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Basic Elements of a Laser

A laser consists mainly of the following three elements :
1. Laser medium: collection of atoms, molecules, ions or a

semiconductor crystal:
gas laser
solid state lasers
semiconductor lasers
fiber laser

2. Pumping process to excite the atoms (molecules) into
higher quantum mechanical energy levels.

3. Suitable optical feedback elements
as a laser amplifier (one pass of the beam)
as a laser oscillator (bounce back and forth of the
laser beam)
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Model and Simulation

1. Population inversion
2. Amplification of light (electromagnetic radiation) within a

certain narrow band of frequencies. The amplification
depends on the population inversion.

3. Oscillation: There must be more gain than loss of the
beam. Reasons of loss are:

loss by medium
not accurate construction of the mirrors
output

4. Eigenmodes of a laser (e.g. Gauss modes ).
deformation of the crystal
gain, lenses
different refraction index
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Hermite-Gaussian Modes

[0, 0] Gaussian [0, 1] Gaussian [1, 1] Gaussian
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Atomic Energy Levels

Light of a certain wavelength is emitted if a transition
between two energy levels E2 → E1 takes place
“ jump of electrons “ .
Formula 1. The frequency of the emitted light is

ω21 =
E2 − E1

! ,(1)

where

! =
h

2π
, h = 6.626 · 10−34Js Planck’s constant.

Notation for wavelength: 1µm = 10000A
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Energy which leads to a Transition

Transition from E2 → E1 takes place
only with a little additional energy:

spontaneous emission: energy from small movements
of the atoms
stimulated emission: energy from absorption
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Spontaneous Emission

Let Ni be the number of atoms with energy level Ei.
Within a short period of time a certain percentage of atoms
make a transition to a lower level.
This can be described by the following ODE:

dN2

dt

∣∣∣
spon

= −γN2 = −N2

τ
,

where
γ is called energy-decay rate and
τ = 1

γ is called lifetime.
The solution of this ODE is:

N2(t) = N2(0)e−
t
τ
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Stimulated Transition

If an external radiation signal is applied to the atom, then
stimulated transitions occur: “ atom reacts like an antenna “.
Let n(t) be the photon density of the radiation.
Then, there is a constant K such that

dN2

dt

∣∣∣
stim.upward

= Kn(t)N1(t), (absorption)

dN2

dt

∣∣∣
stim.downward

= −Kn(t)N2(t) (stimulated emission).

This implies:

dN2

dt

∣∣∣
total

= Kn(t)(N1(t) − N2(t)) − γ21N2(t) = −dN1

dt

∣∣∣
total

.
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Energy Transfer of Stimulated Transition

The energy transfer of stimulated transition by a signal is

dUa

dt
= Kn(t)(N1(t) − N2(t)) · !ω,

where Ua is the energy density.
The energy transfer changes the photon density of the
signal by:

dn(t)

dt
= −K(N1(t) − N2(t)) · n(t).(2)

Absorption (attenuation): N1(t) > N2(t)

Population inversion: N1(t) < N2(t)
→ net amplification of a signal
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Boltzmann’s Principle

Theorem 1 (Boltzmann’s Principle). In case of equilibrium the
populations N1 and N2 depend on the temperature:

N2

N1
= exp

(
−E2 − E1

kT

)
.

This implies

N1 − N2 = N1

(
1 − e−! ω

kT

)
.

. – p.10/116



Pumping Process

Let
Rp0 be the pumping rate (atoms/sec),
ηp the pumping efficiency such that Rp = ηpRp0 and
γij the decay rate from level Ei to Ej .

The following formulas describe the pumping process :

dN2

dt
= Rp − γ21N2

dN1

dt
= γ21N2 − γ10N1

If dNi
dt = 0, then we get

N2 > N1 (population inversion) ⇔ τ10 < τ21
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Scalar Rate Equations

Let us abbreviate
N = N2 −

g2N1

g1

then, the scalar rate equations are

∂N

∂t
= −γNnσc − N + Ntot(γ − 1)

τf
+ Rp(Ntot − N)(3)

∂n

∂t
= Nnσc − n

τc
+ S.(4)

The unknowns of these equations are
N : population inversion N = N2 − g2N1

g1
.

n: photon density
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Traveling of an Optical Wave

Let us assume that the optical wave can be modeled by

Ẽ(z, t) = exp(jωt)E(z)

E(z) = exp(−jkz + αmz) = exp(−jkz)u(z)

u(z) = exp(αmz).

This implies that

Ẽ(z, t) = exp(jωt) · exp(−jkz + αmz)

Thus, a constant phase shift is obtained at ωt = kz.
Since t = z/c in vacuum, we get

k =
ω

c
.

(By k2 = µϵω2 in Section ??, we obtain c = 1√
µϵ in vacuum.)
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Amplification of the Optical Wave

Now, let us model the optical wave by

Ẽ(z, t) = exp(jωt)E(z)

E(z) = exp(−jωz/c + αmz) = exp(−jωz/c)u(z)

u(z) = exp(αmz).

Let ri be the reflection coefficient at the mirrors Mi, i = 1, 2.
Let Lm be the length of the amplification medium.
Let L be the length of the laser medium. Then, we get

r1r2 exp(2αmLm − j2ωL/c) = 1 and K(N2 − N1) = 2αmc.

Consequences:

2ωL/c ∈ 2πZ ⇒ only certain frequencies!

|r1r2| exp(2αmLm) = 1 ⇒ N2 − N1 ≥ c

K

1
2LM

ln
(∣∣∣∣

1
r1

∣∣∣∣ ·
∣∣∣∣
1
r2

∣∣∣∣

)
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Scalar Rate Equations

∂N

∂t
= −γNnσc − N + Ntot(γ − 1)

τf
+ Rp(Ntot − N)

∂n

∂t
= Nnσc − n

τc
+ S

N(0) = N0 and n(0) = n0.

To discretize the unknowns
N : population inversion N = N2 − N1.
n: photon density

let us use an explicit / implicit Euler discretization with
meshsize τ .
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Numerical Result

n(t) photon density N(t) population inversion

The peak of the photon density after switching on the laser
resonator leads to the construction of pulsed lasers.
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Maxwell’s Equations

∇× E⃗ = −∂B⃗
∂t Faraday’s law

∇× H⃗ = ∂D⃗
∂t + J⃗ Maxwell-Ampere law

∇ · D⃗ = ρ Gauss’s law
∇ · B⃗ = 0 Gauss’s law - magnetic
∇ · J⃗ = −∂ρ

∂t equation of continuity

and constitutive relations:

D⃗ = ϵE⃗, B⃗ = µH⃗, J⃗ = σE⃗
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Maxwell’s Equations

By the assumptions:
µ is roughly constant.
ρ = 0

J = 0

we get

∇× E⃗ = −∂B⃗
∂t Faraday’s law

∇× H⃗ = ∂D⃗
∂t Maxwell-Ampere law

∇ · D⃗ = 0 Gauss’s law
∇ · B⃗ = 0 Gauss’s law - magnetic

D⃗ = ϵE⃗

B⃗ = µH⃗
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Vector-Helmholtz Equation

Since µ is constant, we get from Maxwell’s equations:

∇×∇× E⃗ = −µ
∂

∂t
∇× H⃗

= −µ
∂

∂t

(
∂D⃗

∂t
+ J⃗

)
.

