

A very accurate discretization of the non-reflecting
boundary condition is needed.

-
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Modeling the Wave in a Resonator

-

Let us model the wave E(x,y, z) in a one way resonator by
the following equations:

=

—Au + Zikf% + ks(2kr — ks)u = &u

E(z,y,2) = exp|—i(ks —¢&)z] u(z,y,z)
2eky = ¢



Modeling the Wave in a Resonator

=

Let us assume that ® ¢ R? is a bounded and connected
domain with a piecewise smooth boundary and let

Q= dx]|0, L],
where L > 0. Let us subdivide the boundaries of (2 by
[g:=®x{0}, TI'p:=dx{L}tandl, =900\ (I'fyuUly).

For reasons of simplicity, let us additionally assume that we
choose k¢ such that

(7) expljLky] = 1.

o -
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Two-Wave Ansatz for Resonator Modelin;

fLet us model the resonator by a forward wave FE,. and the backward wave T
E; such that

E:ET+EZ7

where each of these waves satisfy the Helmholtz equation .
This leads to the eigenvalue problem:

(8) — Au, + 2jl€f B + (kj% _ kz)ur = &u,,
ou
—A’U,l — 2]kf8—l (k’]zv — kz)ul = fUl,
Z
where
E?“(xay7 Z) — €Xp [—]k‘fZ] u?“(xay7 Z)7
El(xay7 Z) — €Xp [-]k‘f(L—Z)]’U,l(QZ’,y, Z)7

o -
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Boundary Conditions for Two-Wave Ansat

- .

o satisfy the boundary conditions (??) and (??), we need the boundary

conditions
(9) Ur 4 U — 07
I'pul'y,
u,
(10) iG] = 0,
on T,
0
(1) U jcu| = o
on T,
Observe that (??) is needed to obtain FE,. + E; = 0 from
I'pul'y
U, + g = 0.
I'pul'y,

To obtain a system of equations with enough equations, we additionally
need the boundary condition

Lu 2) Jur Oy - 0. J

az az I'ouI'y,

.~ p.65/11



Weak Formulation

. .

et us define

—

H' = {(ur,ul) c H'(Q) x H'(Q) ’ Uy —I—UZ}FO =0, u, +ulp, = O}.

d’((ur, ul)? (/07”7 vl)) —

— / (wrwr + (kF — k) u, 0, + 25k %urﬂr) —JCy / Uy Uy
Q

',

0
+/ (Vquvz + (k7 — K*)w —ijfﬂvl) —JCb/ Uy,
Q

T

=

where we assume that k € L>(12).
Now, the weak formulation is:

Find @ = (u,,w) € H* and ¢ € C such that

L a(u,v) = & / U, Uy + U 0; VU = (v, v1) € H. J
Q
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Properties of a

-

Lemma 3. Let C}, = 0. Then, d(u, v) is symmetric.
But d(u, v) is not positive definite.
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Trilinear Finite Elements

Qp = {(thy, jhy,kh;) | 1, = —Ng,..,Nyand k =0, ..., N, },

where we set h = (hy, hy, h,). Furthermore, we obtain the
following set of cells

= { [ithg, (1 + 1)hg] X [ihy, (0 + 1)hy| X [ths, (i + 1)h,]
i,j=—Ng, ...N,—1 and k=-N,, ...N,—1}.

Let us define the space of trilinear finite elements by

Vi, = {u e C() ‘ VI'erT: dec,c9,c3,¢4,05,c6,¢7,c8 € C:

w(z,y,2)|r = c1+ car + c3y + caz +

L C5XY + CeyYz + craxy + CSxyz} J
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Two Wave Finite Element Space

. .

et us define the finite element space
Vy, i= {(Uh,rauh,l) e Vi, X Vj ‘ Up,r + Uh,l}FO =0, upr +unilr, = 0} c H?

An unstable FE-discretization is:
Find @), € V,, such that

Sl

(Up, V) = / fid Vi, €V,
Q

The resulting linear equation system is difficult to solve.

o -
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FE-Theory for Sym. Positive Definite S.F

|7Theorem 2. Let a be a continuous symmetlric positive definite T
sesquilinear form on a Hilbert space V', V3, a closed subspace and
f € V'. Furthermore, letw € V anduy, € V), such that
a(u,v) = f(v) YveV
a(up,vp) = flvp) Von € Vy

Then,

Ju —up|lp < inf |jlu— vk,
v EVY,

where ||.|| g is the norm corresponding to a.

o -
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FE-Theory for Positive Definite S.F.

