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FD for Poisson’s Equation

Let us consider the finite difference discretization of Poisson’s equation
−�u = f on Ω =]0, 1[2 with Dirichlet boundary conditions.
This leads to a matrix equation

Lhxh = fh,

where the diagonal is

D = E
4

h2

and Lh has eigenvalues

λν,µ =
4

h2

(
sin2

(
πνh

2

)
+ sin2

(
πµh

2

))
and eigenvectors eν,µ, ν, µ = 1, ...,m− 1.
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Jacobi Method with Damping Parameter

Let us consider the iteration

xk+1
h = (E − h2

8
Lh)x

k
h +

h2

8
fh.

The algebraic error satisfies

xk+1
h − xh =

(
E − h2

8
Lh

) (
xk
h − xh

)
.

If the algebraic error is an eigenvector like

xk
h − xh = eν,µ,

then we get for ν = µ

xk+1
h − xh = (1− h2

8
λν,ν) eν,ν =

(
1− sin2

(
πνh

2

)) (
xk
h − xh

)
.
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Jacobi Method with Damping Parameter

This means that the Jacobi Method with Damping Parameter
has the following properties

Bad convergence for low frequencies.

Good convergence for high frequencies.

The Gauss–Seidel method has similar properties as the damped Jacobi
method.
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Heuristic approach

x x x

x x x x

x x x x

x x xA

B

Jacobi and Gauss-Seidel iteration need O(
√
n) = O(h−1)

operations for a correction in B due to a change of A.
The idea is to achieve a better correction by using coarser
grids.
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Multigrid

Let lmax be the number of levels such that lmax ∈ N and

ml = 2l

nl = (ml − 1)2

hl = 2−l

for l = 1 . . . lmax.

– p. 6/123



Matrix Equation on Multigrid

Let us assume that a PDE (e.g. Poisson’s equation) is given. Discretize
this equation by the grids Ωl := Ωhl

where l = 1, . . . , lmax. This leads to
the discrete matrix equations

Alxl = bl (1)

where bl, xl ∈ Sl and Sl = R
nl . The matrix Al is an invertible matrix of

order nl × nl.
Let an iterative solver for (1) be given as

xl
k+1 = Cl

relaxxl
k +Nlbl = Sl,bl(x

k
l ) (2)
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Idea of Multigrid Algorithm

Let x̃l be an approximate solution for (1). The algebraic
error ẽl is defined as

ẽl = xl − x̃l. (3)

Now ẽl has to be calculated in order to find xl. The following
residual equation is valid for ẽl,

Alẽl = rl, (4)

where rl is called the residual and is given by

rl = bl − Alx̃l. (5)

The aim is to find an approximate solution of the residual
equation by solving the equation approximately on a coarse
grid Ωl−1. To this end, we need the following matrix
operators – p. 8/123



Two–grid Algorithm

Two–grid Algorithm with Parameters v1 and v2.
Let xk

l be an approximate solution of (1) and v1 and v2 the parameters of
pre–smoothing and post–smoothing.

1. Step 1 (Pre–smoothing) xk,1
l = S v1

l,bl
xk
l .

2. Step 2 (Coarse grid correction)

Residual calculation : rl = bl −Alx
k,1
l .

Restriction : rl−1 = I l−1
l rl.

Solve on coarse grid: el−1 = Al−1
−1rl−1.

Prolongation : el = I ll−1el−1. Correction : xk,2
l = xk,1

l + el.

3. Step 3 (Post–smoothing) xk+1
l = S v2

l,bl
(xk,2

l ).
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Restriction and Prolongation Operators

O–Coarse grid point and X–Fine grid point.
Let us abbreviate xi,j = x(ihl−1,jhl−1) and set xi,j = 0 for
i = 0 or j = 0 or i = ml−1 or j = ml−1.
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Prolongation or Interpolation

The interpolation or prolongation of xi,j given by wi,j = {I ll−1(x)}(ihl,jhl) is
defined by the following equations

w2i,2j =
1

2
xi,j (6)

w2i+1,2j =
1

4
(xi,j + xi+1,j) (7)

w2i,2j+1 =
1

4
(xi,j + xi,j+1) (8)

w2i+1,2j+1 =
1

8
(xi,j + xi+1,j + xi,j+1 + xi+1,j+1) (9)
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Pointwise Restriction