Thus, we get

∇×∇× E⃗ = −µ
∂2

∂t2

(
ϵE⃗
)
− µ

∂

∂t
J⃗ .

Now, by J⃗ = 0, we get the vector Helmholtz equation:

∇×∇× E⃗ = −µ
∂2

∂t2

(
ϵE⃗
)

.
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Assumptions for the Scalar Helmholtz E.

Let us assume the ϵ is constant. Then, we get

ϵ∇ · E⃗ = ∇ · D⃗ = ρ = 0.

This implies
∇(∇ · E⃗) = 0.(5)

But, ϵ is not constant! Therefore, we assume (??).
Then, we get

∇×∇× E⃗ = ∇(∇ · E⃗) −△E⃗ = −△E⃗

Furthermore, we assume that
ϵ is constant with respect to time.
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Scalar Helmholtz Equation

Now, the vector-Helmholtz equation

∇×∇× E⃗ = −µ
∂2

∂t2

(
ϵE⃗
)

.

and the assumption (??) imply

−△E⃗ = −µ
∂2

∂t2

(
ϵE⃗
)

.

Assumption (??) is satisfied for the TE-wave (transversal electric wave):

E⃗(x, y, z) = E(x, y, z)ex − E(y, x, z)ey

For this wave, we get the scalar Helmholtz equation:

−△E = −µϵ
∂2

∂t2
(E) .(6)
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Time Periodic Solution
Let us assume that E is time periodic. This means:

E(x, y, z, t) = exp(iωt)E(x, y, z).

Inserting in the scalar Helmholtz equation, leads to

−△E − k2E = 0,

where k2 = µϵω2.

This is the Helmholtz equation for time periodic solutions.
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Paraxial Approximation

Let k0 be an average value of k. Inserting the ansatz

E = e−ik0zΨ(x, y, z)

in the scalar Helmholtz equation leads to

−△Ψ + 2ik0
∂Ψ
∂z

+ (k2
0 − k2)Ψ = 0.

In the case that k = k0 is constant, we obtain

−△Ψ + 2ik0
∂Ψ
∂z

= 0.

In the paraxial approximation, we neglect the term ∂2Ψ
∂z2 . This leads to:

−∂2Ψ
∂x2

− ∂2Ψ
∂y2

+ 2ik
∂Ψ
∂z

= 0.
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Lowest Order Gauss-Mode
To solve the paraxial approximation,

−∂2Ψ
∂x2

− ∂2Ψ
∂y2

+ 2ik
∂Ψ
∂z

= 0.

let us make the ansatz

Ψ(x, y, z) = A(z) exp
(
−ik

x2 + y2

2q(z)

)
,

where A(z) and q(z) are unknown functions.
This equation leads to the ODE’s

∂q

∂z
= 1 and ∂A

∂z
= −A · 1

q
.

. – p.24/116



Lowest Order Gauss-Mode

The unique solutions of ∂q
∂z = 1 and ∂A

∂z = −A · 1
q are

q(z) = q0 + z, where q0 and z0 are constants.
A(z) = A0

q0
q(z) .

Thus, lowest order Gauss mode is

E(x, y, z) = e−ikzΨ(x, y, z)

= A0
q0

q0 + z
exp

(
ik

(
−z − x2 + y2

2(q0 + z)

))

Let us normalize the amplitude of this mode by q0A0 = 1. Then,

E(x, y, z) =
1

q0 + z
exp

(
−ik

(
z +

x2 + y2

2(q0 + z)

))

. – p.25/116



Definition of Spot Size

Definition 1. The spot size is defined by the radius r such that

e−1 =
|E(z, r)|
|E(z, 0)|
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Spot Size and BeamWaist

E(x, y, z) =
1

q0 + z
exp

(
−ik

(
z +

x2 + y2

2(q0 + z)

))

Write
1

q0 + z
=

1
q(z)

=
1

R(z)
− i

λ

πw(z)

where

R(z) = (Re(q0) + z)
(

1 +
Im(q0)2

(Re(q0) + z)2

)2

w(z) =
λ

π

(
Im(q0) +

(Re(q0) + z)2

Im(q0)

)
−Re(q0)

z

w(z)

Phase shift: exp
(
−ik

(
z + x2+y2

2R(z)

))
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Energy of the Beam

A short calculation shows:

|q0 + z|2 =
π|Im(q0)|

λ
|w(z)|

and: ∫

R2

|E|2d(xy) =
|A0q0|2

|Im(q0)|
π

2

π2

λ2k

Thus, the energy at a slice z =constant is independent of z.

. – p.28/116



Types of Resonators

There exists several types of resonators . Here, let us study a one way
resonator. Other resonators can be transformed to a one way resonator.

Let Ω = Ω2 × [0, L] be a res-
onator geometry.
Let us assume that there are
n apertures in the resonator.
The start points of these aper-
tures are

0 = z0 ≤ z1 ≤ z2 ≤ ... ≤ zn = L.
z0 z1

z2
z3
z4

z5
z6

z7

free space

lense

free space

mirror

free space

lense

free space

mirrorstart

Ei(x, y, z) = Ai
1

qi + (z − zi)
exp

(
−ik

(
(z − zi) +

x2 + y2

2(qi + (z − zi))

))

where Ai := Aiqi.
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ABCD Matrices

The change of the Gauss-mode is described by ABCD
matrices

Mi =

(
Ai Bi

Ci Di

)

Then, the beam parameter qi changes as follows

qi =
Aiqi−1 + Bi

Ciqi−1 + Di =: Mi[qi−1].

Lemma 1.

Mi+1[Mi[qi−1]] = (Mi+1Mi)[qi−1]
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Ray Optics and ABCD Matrices

An optical ray can be described by
the radius r(z) and
the slope r′(z).

The change of an optical ray is described by
⎛

⎝ rout
r′out

⎞

⎠ =

⎛

⎝ A B

C D

⎞

⎠

⎛

⎝ rin
r′in

⎞

⎠

Example 1 (Ray-matrix of free space).

⎛

⎝ rout

r′out

⎞

⎠ =

⎛

⎝ 1 L
n0

0 1

⎞

⎠

⎛

⎝ rin
r′in

⎞

⎠
Ln0

rin

rout
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ABCD matrix of free space

Formula 2 (ABCD matrix of free space).
(

A B

C D

)
=

(
1 zi − zi−1

0 1

)

and
Ai = Ai−1 exp(ik(−(zi − zi−1)))
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ABCD Matrix of a Lense
Formula 3 (ABCD matrix of a lense).

(
A B

C D

)
=

(
1 0

− 1
f 1

)
and Ai = Ai−1

1

1 − 1
f qi−1

rr

s2
s1

R2 R1

n2, λ2n1, λ1 n1, λ1

d
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ABCD Matrix of a Mirror
Formula 4 (ABCD Matrix of a mirror).