Theorem 3. Leta be a continuous positive definite sesquilinear form on a Hilbert space

V', Vi, a closed subspace of V and f € V. Furthermore, let us assume that a is

V -elliptic. This means that there is a constant o > 0 such that
la(u, u)| > allul|* Yu e V.
The continuity of a implies that there is a constant C' such that
a(u,v) < Cllull||v]] Vu,ve V.
Furthermore, letu € V anduy, € V3, such that

a(u,v) = f(v) YweV, alup,vy)= f(vn) Vop € Vp.

Then,

C
|u—up|| < — inf ||ju— v J
a vy EV)

= p.71/11



Streamline-Diffusion Discretization

- .

(13) —Au—|—2ikf% + ks(2ky —ks)u=f on B.

Let us extend the subdivision 7 of €2 to a subdivision 75 of B by using the
same meshsize. Furthermore, let V}, s be the corresponding finite element
space of trilinear functions.

Discretization: Find u;, € Vj g such that

_Ob/ upvy  +
OB

8uh _ (9 _
E(’Uh + hpa’vh) +

—|—/ VupVop, + Qikf
B
kS(Qkf — ks)uh(’ﬁh + hp%@h) d = /Tf(’ljh + hpai_)h) d

Yy, € Vh,lg.

-
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Streamline-Diffusion Discretization

o .

Find u;, € Vh such that

auh,r a‘_7h,r
0z 0z

.. Oup) 0vph)
h 21k ’ —d
i 'O/Q 0 oz

d

J(ﬁh,ﬁh) -+ hp/ 2ike
Q

We call this discretization streamline-diffusion discretization. However,

there are no streamlines. In case of a convection-diffusion equation, this

-

.~ p.73/11
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Ellipticity
-

fThe sesquilinear form of the streamline-diffusion
discretization is

an(tn,vp) = a(up,vp)

@uhr(?vhr 8uh18\7h1
h 21k ’ ~ d+h 21k ’ ~d
" p/ﬂ M0z oz i 'O/Q MM, oz

Lemma 4. For every v, € Vh the following inequality holds:

2

—

é)vh

ay, (U, )| > hk
(T, )| = g | 5

o -
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A Smoothness Result

an(tn,vp) = a(up,vp)

+ hp/ 2ikf
)

8uh,r a\_/‘h’r

oz 0z

Lemma 5. Let ﬁ;’; c H! such that:

—

ap (U, U

Then,
82 —*c
az

:Lﬁd

_hk

d+ hp/ 2ike
Q

Vi € HE.

|| fll 2

-

(9uh’1 (‘9th1

oz 0z

-
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FE-Theory for Positive Definite S.F.

Since a;, satisfies the Garding inequality, one can prove the following
convergence theorem:

Theorem 4. Assume f = (f,, f;) € L2()2. Leti = (u,, w;) € H' such that

=

—

a(u,v) = / fror+ fior - YT = (v, v) € H.
Q
and i, = (Up p, U pn) € V,, such that

an (Un, Up) = / e+ fior Vo, = (vp,11) € Vi,
Q

Then, Uy, converges to .

o -
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A Symmetry Consideration

- .

nstead of

ah(uh,vh) = 6(Uh,27h)
Oup r OVh y Oup 1 OVh

h 2ik d+h 2ik d
i '0/521f5’z 0z +p/91f0z 0z

ah(uh,vh) = 6(Uh,27h)

.. Oupy OVpy .. Oup) O0vp
— h 21k ’ ~— d—h 21k ’ — d
'O/Q 02 o p/ﬂ 0 oz

Then, the meaning of u; , and u; ; changes and the meaning of ¢ and —¢
in the ansatz

E(z,y,z,t) = exp(iwt)E(x,y, 2).

o -
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Streamline-Diffusion Discretization in 1D

fI

n 1D the sesquilinear form

leads to the stencil
1 1 .
zkf§(—1 0 1)+zkfﬁph(—1 2 —1)=1iks(—=1 1 0)

for p = 5. This is the FD upwind discretization. An exact

solver for the resulting equation system is a Gauss-Seidel
relaxation from left to right.

o -
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Iterative Solver

Hackbusch’s rule: Consider a singular perturbed problem with
parameter ¢ — ¢3. Then, construct an iterative solver such that
this solver is an exact solver for ¢y (usually ¢; = 0).