Piecewise restriction is rarely applied and defined by

{İ l−1
l (x)}(ihl−1,jhl−1) = x2i,2j (10)

The quality of this restriction operator is not very good.
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Weighted Restriction

Weighted restriction or full weighting is defined by

{I l−1
l (x)}(ihl−1,jhl−1) =

1

8
(x2i+1,2j+1 + x2i−1,2j+1 + x2i+1,2j−1 + x2i−1,2j−1) +

1

4
(x2i+1,2j + x2i−1,2j + x2i,2j+1 + x2i,2j−1) +

1

2
x2i,2j

Remark

(I l−1
l )

T
= I ll−1 (11)
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Multigrid Algorithm

If l = 1 then MGM(xk
l , bl, l) = A−1

l bl. If l > 1 then

Step 1 (v1-pre–smoothing)

xk,1
l = S v1

l,bl
(xk

l )

Step 2 (Coarse grid correction)

Residual : rl = bl −Alx
k,1
l

Restriction : rl−1 = I l−1
l rl

Recursive call:
e0l−1 = 0

for i = 1 . . . µ

eil−1 = MGM(ei−1
l−1, rl−1, l − 1)

el−1 = eµl−1

Prolongation : el = I ll−1el−1

Correction : xk,2
l = xk,1

l + el

Step 3 (v2-post–smoothing)

MGM(xk
l , bl, l) = S v2

l,bl
(xk,2

l )
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V-cycle and W-cycle

The algorithm µ = 1 is called V-cycle.
The algorithm µ = 2 is called W-cycle.
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Convergence of Multigrid

Let N be the number of unknowns. The computational
amount of the V-cycle and W-cycle is O(N).
The theory of multigrid algorithms shows that there is a
constant ρ such that the convergence rate of the multigrid
algorithm satisfies

ρ(CMGM,l) ≤ ρ < 1

independent of l.
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Debugging of MG

command out parts of the code (recursive coarse grid call, correction
step, ...)

often the coarse grid matrix is defined by

AH := IHh AhI
h
H , IHh = (IhH)T .

Then, the following equation must hold for all coarse grid vectors v, w:

vTAHw = (IhHv)TAhI
h
Hw.

Test this equation for w = 1 and other simple test functions.

In case of Neumann boundary conditions and Poisson’s equation:

AH1 = 0.
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Linear Elements in 1D

Definition 1. q is a linear function on the interval ]a, b[, if there exist c, d ∈ R such that

q(x) = cx+ d ∀x ∈]a, b[.

Let h = 1
m , m ∈ N.

Then, the space of functions

Vh := {uh ∈ C([0, 1]) | uh|]ih,(i+1)h[ is linear ∀i = 0, ...,m− 1 }

is called the finite element space of linear functions.

Define

◦
V h:= {uh ∈ Vh | uh(0) = uh(1) = 0}.
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Finite Element Discretization in 1D

Let us consider Poisson’s equation in 1D:

−u′′ = f on ]0, 1[,

u(0) = u0, u(1) = u1.

Then, we get ∫ 1

0

u′v′h dx =

∫ 1

0

fvh dx ∀vh ∈
◦
V h .

Definition 2. Let uh ∈ Vh such that∫ 1

0

u′
hv

′
h dx =

∫ 1

0

fvh dx ∀vh ∈
◦
V h,

uh(0) = u0, uh(1) = u1.

uh is called the finite element discretization with linear finite elements.
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Nodal Basis in 1D for Linear Elements

Let

Ωh = {ih | i = 0, ...,m},
◦
Ωh = {ih | i = 1, ...,m− 1}.

Definition 3. The nodal basis of
◦
V h is

vh1, ..., vh(m−1) ∈
◦
V h

where

vp(q) = δpq ∀p, q ∈ Ωh.
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Stiffness Matrix

For reasons of simplicity let us assume u0 = u1 = 0. Then, let us write

uh =
∑

q∈ ◦
Ωh

xqvq,

where xh = (xq)
q∈ ◦

Ωh

∈ R
m−1.