(
A B

C D

)
=

(
1 0

− 2
R 1

)

s

R
r

R
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Other ABCD Matrices
Formula 5 (ABCD Matrix of a Duct).
Let k = ω

√
µϵn(x), where n(x) = n0 − 1

2n2x2. Then
(

A B

C D

)
=

(
cos(γz) (n0γ)−1 sin(γz)

−(n0γ) sin(γz) cos(γz)

)
,

where γ2 = n2/n0.
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Ray (or Beam) Matrix of the Resonator

Using the ABCD matrix Mi of each aperture on can
calculate the ABCD matrix of the whole resonator by

M =
n∏

i=1

Mi =:

(
A B

C D

)

Lemma 2.

det

(
A B

C D

)
= det(M) = 1

Proof. Observe that for every aperture the corresponding ABCD matrix
Mi satisfies det(Mi) = 1.

Let r0 be a start vector. Consider
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Stability Ray of the Resonator

Let qa, qb be the eigenvectors of M .
Then,

rs = caλ
s
aqa + cbλ

s
bqb.

Stable Laser: −1 ≤ |m| ≤ 1. Then,

rs = eiΘncaqa + e−iΘncbqb,

where λa,b = e
+
− iΘ.

Unstable Laser: |m| ≥ 1. Then,

rs = M scaqa + M−scbqb,

where M = λa, 1
M = λb, M = m +

√
m2 − 1.
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Exact Solution in a Gaussian “Duct”
The refraction index of a Gaussian duct is :

k = k0(1 − 1
2
n2r

2)

The paraxial approximation and neglecting the small high order term
1
4n2

2r
2 leads to

△xyΨ − 2ik0
∂Ψ
∂z

− k0n2r
2Ψ = 0

An exact solution of this equation is:

Ψ(x, y, z) = exp
(
−x2 + y2

w2
1

+ i
λz

w1

)

where w2
1 = 2 1

k0
√

n2
and λ = 2

k0
.
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The Guoy Phase Shift

Let us define the Guoy phase shift ψ(z) by:

i|q(z)|
q(z)

= exp(iψ(z)).

This implies

tanψ(z) =
πw(z)2

R(z)λ
.

Thus, ψ(z) = 0 at the waist of the Gaussian beam.
Then, one can show

1

w0

q0

q(z)
=

exp(i(ψ(z) − ψ0))

w(z)
,

where ψ0 = ψ(0) and q0 = q(0).
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Notation in “Lasers and Electro-Optics”

In this book the spot size at the waist z = 0 is:

w2
D(z) = w2

0

(
1 +

(
λz

πw2
0

)2
)

By (??), we get

w2
D(z) = w(z)

∣∣∣Re(q0)=0
=

λ

π

(
Im(q0) +

(Re(q0) + z)2

Im(q0)

) ∣∣∣Re(q0)=

⇒ w2
0 =

λ

π
Im(q0)

and

R(z) = (Re(q0) + z)

(
1 +

Im(q0)2

(Re(q0) + z)2

)2
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Hermite-Gaussian Modes

Ψm,n =
w0

w
Hm

(√
2

x

w

)
Hn

(√
2

y

w

)

exp

(
−i(kz − Φ) − r2

(
1

w2 +
ik

2R

))

where

Φ(m,n, z) = (m + n + 1) tan−1

(
λz

πw2
0

)

H0(x) = 1, H1(x) = x,

H2(x) = 4x2 − 2, ...

Hn(x) = (−1)nex2 dn

dxn (e−x2

) n = 0, 1, ...

The set of these functions forms a basis.
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The Laguerre-Gaussian Modes

|Ψm,n| = E0

(√
2

r

wD

)l

Ll
p

(
2

r2

w2
D

)
e

r2

w2
D cos(lφ)

where r,φ are the angle coordinates and

Ll
0(x) = 1 Ll

1(x) = l + 1 − x

Ll
2(x) =

1

2
(l + 1)(l + 2) − (l + 2)x +

1

2
x2

Ln(x) = ex dn

dxn (xne−x) n = 0, 1, ...

The set of these functions forms a basis.
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Thermal lensing

The refraction index nc(x) of a laser crystal changes by
a) thermal lensing .
b) internal change of the refraction index caused by

deformation
c) deformation of the end faces of the laser crystal
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Thermal lensing

a) The refraction index of a laser crystal changes by
temperature

Let T0 be the temperature before heating (refraction
index n0).
Let T be the temperature caused by the pumping
process (refraction index n).

Let ηT be the thermal index gradient.
(Example: ηT = 2.2 · 10−6 · ◦C−1 for Cr4+).
Then,

n(x, y, z) = n0 + ηT (T (x, y, z) − T0)
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Deformation of a Laser Crystal

Let B ⊂ R3 be the original domain of the laser crystal.
Let T : B → R3 be the mapping of the laser deformation such that

{
T (x) + x

∣∣ x ∈ B
}

is the deformed domain of the laser crystal.
Heat and
deformation

of the crystal lead to a refraction index

nc(x), x ∈ B

such that kc(x) = ω
√

µϵnc(x).
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Parabolic Fit
Assume that B = D×]0, L[, L length of the laser crystal.
b) The parabolic fit of the refraction index is

Subdivide ]0, L[ in N intervals of meshsize h = L
N .

Let Dh be the discretization grid.
For every i = 0, ..., N − 1: Find n0,i, n2,i such that:

∥∥∥∥nc(x, y, h(i +
1
2
)) − (n0,i −

1
2
n2,i(x2 + y2))

∥∥∥∥
l2(Dh)

Each of the parameters n0,i, n2,i lead to a matrix

Ai =

⎡

⎣ cos γiz n0γ
−1
i sin γiz

n0γi sin γiz cos γiz

⎤

⎦

c) Additionally, perform a parabolic fit of T (x, y, 0) and T (x, y, L).
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Beam Propagation Method BPM

The paraxial approximation leads to

−∂
2Ψ

∂x2 − ∂2Ψ

∂y2 + 2ik0
∂Ψ

∂z
+ (k2

0 − k2)Ψ = 0.

Let us write this equation as follows:

2ik0
∂Ψ

∂z
=
∂2Ψ

∂x2 +
∂2Ψ

∂y2 − (k2
0 − k2)Ψ.

Let Ω = D×]0, L[, then one can apply
FE or FD in x, y-direction
Crank-Nicolson in z-direction.
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Beam Propagation Method BPM

Let Ψl(x, y) be the approximation of Ψ(x, y, τ l), where τ is
the time step. Then, Ψl(x, y) is defined by the equations:

2ik0
Ψl+1 − Ψl

τ
=

1

2

(
∂2Ψl+1

∂x2 +
∂2Ψl+1

∂y2 + (k2
0 − k2)Ψl+1+

∂2Ψl

∂x2 +
∂2Ψl

∂y2 + (k2
0 − k2)Ψl

)

Ψ0(x, y) = Ψinitial(x, y) (initial condition)

Additional boundary conditions are needed .
Lenses and mirrors can be discretized by a phase shift.
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Iteration Method of Fox and Li

Let Ψinitial be an initial condition at the left mirror. By the
BPMethod calculate

the beam configuration at the right mirror and the
reflected beam configuration Ψend := B(Ψinitial) at the
left mirror.