The transformed one way resonator equation is:

—eAu + QiZ—U + eks(2k s — ks)u = e€u
2

where € = % Then, in 1D, the streamline diffusion discretization stencil
fore - 0is
i(—=1 1 0)

An exact solver for the corresponding equation system with suitable bound-

ary conditions is a relaxation from left to right. Thus, we used a relaxation

Lfrom left to right as a preconditioner for GMRES. J
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Numerical Results

L Figure 1: Gauss-Mode by FE



Numerical Results

Figure 2: Gauss-Mode by FE



Modeling Optical Apparatuses

fHere: One-way resonator with a lense or an interface at theT
point /o with 0 < [y < L. Let us write

(, =¥ x [O,l()] CcB and Q, =V¥x [lo,L] C BY; = \IJX{Z()}.
Then, the ansatz
E(x,y,z) =exp|—iksz]u(x,y, 2)

is not appropriate. Instead, we use the ansatz

exp |—ikyq, 2| u(z,y, z) forz <l
exp [—ikfjgbz} u(x,y,z) forz>ly. °

E(zr,y,z) = u(x,y, 2) {

where k; , is an average value of £, in 2, and
L k¢ is an average value of k¢ in €2,. J
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Modeling Optical Apparatuses

-

az(u,v) =

a(u,v) =

0
/ VuVo + 2¢/<;f,:a—“@ + ko (2K sz — k)uv d
= Z

[a—

aq, (u,v) + ag, (u,v).

Phase shift of the apparatuses: o(z,y).
Then, let us define the space

Hop = {u c I2(B) | ulo, € HY(Q), ulo, € HY(Q,) and

u‘\Ianga P = u|‘1/I,Qb}'

=

Find v € H,, such that

a(u,v) = / uv d Y € Hap.
B

.

-
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Gain and Absorption

. .

0 simulate gain and absorption in the Helmholtz equation
—Au—ku=0
we apply the formula
k2 = w? e + J2w/ e
By rate equations, we obtain K = oc and
Qgain = 1/2 0N

Thus, we get

o

L2 — wQ,ue +jw\/,LL€(ON — 2Oéabsorption)

| -

= wue+ jwy/pe(cN — =).

TC .~ p.84/11



Time-Dependent Behavior

;

sing the ansatz

E(x,y,z,t) = exp(iwt)(E.(x,y, 2,t) + Ej(z,y, 2,1))

we obtain
0, L ou,
€ TLUEW ——
He g2 T Y g
02Ul 1 8ul
€ LUEW ——
He g T HY gy
ON
ot
kQ
n

| B

o,
Au, — 2jk; 8“2 — (2 = K)u,,
A L Ou 2 2

u; + 2]@5 — (k% — k%),
Nnoe - NI NetO =D | p L - vy

Tf
: 1

w? e + jw/pe(oN — T—)

€
— |E?
2hw| |

|ur‘2 T |ul‘2-
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Weak Formulation for the Maxwell Equatie

B

he time-periodic vector Helmholtz equation is T
VxVxE-—KE="f
The bilinear form of the weak formulation is positive definite:
a(E,W) = /QV « E-V x W+ K2EW d(z,y, 2)
Then, we obtain

ale P, e FEG) = / VXxi-Vxo+ (k- k?)uzﬂz
Q

, ou, Ouy \ _ ~

—ik 2 ( 9y a—zy) v, + (k% — k%)uyvy

: Ou, Oug \ _ 92 9 _
L —ik 2 ( 5 T B, ) Vg + (k% — k%) Uy d(x,y,,ﬂ
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VC SEL (Vertical Cavity Surface Emitting Laser)

- .