Define the 1D local stiffness matrix and load vector as follows

Ah =

(∫ 1

0

v′qv
′
p dx

)
p,q∈ ◦

Ωh

fh =

(∫ 1

0

fvp dx

)
p∈ ◦

Ωh

.

Then, we get
Ahxh = fh.
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Stiffness Matrix

Define the 1D local stiffness matrix and load vector as
follows

Ah =

(∫ 1

0

v′qv
′
p dx

)
p,q∈ ◦

Ωh

fh =

(∫ 1

0

fvp dx

)
p∈ ◦

Ωh

The local stiffness matrix and the load vector can be
calculated exactly or numerically.
Numerical integration leads to a matrix equation

Ãhxh = f̃h.
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Example of Stiffness Matrices

Let us consider linear finite elements in 1D.
The stiffness matrix corresponding to∫ 1

0

u′v′ dx

is

Ah =
1

h



2 −1

−1 2 −1

. . . . . . . . .

−1 2 −1

−1 2


.
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Stiffness Matrix

The stiffness matrix corresponding to∫ 1

0

u′v dx

is

Ah =
1

2



0 1

−1 0 1

. . . . . . . . .

−1 0 1

−1 0


.

The corresponding operator is

u �→ u′.
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Stiffness Matrix

The stiffness matrix corresponding to∫ 1

0

uv′ dx

is

Ah =
1

2



0 −1

1 0 −1

. . . . . . . . .

1 0 −1

1 0


.

The corresponding operator is

u �→ −u′.
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Stiffness Matrix

The stiffness matrix corresponding to∫ 1

0

uv dx

is

Ah =
h

6



4 1

1 4 1

. . . . . . . . .

1 4 1

1 4


.

The corresponding operator is

u �→ u.
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Example 1: Poisson’s Equation in 1D

−u′′ = f on ]0, 1[,

u(0) = 0, u(1) = 0.

Discretize this equation by Ahxh = f̃h where

Ah =

(∫ 1

0

v′qv
′
p dx

)
p,q∈ ◦

Ωh

, f̃h =

(∫ 1

0

Ih(f)vp dx

)
p∈ ◦

Ωh

.

This means

1

h




2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2







x1

.

.

.

xm−1




=
h

6




4 1

1 4 1

. . .
. . .

. . .

1 4 1

1 4







f(h)

.

.

.

f(1− h)




.
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Finite Elements - Central Difference

The discretization of
u �→ u′

by finite elements leads to a discretization similar to the central difference
discretization

Ah =
1

2



0 1

−1 0 1

. . . . . . . . .

−1 0 1

−1 0


.

How do we get something similar to FD upwind?
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Streamline Diffusion Discretization

Consider the convection diffusion equation in 1D:

−u′′ − bu′ = f, u(0) = u(1) = 0

Multiply this equation by v = vh − ρhv′h sgn b, where vh ∈
◦
V h and integrate.

Assuming b > 0, this yields∫ 1

0

(
u′v′h + hρbu′v′h − bu′vh

)
dx+ ρh

∫ 1

0

u′′v′hdx =

∫ 1

0

f(vh − ρhv′h)dx.

In the streamline diffusion discretization, we neglect the term of third order
and replace u by uh:∫ 1

0

(
(1 + hρb)u′

hv
′
h − bu′

hvh
)
dx =

∫ 1

0

f(vh − ρhv′h)dx.
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Streamline Diffusion Discretization

Let ρ = 1
2 . Then, the stencil corresponding to the term∫ 1

0

(
hρbu′

hv
′
h − bu′

hvh
)
dx = b

∫ 1

0

(1
2
hu′

hv
′
h − u′

hvh
)
dx

is

b



1 −1

0 1 −1

. . . . . . . . .

0 1 −1

0 1


.

This shows that the finite element streamline diffusion discretization is
similar to the FD upwind discretization.
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Finite Elements in 2D/3D

Definition 4. T = {T1, . . . , TM} is a conform triangulation of Ω if

Ω =
⋃M

i=1 Ti, Ti is

a triangle or quadrangle (in 2D) or tetrahedron, hexahedron, prism, or pyramid (in

3D)

Ti ∩ Tj is either

empty or

one common corner or

one common edge.
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Finite Elements in 2D/3D

Remark.