If Ψinitial = Ψend, then Ψinitial is an eigenvector Ψeigen of the
BPM operator B.
The iteration method of Fox and Li is a power iteration
method for the eigenvalue problem of the BPM operator B.
This means:

Ψ1 = Ψinitial, Ψs+1 = B(Ψinitial,s)

Ψeigen = lim
s→∞

Ψs
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Weak Formulation of the Helmholtz Equati

Let
V := {v ∈ H1(Ω)|ΓM

= 0}.

Then,

−△u − k2u = f

u|ΓM
= 0,

u · ik +
∂u

∂n
|ΓR

= 0

transforms to:
Problem 1. Find u ∈ V = {v ∈ H1(Ω)

∣∣∣ v|ΓM
= 0} such that

∫

Ω
∇u∇v̄−k2uv̄ dµ−ik

∫

Γ

∂u

∂n
v̄ dµ =

∫

Ω
fv̄ dµ for every v ∈ V .
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Weak Formulation of the Helmholtz Equati

Define the bilinear form

a(u, v) =

∫

Ω
∇u∇v̄ − k2uv̄ dµ −

∫

Γ

∂u

∂n
v̄ dµ

Then, the week form of the Helmholtz equation is
transforms to:
Problem 2. Find u ∈ V = {v ∈ H1(Ω)

∣∣∣ v|ΓM
= 0} such that

a(u, v) =

∫

Ω
fv̄ dµ for every v ∈ V .

. – p.51/116



Properties of a(u, v):

a) The local part of a(u, v) is the bilinear form

aloc(u, v) =

∫

Ω
∇u∇v̄ − k2uv̄ dµ

Let k be constant. Then, aloc is not positive definite,
since

aloc(e
+
− ik1z, e

+
− ik1z) =

⎧
⎪⎨

⎪⎩

> 0 if k1 > k

= 0 if k1 = k

< 0 if k1 < k
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Properties of a(u, v):

b) Let k be constant. Then, the functions e
+
− ikz are

contained in the local kernel of a. This means

a(e
+
− ikz, v) = 0 for every v ∈ H1

0 (Ω).
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Properties of a(u, v):

c) The bilinear form a(u, v) is H1-coercive. This means
that there exist c, C > 0 such that

Re(a(u, u)) + C∥u∥2
L2 ≥ c∥u∥2

H1 ∀u ∈ H1(Ω)
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Properties of a(u, v):

d) The problem
Find u ∈ V such that

a(u, v) = 0 for every v ∈ V

has the unique solution u = 0, if k > 0.
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Properties of a(u, v):

d) The problem
Find u ∈ V such that

a(u, v) = 0 for every v ∈ V

has the unique solution u = 0, if k > 0.
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Boundary Conditions

Let Ω ⊂ Rd, d = 1, 2, 3 be an open d-dimensional open
bounded domain. Consider

−△u − k2u = 0

The rays exp(ik m⃗ · x) are solutions of this equation, where
m⃗ = 1.
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Boundary Conditions in 1D

First, let us consider the 1D case d = 1 and Ω =]0, 1[. Then

exp(ikz) and exp(−ikz)

are solutions of −∂2u
∂z2 − k2u = 0.

Let us assume that the reflection of the ray exp(−ikz) at the
point 0 is α exp(ikz).
This means we need a boundary condition at 0 with solution

u(x) = exp(−ikz) + α exp(ikz).

A suitable boundary condition is

u|z=0(1 − α)ik + (1 + α)
∂u

∂z
|z=0 = 0.
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Simple Boundary Conditions

Reflecting boundary condition:

u|z=0 = 0

Non-reflecting boundary condition:

u|z=0ik +
∂u

∂n⃗
|z=0 = 0.
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Non-Reflecting Boundary Condition in 2D,3

Observe that

lim
x→−∞

exp(−i(k + iα) m⃗ · x) = 0,

where α > 0. This leads to the concept:

Extend the PDE outside of the domain.
Add an adsorbtion coefficient α outside of the domain.
Put homogenous Dirichlet boundary conditions at a certain
distance for away from the boundary.
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Difficulties of a Pure FE Discretization

One difficulty is the large number of discretization grid
points which are needed in case of long resonators.
Difficulties occur, if 1cm = L >> 5λ = 10µm. Then, more
than 20 ∗ 1000 = 20000 grid points are needed only in
z-direction.
The second difficulty is that a is not symmetric positive
definite and the resulting linear equation system cannot
efficiently be solved by multigrid or any other standard
iterative solver.
There exist several eigenvectors with eigenvalues close
to each other.
A very accurate discretization of the non-reflecting
boundary condition is needed.
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Modeling the Wave in a Resonator

Let us model the wave E(x, y, z) in a one way resonator by
the following equations:

−∆u + 2ikf
∂u

∂z
+ ks(2kf − ks)u = ξu

E(x, y, z) = exp
[
−i(kf − ε)z

]
u(x, y, z)

2εkf = ξ

. – p.62/116



Modeling the Wave in a Resonator

Let us assume that Φ ⊂ R2 is a bounded and connected
domain with a piecewise smooth boundary and let

Ω = Φ×]0, L[,

where L > 0. Let us subdivide the boundaries of Ω by

Γ0 := Φ × {0}, ΓL := Φ × {L} and Γr := ∂Ω \ (Γ0 ∪ ΓL).

For reasons of simplicity, let us additionally assume that we
choose kf such that

exp[jLkf ] = 1.(7)
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Two-Wave Ansatz for Resonator Modeling

Let us model the resonator by a forward wave Er and the backward wave
El such that

E = Er + El,

where each of these waves satisfy the Helmholtz equation .
This leads to the eigenvalue problem:

− ∆ur + 2jkf
∂ur

∂z
+ (k2

f − k2)ur = ξur,(8)

−∆ul − 2jkf
∂ul

∂z
+ (k2

f − k2)ul = ξul,

where

Er(x, y, z) = exp [−jkfz] ur(x, y, z),

El(x, y, z) = exp [−jkf (L − z)]ul(x, y, z),
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Boundary Conditions for Two-Wave Ansat

To satisfy the boundary conditions (??) and (??), we need the boundary
conditions

ur + ul

∣∣∣
Γ0∪ΓL

= 0,(9)

∂ur

∂n⃗
− jCbur

∣∣∣
Γr

= 0,(10)

∂ul

∂n⃗
− jCbul

∣∣∣
Γr

= 0.(11)

Observe that (??) is needed to obtain Er + El

∣∣∣
Γ0∪ΓL

= 0 from

ur + ul

∣∣∣
Γ0∪ΓL

= 0.
To obtain a system of equations with enough equations, we additionally
need the boundary condition

∂ur

∂z
− ∂ul

∂z

∣∣∣
Γ0∪ΓL

= 0.(12)
. – p.65/116



Weak Formulation
Let us define

H⃗1 =
{

(ur, ul) ∈ H1(Ω) × H1(Ω)
∣∣∣ ur + ul

∣∣
Γ0

= 0, ur + ul|ΓL = 0
}

.

a⃗((ur, ul), (vr, vl)) =

=
∫

Ω

(
∇ur∇v̄r + (k2

f − k2)urv̄r + 2jkf
∂ur

∂z
v̄r

)
− jCb

∫

Γr

urv̄r

+
∫

Ω

(
∇ul∇v̄l + (k2

f − k2)ulv̄l − 2jkf
∂ul

∂z
v̄l

)
− jCb

∫

Γr

ulv̄l,

where we assume that k ∈ L∞(Ω).
Now, the weak formulation is:

Find u⃗ = (ur, ul) ∈ H⃗1 and ξ ∈ C such that

a⃗(u⃗, v⃗) = ξ

∫

Ω
urvr + ulvl ∀v⃗ = (vr, vl) ∈ H⃗1.
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Properties of a

Lemma 3. Let Cb = 0. Then, a⃗(u⃗, v⃗) is symmetric.
But a⃗(u⃗, v⃗) is not positive definite.
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Trilinear Finite Elements

Ωh := {(ihx, jhy, khz) | i, j = −Nx, ..., Nx and k = 0, ..., Nz},

where we set h = (hx, hy, hz). Furthermore, we obtain the
following set of cells

τ := { [ihx, (i + 1)hx] × [ihy, (i + 1)hy] × [ihz, (i + 1)hz]|
i, j = −Nx, ..., Nx − 1 and k = −Nz, ..., Nz − 1}.

Let us define the space of trilinear finite elements by

Vh :=
{

u ∈ C(Ω)
∣∣∣ ∀T ∈ τ : ∃c1, c2, c3, c4, c5, c6, c7, c8 ∈ C :

u(x, y, z)|T = c1 + c2x + c3y + c4z +

c5xy + c6yz + c7xy + c8xyz
}
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Two Wave Finite Element Space

Let us define the finite element space

V⃗h :=
{

(uh,r, uh,l) ∈ Vh × Vh

∣∣∣ uh,r + uh,l

∣∣
Γ0

= 0, uh,r + uh,l|ΓL = 0
}
⊂ H⃗1

An unstable FE-discretization is:
Find u⃗h ∈ V⃗h such that

a⃗(u⃗h, v⃗h) =
∫

Ω
f⃗ v⃗d ∀v⃗h ∈ V⃗h

The resulting linear equation system is difficult to solve.
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FE-Theory for Sym. Positive Definite S.F.

Theorem 2. Let a be a continuous symmetric positive definite
sesquilinear form on a Hilbert space V , Vh a closed subspace and
f ∈ V ′. Furthermore, let u ∈ V and uh ∈ Vh such that

a(u, v) = f(v) ∀v ∈ V

a(uh, vh) = f(vh) ∀vh ∈ Vh

Then,
∥u − uh∥E ≤ inf

vh∈Vh

∥u − vh∥E ,

where ∥.∥E is the norm corresponding to a.
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FE-Theory for Positive Definite S.F.
Theorem 3. Let a be a continuous positive definite sesquilinear form on a Hilbert space
V , Vh a closed subspace of V and f ∈ V ′. Furthermore, let us assume that a is
V -elliptic. This means that there is a constant α > 0 such that

|a(u, u)| ≥ α∥u∥2 ∀u ∈ V.

The continuity of a implies that there is a constant C such that

a(u, v) ≤ C∥u∥∥v∥ ∀u, v ∈ V.

Furthermore, let u ∈ V and uh ∈ Vh such that

a(u, v) = f(v) ∀v ∈ V, a(uh, vh) = f(vh) ∀vh ∈ Vh.

Then,

∥u − uh∥ ≤ C

α
inf

vh∈Vh

∥u − vh∥.
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Streamline-Diffusion Discretization

− ∆u + 2ikf
∂u

∂z
+ ks(2kf − ks)u = f on B.(13)

Let us extend the subdivision τ of Ω to a subdivision τB of B by using the
same meshsize. Furthermore, let Vh,B be the corresponding finite element
space of trilinear functions.
Discretization: Find uh ∈ Vh,B such that

−Cb

∫

∂B
uhv̄h +

+
∫

B
∇uh∇v̄h + 2ikf

∂uh

∂z
(v̄h + hρ

∂

∂z
v̄h) +

ks(2kf − ks)uh(v̄h + hρ
∂

∂z
v̄h) d =

∫

T
f(v̄h + hρ

∂

∂z
v̄h) d

∀vh ∈ Vh,B.
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Streamline-Diffusion Discretization
An stable FE-discretization is:

Find u⃗h ∈ V⃗h such that

a⃗(u⃗h, v⃗h) + hρ

∫

Ω
2ikf

∂uh,r

∂z
∂v̄h,r

∂z
d

+ hρ

∫

Ω
2ikf

∂uh,l

∂z
∂v̄h,l

∂z
d

=
∫

Ω
f⃗ v⃗hd

+ hρ

(∫

Ω
fr

∂

∂z
v̄h,r d −

∫

Ω
fl

∂

∂z
v̄h,l d

)
∀v⃗h ∈ V⃗h

We call this discretization streamline-diffusion discretization. However,

there are no streamlines. In case of a convection-diffusion equation, this

discretization converges with O(h2).
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Ellipticity

The sesquilinear form of the streamline-diffusion
discretization is

a⃗h(u⃗h, v⃗h) = a⃗(u⃗h, v⃗h)

+ hρ

∫

Ω
2ikf

∂uh,r

∂z

∂v̄h,r

∂z
d + hρ

∫

Ω
2ikf

∂uh,l

∂z

∂v̄h,l

∂z
d

Lemma 4. For every v⃗h ∈ V⃗h the following inequality holds:

|⃗ah(v⃗h, v⃗h)| ≥ hkfρ

∥∥∥∥
∂v⃗h

∂z

∥∥∥∥
2

.
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A Smoothness Result

a⃗h(u⃗h, v⃗h) = a⃗(u⃗h, v⃗h)

+ hρ

∫

Ω
2ikf

∂uh,r

∂z

∂v̄h,r

∂z
d + hρ

∫

Ω
2ikf

∂uh,l

∂z

∂v̄h,l

∂z
d

Lemma 5. Let u⃗c
h ∈ H⃗1 such that:

a⃗h(u⃗c
h, v⃗) =

∫

Ω
f⃗ v⃗ d ∀v⃗ ∈ H⃗1.

Then, ∥∥∥∥
∂2u⃗c

h

∂z2

∥∥∥∥
2
≤ C

hρkf
∥f⃗∥L2 .
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FE-Theory for Positive Definite S.F.

Since a⃗h satisfies the Garding inequality, one can prove the following
convergence theorem:
Theorem 4. Assume f⃗ = (fr, fl) ∈ L2(Ω)2. Let u⃗ = (ur, ul) ∈ H⃗1 such that

a⃗(u⃗, v⃗) =
∫

Ω
frvr + flvl ∀v⃗ = (vr, vl) ∈ H⃗1.

and u⃗h = (ur,h, ul,h) ∈ V⃗h such that

a⃗h(u⃗h, v⃗h) =
∫

Ω
frvr + flvl ∀v⃗h = (vr, vl) ∈ V⃗h.