' -
Infineon
technologies .

light output

oxide aperture p—contact

S top DBR
passivation

active layer

current flow bottom DBR

n—contact ~_ —+— substrate
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DEFB Laser (Distributed Feedback Laser)

Injection current

substrate

.

VN N AR R Emmm

contact

>

active layer

=

-
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Distributed Bragg Reflectors (DBR)

o .

et us assume that the resonator has the form
Q=T x [0, L]

andthat0 =1y < l; < ... <l, = L Furthermore, let us
assume that the resonator has the refraction index n; (k;) in
the layer ¥ x [l;_1,1;]. Assume that

_E" _—kK’E = 0.

Let us assume the & is constant in the interior of [/;_1, ;]
Then,

E(z) = ¢; rexp(—tki(z—li—1))+c;exp(tki(z—1l;i—1)) for z € |[;_1,1

o -
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Transmission Matrix of One Layer

Ci,r Cit1,r

—_— —_—
Ci.l Ci+1,1
I I Ci+1,r — M Cir
Ci+1,1 Ci,l
hz __________
Vo - kiv1i+ ki kig1— kK 1 exp(—ik;h;) 0
Z Kivi — ki kip1 + ki 2Ki+1 0 exp(ikih;) |

o -
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Transmission Matrix and Scattering Matr

-

Cl,r
——

C1,1
-

black box

-

62,7“
—

C2
-

In general one can describe the behavior by a scattering
matrix S and a transmission matrix 7'

Cl,r _ 7
C1,]

C2.r
€2

C2.r _ g Cl,r
C1] €2

-
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Reflection Property of DFB

Example 2. Let us study 101 layers with refraction index ng, n1, ng, ..., 1,

Ao =16-1076 ko = i—g, and w =

A high reflectivity is obtained for w = wq, 3wg, dwy, -...

o L
111111111111111

Reflection behavior for n; =

L3.275.

lllll

k

v/ E€EoH0T0

, Where \/€g g = % andng = 3.277.
Letus choose ca; = 1, ¢1,» = 0. Then, c1,; shows the behavior of the construction.

a
lllll

lllll

lllll

Reflection behavior for n;

3.220.

lllll

=
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Finite Elements of DFB
-

fLet (1}, be a grid of meshsize h for the domain 2 = |0, L|. Furthermore, let
v, be the nodal basis function with respect to linear elements. Then,
define

I _
v, = €%,
r —tkz
v, = e "y,
o e’**v,(z)  forz <pand
P _ o
e~ %7y, (2) for z > p.

Now, let us define the FE space

Vel = span{v., vl v | p € U}

LThiS FE space leads to the results as the transfer matrix method. But theseJ

basis functions can be extended to 2D and 3D.
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Time Discretization

|7L

et us recall the scalar Helmholtz equation (2?):

Ot?
The ansatz
E(x,y,z,t) = exp(iwt)E(z,y, z,t)
leads to
O*FE OF
MEW —I— ’L/LEWE — AE —|— IUECUQE.

Since w? is large in comparison to pe, we apply the following
model:

\_ iuew%—f = ANE + k°E. J

.~ p.94/11



Time Discretization

Crank-Nicolson discretization of this equation leads to
Estl—Fs 1
ijew = (AE® + K*E* + AE*T + BPEST) .
T

Let us analyze this equation by Fourier analysis in 2D. Then, for
E?® = a®sin(l,x) sin(l,y), we obtain

1
CLS+1:§ . T a
5 Hew

This equation implies

if & € R. This means a real k£ does not lead to a gain or an absorption. An
explicit or implicit Euler discretization does not have this property.

o -
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Modeling the Wave in a Resonator

fLet us assume that Q = Qyp x [0, L] is the domain of a IaserT

resonator, where L is the length of the resonator.