Let us write Th, if the diameter hT of every element
T ∈ Th is less or equal h:

hT ≤ h.

A family of triangulations {Th} is called quasi-uniform, if
there exists a constant ρ > 0 such that the radius ρT of
the largest inner ball of every triangle T ∈ Th satisfies

ρT > ρh.
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Good and Bad Triangles

bad for Gauss−Seidel

bad approximation

good
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Linear Elements in 2D

Definition 5. Let Th be a triangulation of Ω. Then, let Vh be the space
of linear finite elements defined as follows:

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v∣∣T is linear for every T ∈ Th
}

◦
V h = Vh ∩H1

0 (Ω)

v
∣∣
T

is linear means that v
∣∣
T
(x, y) = a+ bx+ cy.
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Bilinear Elements in 2D

Definition 6 (Bilinear elements on a Cartesian 2D grid). Let Ω =]0, 1[2,

h = 1
m and

Th =

{
[ih, (i+ 1)h]× [jh, (j + 1)h]

∣∣∣∣i, j = 0, . . . ,m− 1

}
.

The space of bilinear finite elements on Ω is defined as follows

Vh =

{
v ∈ C0(Ω)

∣∣∣∣ v∣∣T is bilinear for every T ∈ TH
}
.

v
∣∣
T

is bilinear means that v
∣∣
T
(x, y) = a+ bx+ cy + dxy.
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FE Discretization of Poisson’s equation

−∆u = f

u
∣∣
δΩ

= 0.

Multiplication with vh and integration leads to:

FE Discretization: Find uh ∈
◦
V h such that∫

Ω

∇uh ∇vh d(x, y) =
∫
Ω

f vh d(x, y) ∀vh ∈
◦
V h . (12)
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Nodal Basis Functions

Definition 7. Let Vh be the space of linear or bilinear finite elements on
Th and Nh the set of corners of Th. Then, define the nodal basis
function vq ∈ Vh at the point q by:

vq(x) =

{
1 if x = q

0 if x �= q
for x ∈ Nh

Observe that

Vh = span

{
vq

∣∣∣∣ q ∈ Nh

}
This means that every function uh ∈ Vh can be represented as

uh =
∑
q∈Nh

λqvq
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Stiffness matrix

ap.q :=

∫
Ω

∇vq ∇vp d(x, y), fp :=

∫
Ω

f vp d(x, y)

Ah := (ap,q)
p,q∈

0
Nh

,
0

Nh:= Nh ∩ Ω

uh =
∑
q∈

0
Nh

λq vq.

Then, (12) implies

Ah Uh = Fh where
Uh = (λq)

q∈
0

Nh

Fh = (fp)
p∈

0
Nh

The matrix Ah is called the stiffness matrix of the FE discretization.
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Bilinear Elements on a Structured Grid

Consider the structured grid on Ω =]0, 1[2:

Th =

{
[ih, (i+ 1)h]× [jh, (j + 1)h]

∣∣∣∣i, j = 0, . . . ,m− 1

}
.

Nh is the set of corresponding nodal points (corner points).
Observe that the nodal basis functions can be decomposed as

vpxpy (x, y) = vpx(x) · vpy (y).

Thus, ∫
Ω

∇vqxqy ∇vpxpy d(x, y) =

∫ 1

0

∂vpx

∂x

∂vqx
∂x

dx
∫ 1

0

vpyvqy dy

+

∫ 1

0

∂vpy

∂y

∂vqy
∂y

dy
∫ 1

0

vpxvqx dx.
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Bilinear Elements on a Structured Grid

This shows that the discretization stencil for Poisson’s equation is:

1

h

(
−1 2 −1

)
· h
6


1

4

1

 +
1

h


−1

2

−1

 · h
6

(
1 4 1

)

=
1

3


−1 −1 −1

−1 8 −1

−1 −1 −1


and for the right hand side the stencil is:

h

6

(
1 4 1

)
· h
6


1

4

1

 =
h2

36


1 4 1

4 16 4

1 4 1

 .
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Local Stiffness Matrix

Since Ω =
⋃M

i=1 Ti, we obtain

∫
Ω

∇vq ∇vp d(x, y) =
M∑
i=1

∫
Ti

∇vq ∇vp d(x, y).