Then, u⃗h converges to u⃗.
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A Symmetry Consideration

Instead of

a⃗h(u⃗h, v⃗h) := a⃗(u⃗h, v⃗h)

+ hρ

∫

Ω
2ikf

∂uh,r

∂z
∂v̄h,r

∂z
d + hρ

∫

Ω
2ikf

∂uh,l

∂z
∂v̄h,l

∂z
d

one can define

a⃗h(u⃗h, v⃗h) := a⃗(u⃗h, v⃗h)

− hρ

∫

Ω
2ikf

∂uh,r

∂z
∂v̄h,r

∂z
d − hρ

∫

Ω
2ikf

∂uh,l

∂z
∂v̄h,l

∂z
d

Then, the meaning of uh,r and uh,l changes and the meaning of t and −t

in the ansatz
E(x, y, z, t) = exp(iωt)E(x, y, z).
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Streamline-Diffusion Discretization in 1D

In 1D the sesquilinear form

2ikf

∫ 1

0

∂uh

∂z
v̄h d + hρ

∂uh

∂z

∂v̄h

∂z
d

leads to the stencil

ikf
1

2
(−1 0 1) + ikf

1

h
ρh (−1 2 − 1) = ikf (−1 1 0)

for ρ = 1
2 . This is the FD upwind discretization. An exact

solver for the resulting equation system is a Gauss-Seidel
relaxation from left to right.
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Iterative Solver

Hackbusch’s rule: Consider a singular perturbed problem with
parameter ϵ → ϵ0. Then, construct an iterative solver such that
this solver is an exact solver for ϵ0 (usually ϵ0 = 0).
The transformed one way resonator equation is:

−ϵ∆u + 2i
∂u

∂z
+ ϵks(2kf − ks)u = ϵξu

where ϵ = 1
kf

. Then, in 1D, the streamline diffusion discretization stencil
for ϵ → 0 is

i (−1 1 0)

An exact solver for the corresponding equation system with suitable bound-

ary conditions is a relaxation from left to right. Thus, we used a relaxation

from left to right as a preconditioner for GMRES.
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Numerical Results

Figure 1: Gauss-Mode by FE
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Numerical Results

Figure 2: Gauss-Mode by FE
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Modeling Optical Apparatuses

Here: One-way resonator with a lense or an interface at the
point l0 with 0 < l0 < L. Let us write

Ωa = Ψ× [0, l0] ⊂ B and Ωb = Ψ× [l0, L] ⊂ B.ΨI = Ψ×{l0}.

Then, the ansatz

E(x, y, z) = exp [−ikfz]u(x, y, z)

is not appropriate. Instead, we use the ansatz

E(x, y, z) = u(x, y, z)

{
exp

[
−ikf,Ωaz

]
u(x, y, z) for z < l0

exp
[
−ikf,Ωbz

]
u(x, y, z) for z > l0.

,

where kf,a is an average value of kf in Ωa and
kf,b is an average value of kf in Ωb.
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Modeling Optical Apparatuses
aΞ(u, v) :=

∫

Ξ
∇u∇v̄ + 2ikf,Ξ

∂u

∂z
v̄ + ks(2kf,Ξ − ks)uv̄ d

a(u, v) = aΩa(u, v) + aΩb(u, v).

Phase shift of the apparatuses: ϕ(x, y).
Then, let us define the space

Hab =
{

u ∈ L2(B)
∣∣∣ u|Ωa ∈ H1(Ωa), u|Ωb ∈ H1(Ωb) and

u|ΨI ,Ωa · ϕ = u|ΨI ,Ωb

}
.

Find u ∈ Hab such that

a(u, v) =
∫

B
uv̄ d ∀v ∈ Hab.
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Gain and Absorption

To simulate gain and absorption in the Helmholtz equation

−△u − k2u = 0

we apply the formula

k2 = ω2µϵ+ j2ω
√

µϵα.

By rate equations, we obtain K = σc and

αgain = 1/2 σN

Thus, we get

k2 = ω2µϵ+ jω
√

µϵ(σN − 2αabsorption)

= ω2µϵ+ jω
√

µϵ(σN − 1

τc
).
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Time-Dependent Behavior

Using the ansatz

E(x, y, z, t) = exp(iωt)(Er(x, y, z, t) + El(x, y, z, t))

we obtain

µϵ
∂2ur

∂t2
+ iµϵω

∂ur

∂t
= ∆ur − 2jkf

∂ur

∂z
− (k2

f − k2)ur,

µϵ
∂2ul

∂t2
+ iµϵω

∂ul

∂t
= ∆ul + 2jkf

∂ul

∂z
− (k2

f − k2)ul,

∂N

∂t
= −γNnσc − N + Ntot(γ − 1)

τf
+ Rp(Ntot − N)

k2 = ω2µϵ + jω
√

µϵ(σN − 1
τc

)

n =
ϵ

2!ω
|E|2

|E|2 = |ur|2 + |ul|2.
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Weak Formulation for the Maxwell Equatio

The time-periodic vector Helmholtz equation is

∇×∇× E⃗ − k2E⃗ = f⃗ .

The bilinear form of the weak formulation is positive definite:

a(E⃗, W⃗ ) =
∫

Ω
∇× E⃗ ·∇× ¯⃗

W + k2E⃗
¯⃗
W d(x, y, z)

Then, we obtain

a(e−ikzu⃗, e−ikzw⃗) =
∫

Ω
∇× u⃗ ·∇× ¯⃗v + (k2 − k2

f )uz v̄z

−ikf2
(

∂uz

∂y
− ∂uy

∂z

)
v̄y + (k2 − k2

f )uyv̄y

−ikf2
(

∂uz

∂x
− ∂ux

∂z

)
v̄x + (k2 − k2

f )uxv̄x d(x, y, z)
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VCSEL (Vertical Cavity Surface Emitting Laser)

M FO OP

p−contact

light output

oxide aperture

passivation

bottom  DBR

top  DBR

active layer

substraten−contact

current flow
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DFB Laser (Distributed Feedback Laser)

contact

w

substrate

λ
4

L

active layer

injection current

Fi 4 VCSEL (Di t ib t d F db k L )
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Distributed Bragg Reflectors (DBR)

Let us assume that the resonator has the form

Ω = Ψ × [0, L]

and that 0 = l0 < l1 < ... < ls = L Furthermore, let us
assume that the resonator has the refraction index ni (ki) in
the layer Ψ × [li−1, li]. Assume that

−E′′ − k2E = 0.

Let us assume the k is constant in the interior of [li−1, li].
Then,

E(z) = ci,r exp(−iki(z−li−1))+ci,l exp(iki(z−li−1)) for z ∈ [li−1, l
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Transmission Matrix of One Layer
ci,r

ci,l

ci+1,r

ci+1,l

hi

ni
ni+1

⎛

⎝ ci+1,r

ci+1,l

⎞

⎠ = Mi

⎛

⎝ ci,r

ci,l

⎞

⎠

Mi =

⎛

⎝ ki+1 + ki ki+1 − ki

ki+1 − ki ki+1 + ki

⎞

⎠ · 1
2ki+1

⎛

⎝ exp(−ikihi) 0

0 exp(ikihi)

⎞

⎠ .
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Transmission Matrix and Scattering Matri
c1,r

c1,l

c2,r

c2,l

black box

In general one can describe the behavior by a scattering
matrix S and a transmission matrix T :

(
c1,r

c1,l

)
= T

(
c2,r

c2,l

) (
c2,r

c1,l

)
= S

(
c1,r

c2,l

)

. – p.91/116



Reflection Property of DFB
Example 2. Let us study 101 layers with refraction index n0, n1, n0, ..., n0,
λ0 = 1.6 · 10−6, k0 = 2π

λ0
, and ω = k√

ϵ0µ0n0
, where

√
ϵ0µ0 = 1

c and n0 = 3.277.
Let us choose c2,l = 1, c1,r = 0. Then, c1,l shows the behavior of the construction.
A high reflectivity is obtained for ω = ω0, 3ω0, 5ω0, ....