Here, let us assume that E1, ..., E); are eigenmodes
obtained by a Gauss mode analysis or another method.
Thus, E; : () — C are functions, which we normalize as

follows

[ 1B (g ) = 1.
Q

o -
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Model Assumption 1

fThe electrical field I of the total optical wave is
approximated by M eigenmodes:

E(t,x,y,z) Zgz i(r,y, 2

where &; : [tg, oo|— R is the time-dependent coefficient of
the i-th mode. Then, the photon density of the mode

(L) Ei(x,y,2) 1S

€

(OE(w..2) = —Zi(0)| Bila,y. )

nz(t7 L, Y, Z) —

where we abbreviate

- =i(t) = 60> -
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Model Assumption 2
-

fThe modes are incoherent modes. Here, this means that
the total photon density n(¢, z,y, z) can be written as

(14) n(t,z,y, 2 ant:ﬂy,

o -
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Model Assumption 3
-

fThe local photon densities n;(t, z, y, z) and the population
iInversion density N (¢, z,y, z) satisfy the rate equations:

a : :
(15)ﬂ = an-ac—&%—S, v =1,.., M,
ot Te
ON N + N — 1
(16)* — —’}/NTLO'C — tOt(/y ) + Rpump(Ntot — N)

ot 0

o -
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ODE System
- o

o=, =i 2hw;
((‘%) 0O Te ¢ Q
17

M
ON € _ o N+ Npot(y — 1) -
— = —’yNO'C :z‘Ez’ — +Rpump(Ntot_f
Ot ;271% Tf

(18)
These equations form a solvable system of ordinary differ-
ential equations, which describes the time-dependent be-

havior of M modes. This behavior is mainly influenced by

the pump configuration Rpump.

o -
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Stationary Solution

=

fThe solution (Z;(¢))i=1...a, N(t,z,y,2) can tend to a
stationary solution (=°);—; . ar, N°°(z,y, 2), which
corresponds to the optical wave of a cw-laser. This
stationary solution satisfies the equations

0 = E° | N7|E|" d(w,y,2) oc — —— + S d(z,y, 2),
Q Tc € 0
—~ 2 N4 Nty — 1)
0 = —yN> 0oc g =BT — +

o -
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Numerical Approximation

f|=

or reasons of simplicity, let us assume that
Q= [-R,R]* x [0, L]

Is a cuboid. Let (), ;. be the discretization mesh

1, ] = _Ma:y‘l‘l

o1 o1 1
thyyhz — {((Z — §)hmya (J — §)hmya (k — §)hZ>

where h.y, = 37—, h. = 37, and My, M, € N. To every grid

point p = (z,y, 2) € {4, 1, corresponds a discretization cell

B hay Dy hay hay h, h,
Cp—]f’f 27“7Hy ?WTHZ—?”?[-

o -
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-

Using a finite volume discretization, we approximate

Numerical Approximation

=

N(t,xz,y,2), (x,y,2) € cp, by the constant value N,(t) for
every point p € 0, 5. .

0=;
ot

ON,
ot

||

=i Z hiyhz Np|Ei(p)|* | oc — = +

pEthy,h,Z Te
2hw;
[ Sdwys, i=1.u
€ JQ
_~N. ac% ¢ :-]E-(p)|2 Np + Niot(v — 1) X
1 P 1 Qhwzuz ’ Tf
Rpump(P)(Ntot — Np), P € Q.-

-
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Maxwell’s Equations

B

® [ the electrical field and
® [ the magnetic field.

he solution of Maxwell’s equations in 3D is

Given are

® : magnetic permeability,

® c: electric permittivity,

o M: equivalent magnetic current density,
® J: electric current density.

Maxwell’s equations are:

ot I I
ot € €

-
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Finite Difference Time Domain Discretizati

fLet T be a time step. T

Time approximation:

® FE|"*3: approximation at time point (n + 3)7.
® [i|": approximation at time point nr.

Furthermore, let us use the following abbreviation:

— 1 — —
H‘n+% = 3 (I-]|n+1 + H|n) :

— ]_ — —

B = (E|”+% +E\"—%) .

o -

.—p.105/11



FDTD

fLet h be a mesh size.
Space approximation:

9 Ex\Z;rf%,k+%: at point (ih, (j + 3)h, (k + 2)h) (yz-face) .
o Ey\;ff’j,k%: at point ((i + 3)h, jh, (k + 3)h) (xz-face).
9 Z|?—:—§,j—|—%,k: at point ((i + 3)h, (j + 3)h, kh) (xy-face).
® M}, . atpoint (i + 1)h, jh, kh) (x-edge).