For linear or bilinear elements, we obtain∫
Ti

∇vq ∇vp d(x, y) �= 0 ⇔ p, q ∈ Ti.

Definition 8. The matrix (∫
Ti

∇vq ∇vp d(x, y)

)
p,q∈Ti

is called local stiffness matrix at Ti.
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Reference Element

To calculate the local stiffness matrices we need a reference element T̂
and a mapping

Ψi : T̂ → Ti

for every i.

Example 1. A reference element for triangles is:

T̂ = {(ξ, η) | ξ + η ≤ 1 and ξ, η ≥ 0}.

If Ti consists of the corners P1, P2, P3, then

Ψi(ξ, η) = P1 + (P2 − P1)ξ + (P3 − P1)η.

Example 2. A reference element for quadrangles is:

T̂ = {(ξ, η) | 0 ≤ ξ, η ≤ 1}.
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Calculation of Local Stiffness Matrices

Now, the local stiffness element can be calculated by∫
Ti

∇vTq ∇vp d(x, y) =

=

∫
T̂

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi| d(ξ, η).

Example 3. Consider triangles. Then, describe the mapping Ψi by

Ψi(ξ, η) = P1 +

 a

b

 ξ +

 c

d

 η.

Then,

DΨi =

 a c

b d

 .
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Numerical Integration

Calculate the integral∫
T̂

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi| d(ξ, η).

by Gauss quadrature rule.

Example 4. Consider triangles and choose the above reference element. Then, the first

Gauss quadrature rule implies:∫
T̂

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi| d(ξ, η)

≈ 1

2

(
(DΨi)

−T∇v̂q
)T (

(DΨi)
−T∇v̂p

)
| det DΨi|

(
1

3
,
1

3

)
.
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Calculation of Stiffness Matrix

P1

P2

P3

P4 P5

A

B
C

{1, 2, 3} = N (A)

{1, 3, 4} = N (B)

{4, 3, 5} = N (C)

The stiffness matrix of this
triangulation is:

Ah =

lA11 + lB11 lA12 lA13 + lB13 lB14 0

lA21 lA22 lA23 0 0

lA31 + lB31 lA32 lA33 + lB33 lB34 + lC34 lC35

lB41 0 lB43 + lC43 lB44 + lC44 lC45

0 0 lC53 lC54 lC55


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Algorithmic Calculation of Stiffness Matrix

The calculation of stiffness matrix has to be performed in two steps:

1. Step: Calculate the local stiffness matrix.

2. Step: Calculate the stiffness matrix.

But there exist two approaches:

1. First compute and store the whole local stiffness matrix.
Then, calculate the stiffness matrix.
Advantage: The local stiffness matrices can be used for coarsening
the local stiffness matrices in a multigrid algorithm.
Faster code for some non-linear problems.

2. After the calculation of the local stiffness matrix of one element T ,
add these integrals to the whole stiffness matrix.
Advantage: Less storage requirement.
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Data Structure for (Local) Stiffness Matrix

1. Local stiffness matrix: Let nT be the number of degrees of freedom
for an element T ∈ Th (3 for triangle). Then, for every T ∈ Th a
nT × nT matrix has to be stored.
Data structure: list or array for storing T ∈ Th. Each entry must
contain nT and a pointer to a nT × nT matrix.

2. Stiffness matrix: For every unknown (grid point) the discretization
stencil has no fixed size. Data structure: Sparse matrix.
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Sparse Matrix Format

2.row1.row

1 n1 nk−1

+nk−2

+...+ n1

n1 n2 nk

i = 1 i = 2 i = k

n2+
n1

1 n1 n2 + ... nk−1 + ...

k.row
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Algorithm (Stiffness Matrix Calculation)

Let N (T ) be the corner points of the triangle T .