Reflection behavior for n1 =
3.275.

Reflection behavior for n1 =
3.220.
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Finite Elements of DFB
Let Ωh be a grid of meshsize h for the domain Ω = [0, L]. Furthermore, let
vp be the nodal basis function with respect to linear elements. Then,
define

vl
p = eikzvp

vr
p = e−ikzvp

vm
p =

⎧
⎨

⎩
eikzvp(z) for z ≤ p and
e−ikzvp(z) for z > p.

Now, let us define the FE space

V ref
h = span{vl

p, v
r
p, vm

p | p ∈ Ωh}.

This FE space leads to the results as the transfer matrix method. But these

basis functions can be extended to 2D and 3D.
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Time Discretization

Let us recall the scalar Helmholtz equation (??):

−△Ẽ = −µϵ
∂2

∂t2

(
Ẽ
)

.

The ansatz

Ẽ(x, y, z, t) = exp(iωt)E(x, y, z, t)

leads to
µϵ
∂2E

∂t2
+ iµϵω

∂E

∂t
= △E + µϵω2E.

Since ω2 is large in comparison to µϵ, we apply the following
model:

iµϵω
∂E

∂t
= △E + k2E.
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Time Discretization
Crank-Nicolson discretization of this equation leads to

iµϵω
Es+1 − Es

τ
=

1
2
(
△Es + k2Es + △Es+1 + k2Es+1

)
.

Let us analyze this equation by Fourier analysis in 2D. Then, for
Es = as sin(lxx) sin(lyy), we obtain

as+1 =
1
2 (l2x + l2y + k2) + iµϵω

τ
1
2 (l2x + l2y + k2) − iµϵω

τ

as

This equation implies
|as+1| = |as|

if k ∈ R. This means a real k does not lead to a gain or an absorption. An
explicit or implicit Euler discretization does not have this property.
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Modeling the Wave in a Resonator

Let us assume that Ω = Ω2D × [0, L] is the domain of a laser
resonator, where L is the length of the resonator.
Here, let us assume that E1, ..., EM are eigenmodes
obtained by a Gauss mode analysis or another method.
Thus, Ei : Ω → C are functions, which we normalize as
follows ∫

Ω
|Ei|2 d(x, y, z) = 1.

. – p.96/116



Model Assumption 1

The electrical field E of the total optical wave is
approximated by M eigenmodes:

E(t, x, y, z) =
M∑

i=1

ξi(t)Ei(x, y, z),

where ξi : [t0,∞[→ R is the time-dependent coefficient of
the i-th mode. Then, the photon density of the mode
ξi(t)Ei(x, y, z) is

ni(t, x, y, z) =
ϵ

2!ωi
|ξi(t)Ei(x, y, z)|2 =

ϵ

2!ωi
Ξi(t)|Ei(x, y, z)|2,

where we abbreviate

Ξi(t) = |ξi(t)|2.

i th f f th th d
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Model Assumption 2

The modes are incoherent modes. Here, this means that
the total photon density n(t, x, y, z) can be written as

n(t, x, y, z) =
M∑

i=1

ni(t, x, y, z).(14)
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Model Assumption 3

The local photon densities ni(t, x, y, z) and the population
inversion density N(t, x, y, z) satisfy the rate equations:

∂ni

∂t
= Nniσc − ni

τc
+ S, i = 1, ..,M,(15)

∂N

∂t
= −γNnσc − N + Ntot(γ − 1)

τf
+ Rpump(Ntot − N).(16)
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ODE System

∂Ξi

∂t
= Ξi

∫

Ω
N |Ei|2 d(x, y, z) σc−Ξi

τc
+

2!ωi

ϵ

∫

Ω
S d(x, y, z), i =

(17)

∂N

∂t
= −γNσc

M∑

i=1

ϵ

2!ωi
Ξi|Ei|2 −

N + Ntot(γ − 1)

τf
+Rpump(Ntot−N

(18)

These equations form a solvable system of ordinary differ-
ential equations, which describes the time-dependent be-
havior of M modes. This behavior is mainly influenced by
the pump configuration Rpump.
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Stationary Solution

The solution (Ξi(t))i=1,...,M , N(t, x, y, z) can tend to a
stationary solution (Ξ∞

i )i=1,...,M , N∞(x, y, z), which
corresponds to the optical wave of a cw-laser. This
stationary solution satisfies the equations

0 = Ξ∞
i

∫

Ω
N∞|Ei|2 d(x, y, z) σc − Ξ∞

i

τc
+

2!ωi

ϵ

∫

Ω
S d(x, y, z),

0 = −γN∞σc
M∑

i=1

ϵ

2!ωi
Ξ∞

i |Ei|2 − N∞ + Ntot(γ − 1)

τf
+

Rpump(Ntot − N∞).
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Numerical Approximation

For reasons of simplicity, let us assume that

Ω = [−R,R]2 × [0, L]

is a cuboid. Let Ωhxy,hz be the discretization mesh

Ωhxy,hz =

{(
(i − 1

2
)hxy, (j −

1

2
)hxy, (k − 1

2
)hz

) ∣∣∣ i, j = −Mxy + 1

where hxy = R
Mxy

, hz = L
Mz

, and Mxy,Mz ∈ N. To every grid
point p = (x, y, z) ∈ Ωhxy,hz corresponds a discretization cell

cp =

]
x − hxy

2
, x +

hxy

2

[
×
]
y − hxy

2
, y +

hxy

2

[
×
]
z − hz

2
, z +

hz

2

[
.
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Numerical Approximation

Using a finite volume discretization, we approximate
N(t, x, y, z), (x, y, z) ∈ cp, by the constant value Np(t) for
every point p ∈ Ωhxy,hz .

∂Ξi

∂t
= Ξi

⎛

⎝
∑

p∈Ωhxy,hz

h2
xyhz Np|Ei(p)|2

⎞

⎠σc − Ξi

τc
+

2!ωi

ϵ

∫

Ω
S d(x, y, z), i = 1, ..,M,

∂Np

∂t
= −γNpσc

M∑

i=1

ϵ

2!ωi
Ξi|Ei(p)|2 Np + Ntot(γ − 1)

τf
+

Rpump(p)(Ntot − Np), p ∈ Ωhxy,hz .
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Maxwell’s Equations

The solution of Maxwell’s equations in 3D is
E⃗: the electrical field and
H⃗: the magnetic field.

Given are
µ: magnetic permeability,
ϵ: electric permittivity,
M⃗ : equivalent magnetic current density,
J⃗ : electric current density.