® Hy[?,,, . atpoint (ih, (j + D, kh).

® H.[7,, .. atpoint (ih, jh, (k + Dh).

o -
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FDTD

A
>
<
a- I
A \
//V\ﬁ HX
" SEAN
« | N I
N T I
=
_///\_/ Hy " \_/
" N " ||||||
I I
I I <
Jes
HVA A |
HZ
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Staggered Grid Discretization

N .

ow, the Maxwell equation

OB, 1 (0H, O0H, g
ot oy 0z ¥

IS discretized as follows:

6,545 ,k+5 Litgkts
T
7 7 Hy[? 7
1 H, j—i—lk—|—2 H, jk—|—2 B zg—}— k+1 y j—|—2,k
€ij+ 5kt d h h
£C|7,j—|— k—|—2)

The other Maxwell’s equations are discretized analogously. J
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Staggered Grid Discretization
-

Let 9! the symmetric difference operator applied to the time coordinate:

t+7/2) —Q(t —7/2)

T

=

o) = &

Furthermore, let V;, x the discrete curl operator on a staggered grid. Then
the FDTD discretization can be described as follows:

y 1 T . .
fﬁHh,T = ——Vy XLk, ——My, attime points n + L
!
17 1 . 1 - . .
O En, = -=-Vp,xHp,——-J,, attimepointsn.
€ €

Here, ﬁhﬁ and Eh,T are the vectors on a staggered grid.

o -
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L.osses

J has to be composed as follows:

—

J = J_l;ource + UE)

where o is the electric conductivity.
E is approximated by

. 1 /= L
E|n _ = (E‘n—i—% +E|n—§) .

(N

o -
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Boundary Conditions

=

fF%eﬂecting boundary conditions can be modeled by pure Dirichlet

boundary conditions.

Non-reflecting boundary conditions can be discretized by the Perfect
Matched Layer (PML) method. These are not Neumann boundary
conditions!

o -

—p111/11



Stability of FDTD
-

fLet us con3|der the FDTD discretization in the short form for
JhT_OanthT_Oandu_1ande_1

5&th,7 = —Vp X Eh,T at time points n + 2,

O E,, = V,xH,, attimepointsn.

Now, the abbreviation
Vh,T — I__jh,T + th,T

leads to

071"7}%7' — jvh X Vh,T

o -
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Stability of FDTD
B ] -

Definition 2. The FDTD method is stable, if the solution Hy, ., E?m is
bounded fort — 0.

Let us analyze
Oy Vhr = Vi X Vir.

To this end, it is enough to analyze the behavior of the
solutions with periodic initial condition:

(19) Vh,T(O, r,y,2) = ‘_/)Oej(—kmx—kyy—kzz).

The FDTD method is stable, if V, . has the form

o

Vi (t, 2,1, 2) = Vel WEmhat—hyy—k:2)

-
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-

T

Stability of FDTD

he abbreviation V; = (V,,,V,,, V)7 leads to

Vi X ‘G%T

1

ys Y
1
e, 5hz,z V.
c rkyohy
€. Esm( )
1 in( Fyhy
det [ e, 4-sin(=5*)
e, 7 sin(fg=)
Ve
1wt (et o T 2y
——]-—-Sln(-———) ‘Q/ e](aw kex—kyy—k.z)
T 2
V.
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Stability of FDTD

- .

he above equation system has a unique solution if and only if

jisin(yr)  bsin(Ege) oL sin(fge)
0 = det hi sin( &zt ) jLsin(4r — L gin(kehe)
—% sin(%) —|—% sin(fet=)  jlgin(4r)

_ <(isin(kx2hx)>2 + (hiysin(ky;y))Q + (hi sim(kzhz))2

- (1 sin<%>)2> j—sin(“7)

. This is equivalent to the stability equation:

L(};Sin(kghx>)2+(;ySm<ky2hy))2+<;zSin<k22hz))2 CSM;))QJ
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Stability of FDTD

- .

he stability equation has a solution w for every k., k,, k., if

1 1 1
T h2+h2+ﬁ<1
x Y z

A renormalization of this stability condition shows

N[~

T <c ! L -+ ! %-—l' :
h2 hg h?

where c is the velocity of the wave.

o -
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