1. Calculate local stiffness matrix (lTij)i,j∈N (T ) for every
finite element T ∈ Th.

2. Calculate the number of neighbour points mi for every
point i. This gives the value ni =

∑i
s=1ms + 1 in the

sparse matrix of the the stiffness matrix.

3. Go to every grid point i and iterate over the neighbour
element T ∈ Th, i ∈ N (T ). Add the lTij to aij for every
j ∈ N (T ).

⇒ Later we explain how to obtain a suitable data structure
for the discretization grid.
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Data Structure of the Discretization Grid

Array (or list) of objects of type Triangle. Every triangle has an id.

class Triangulation_grid {

int number_triangles;

Triangle* triangles; // id is number in list

int number_points;

Points* points; // id is number in list

}

class Triangle {

int id_point_1, id_point_2, id_point_3;

}

class Points {

double x,y; // coordinate of point

int number_neighbour_points;

int* id_neighbour_points;

}
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Weak Formulation of a PDE

Let V be a vector space and

a : V × V → R

a symmetric positive definite bilinear form. a induces the “energy” norm

‖u‖E =
√
a(u, u).

Furthermore, let
f : V → R

be a ‖ · ‖E continuous linear functional and let V be complete with respect
to ‖ · ‖E .

Problem 1. Find u ∈ V such that a(u, v) = f(v) ∀v ∈ V.

Theorem 1. The above problem has a unique solution u.
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Examples of PDEs with Weak Formulation

Example 5 (Poisson’s Equation with Reaction Term). Let

V = H1
0 (Ω) := {u ∈ L2(Ω) | ∇u ∈ L2(Ω)} and c ≥ 0.

a(u, v) =

∫
Ω

(
∇u∇v + cuv

)
d(x, y).

Example 6 (Linear Elasticity). Let V = (H1
0 (Ω))

3, u ∈ V , C a suitable 6× 6 matrix

and Du the vector of symmetric derivatives (see section ??).

a(u, v) =

∫
Ω

(Du)TCDv d(x, y, z).

Example 7 (Maxwell’s Equations). Let V be a suitable vector space similar to (H1
0 (Ω))

3

and c ≥ 0.

a(u, v) =

∫
Ω

(∇× u)T (∇× v) + cuv d(x, y, z).
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General Convergence Theory

Let Vh be a subspace of V .

Problem 2. Find uh ∈ Vh such that a(uh, vh) = f(vh) ∀vh ∈ Vh.

Theorem 2.

‖u− uh‖E ≤ inf
vh∈Vh

‖u− vh‖E

Example 8. Consider Poisson’s equation. Let Vh be the space of linear elements

corresponding to a a familiy of quasi-uniform triangulations.

Furthermore, assume that u ∈ C2(Ω) (H2(Ω)) is the weak solution of Poisson’s

equation. Then, there is a constant C such that

‖u− uh‖E ≤ hC

for every h, where uh ∈ Vh is the finite element solution.

Remark: In case of H2(Ω)-regularity, one can prove ‖u− uh‖L2 ≤ h2C .
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Operator Formulation

Let Vh be a finite element space and (vq)q∈Nh
the corresponding nodal

basis. Let u,f be vectors of length |Nh|. Then,

f = Laplace_FE(u);

means

f = (fp)p∈Nh
=

∫
Ω

∇(
∑
q∈Nh

uqvq)∇vp d(x, y)


p∈Nh

and

f = Helm_FE(u);

means

f = (fp)p∈Nh
=

∫
Ω

(
∑
q∈Nh

uqvq)vp d(x, y)


p∈Nh

.
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Operator Formulation

Thus,

Laplace_FE( ), Helm_FE( )

are operators. Let

Diag_Laplace_FE( ), Diag_Helm_FE( )

be the corresponding diagonal operators.
Let

interior, boundary

represent the interior and boundary points of the domain and

product(u,v)

the scalar product of u and v.
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Test 1: Volume Calculation

Now let us implement the above operators by expression templates.
Then, the code
u = 1.0;
f = Helm_FE(u);
cout << product(u,f) << endl;

calculates the volume of the domain.
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Test 2: Volume Calculation