Maxwell’s equations are:

∂H⃗

∂t
= − 1

µ
∇× E⃗ − 1

µ
M⃗

∂E⃗

∂t
=

1
ϵ
∇× H⃗ − 1

ϵ
J⃗
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Finite Difference Time Domain Discretizatio
Let τ be a time step.
Time approximation:

E⃗|n+ 1
2 : approximation at time point (n + 1

2 )τ .

H⃗|n: approximation at time point nτ .
Furthermore, let us use the following abbreviation:

H⃗|n+ 1
2 :=

1
2

(
H⃗|n+1 + H⃗ |n

)
,

E⃗|n :=
1
2

(
E⃗|n+ 1

2 + E⃗|n− 1
2

)
.
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FDTD
Let h be a mesh size.
Space approximation:

Ex|
n+ 1

2
i,j+ 1

2 ,k+ 1
2
: at point (ih, (j + 1

2 )h, (k + 1
2 )h) (yz-face) .

Ey|
n+ 1

2
i+ 1

2 ,j,k+ 1
2
: at point ((i + 1

2 )h, jh, (k + 1
2 )h) (xz-face).

Ez|
n+ 1

2
i+ 1

2 ,j+ 1
2 ,k

: at point ((i + 1
2 )h, (j + 1

2 )h, kh) (xy-face).

Hx|ni+ 1
2 ,j,k

: at point ((i + 1
2 )h, jh, kh) (x-edge).

Hy|ni,j+ 1
2 ,k

: at point (ih, (j + 1
2 )h, kh).

Hz|ni,j,k+ 1
2
: at point (ih, jh, (k + 1

2 )h).
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FDTD

Ex

Ey

Ez

Hx

Hy
Hz

Hz

Hy

Hx

Hz

Hy z

x
y

(i,j,k)
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Staggered Grid Discretization

Now, the Maxwell equation

∂Ex

∂t
= −1

ϵ

(
∂Hz

∂y
− ∂Hy

∂z
+ Jx

)

is discretized as follows:

Ex|
n+ 1

2
i,j+ 1

2 ,k+ 1
2
− Ex|

n− 1
2

i,j+ 1
2 ,k+ 1

2

τ
=

1
ϵi,j+ 1

2 ,k+ 1
2

(
Hz|ni,j+1,k+ 1

2
− Hz|ni,j,k+ 1

2

h
−

Hy|ni,j+ 1
2 ,k+1

− Hy|ni,j+ 1
2 ,k

h

−Jx|ni,j+ 1
2 ,k+ 1

2

)

The other Maxwell’s equations are discretized analogously.
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Staggered Grid Discretization

Let ∂1
τ the symmetric difference operator applied to the time coordinate:

∂1
hQ(t) :=

Q(t + τ/2) − Q(t − τ/2)
τ

Furthermore, let ∇h× the discrete curl operator on a staggered grid. Then
the FDTD discretization can be described as follows:

∂1
τ H⃗h,τ = − 1

µ
∇h × E⃗h,τ − 1

µ
M⃗h,τ at time points n + 1

2 ,

∂1
τ E⃗h,τ =

1
ϵ
∇h × H⃗h,τ − 1

ϵ
J⃗h,τ at time points n.

Here, H⃗h,τ and E⃗h,τ are the vectors on a staggered grid.
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Losses

J⃗ has to be composed as follows:

J⃗ = J⃗source + σE⃗,

where σ is the electric conductivity.
E⃗ is approximated by

E⃗|n =
1
2

(
E⃗|n+ 1

2 + E⃗|n− 1
2

)
.
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Boundary Conditions

Reflecting boundary conditions can be modeled by pure Dirichlet
boundary conditions.
Non-reflecting boundary conditions can be discretized by the Perfect
Matched Layer (PML) method. These are not Neumann boundary
conditions!
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Stability of FDTD

Let us consider the FDTD discretization in the short form for
J⃗h,τ = 0 and M⃗h,τ = 0 and µ = 1 and ϵ = 1 :

∂1
τ H⃗h,τ = −∇h × E⃗h,τ at time points n + 1

2 ,
∂1

τ E⃗h,τ = ∇h × H⃗h,τ at time points n.

Now, the abbreviation
V⃗h,τ = H⃗h,τ + jE⃗h,τ

leads to

∂1
τ V⃗h,τ = j∇h × V⃗h,τ
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Stability of FDTD

Definition 2. The FDTD method is stable, if the solution H⃗h,τ , E⃗h,τ is
bounded for t → ∞.
Let us analyze

∂1
τ V⃗h,τ = j∇h × V⃗h,τ .

To this end, it is enough to analyze the behavior of the
solutions with periodic initial condition:

V⃗h,τ (0, x, y, z) = V⃗0e
j(−kxx−kyy−kzz).(19)

The FDTD method is stable, if V⃗h,τ has the form

V⃗h,τ (t, x, y, z) = V⃗0e
j(ωt−kxx−kyy−kzz)
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Stability of FDTD

The abbreviation V⃗0 = (Vx, Vy, Vz)T leads to

∇h × V⃗h,τ = det

⎛

⎜⎜⎝

ex δ1
hx,x Vx

ey δ1
hy,y Vy

ez δ1
hz,z Vz

⎞

⎟⎟⎠ ej(ωt−kxx−kyy−kzz)

= det

⎛

⎜⎜⎝

ex
1

hx
sin(kxhx

2 ) Vx

ey
1

hy
sin(kyhy

2 ) Vy

ez
1

hz
sin(kzhz

2 ) Vz

⎞

⎟⎟⎠ ej(ωt−kxx−kyy−kzz)

= −j
1
τ

sin(
ωτ

2
)

⎛

⎜⎜⎝

Vx

Vy

Vz

⎞

⎟⎟⎠ ej(ωt−kxx−kyy−kzz)
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Stability of FDTD

The above equation system has a unique solution if and only if

0 = det

⎛

⎜⎜⎝

j 1
τ sin(ωτ

2 ) 1
hz

sin(kzhz
2 ) − 1

hy
sin(kyhy

2 )
1

hz
sin(kzhz

2 ) j 1
τ sin(ωτ

2 ) − 1
hx

sin(kxhx
2 )

− 1
hy

sin(kyhy

2 ) + 1
hx

sin(kxhx
2 ) j 1

τ sin(ωτ
2 )

⎞

⎟⎟⎠

=

((
1
hx

sin(
kxhx

2
)
)2

+
(

1
hy

sin(
kyhy

2
)
)2

+
(

1
hz

sin(
kzhz

2
)
)2

−
(

1
τ

sin(
ωτ

2
)
)2
)

j
1
τ

sin(
ωτ

2
)

. This is equivalent to the stability equation:
(

1
hx

sin(
kxhx

2
)
)2

+
(

1
hy

sin(
kyhy

2
)
)2

+
(

1
hz

sin(
kzhz

2
)
)2

=
(

1
τ

sin(
ωτ

2
)
)2
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Stability of FDTD

The stability equation has a solution ω for every kx, ky, kz, if

τ

√
1
h2

x

+
1
h2

y

+
1
h2

z

< 1.

A renormalization of this stability condition shows

τ < c−1

(
1
h2

x

+
1
h2

y

+
1
h2

z

)− 1
2

.

where c is the velocity of the wave.
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