Now let us implement the above operators by expression templates.
Then, the code
u = X;
f = Poisson_FE(u);
cout << product(u,f) << endl;

calculates the volume of the domain.
Here, let X be the x-coordinate.
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Dirichlet Boundary Conditions

The problem
Problem 3. Find u ∈ H1(Ω) such that

−�u = f on Ω,

u|Γ = g

can approximatively be solved by finite elements and the
Gauss-Seidel iteration as follows:
u = Helm_FE(f);
f = u;
u = g | boundary;
for(i=0;i<i_max;++i)
u = u - (Laplace_FE(u)-f)/Diag_Laplace_FE()

| interior_points;
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Using a Direct Solver

Let us assume that there is a good direct solver ui=Inverse(S,fi)
which calculates

ui = S−1fi.

Then, apply the code

u = Helm_FE(f);

f = u;

u = 0.0 | interior;

u = g | boundary;

f = f - Laplace_FE(u) | boundary;

u = 0.0 | boundary;

S = Sparse_matrix(Laplace_FE, interior);

fi = vector(f,interior);

ui = vector(u,interior);

ui = Inverse(S,fi);

u = g | boundary;
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Boundary Conditions

Let us consider the equation

− div µ grad u = f on Ω,

u = g on ΓD,

∂u

∂	n
= 0 on ΓN ,

∂u

∂	n
+ β(u− uref ) = 0 on Γthird,

here Ω is a domain and

∂Ω = ΓD ∪ ΓN ∪ Γthird

is a disjunct subdivision of the boundary, where ΓD �= ∅.
Furthermore, let µ : Ω → R be a piecewise constant parameter and
0 < β ∈ R.
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Boundary Conditions

Define the finite element space

V̄h := {vh ∈ Vh | vh
∣∣
ΓD

= 0}.

Then, we obtain∫
Ω

∇uµ∇vh d(x, y) + βµ

∫
Γthird

uvh dσ = βµ

∫
Γthird

urefvh dσ +

∫
Ω

fvhd(x, y)

for every vh ∈ V̄h.
FE Discretization
Find uh ∈ Vh such that∫
Ω

∇uhµ∇vh d(x, y) + βµ

∫
Γthird

uhvh dσ = βµ

∫
Γthird

urefvh dσ +

∫
Ω

fvhd(x, y

∀vh ∈ V̄h,

uh(z) = g(z) ∀z ∈ Ωh ∩ ΓD.
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Boundary Conditions

Observe that the bilinear form

a(u, v) :=

∫
Ω

∇uµ∇v d(x, y) + βµ

∫
Γthird

uv dσ

is symmetric positive definite on the space

{v ∈ H1(Ω) | v
∣∣
ΓD

= 0}.
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Operator Formulation

Let us implement the operators in section ?? by expression
templates.
Let A FE be the operator corresponding to the bilinear form
a(u, v).
The previous problem can be solved by the Gauss-Seidel
iteration as follows:
u = Helm_FE(f);
f = u;
u = g | boundary_D;
for(i=0;i<i_max;++i)

u = u - (A_FE(u)-f)/Diag_A_FE() | grid_space;

Here grid space represents the interior points and the
boundary points which are no Dirichlet boundary points.
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Neumann Boundary Conditions

Let us consider the equation

−�u = f on Ω, (13)

∂u

∂	n
= 0 on Γ. (14)

A short calculation shows ∫
Ω

f d(x, y) = 0. (15)

Thus, we assume (15).

– p. 64/123



Neumann Boundary Conditions

A natural way to obtain a well-defined problem is:

Problem 4. Find u ∈ H1(Ω) such that

−�u = f on Ω,

∂u

∂	n
= 0 on Γ and

∫
Ω

u d(x, y) = 0,

where we assume ∫
Ω

f d(x, y) = 0.
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Operator Formulation

Let us implement the operators in section ?? by expression
templates.
The previous problem can be solved by Gauss-Seidel
iteration as follows:
Eins = 1.0; // set up for normalization
IntE = Helm_FE(Eins);
Eins = Eins / product(Eins,IntE);

f = f - Eins * product(f,IntE);
u = Helm_FE(f);
f = u;

for(int i=0; i<N;++i) {
u = u - (A_FE(u) -f) / Diag_A_FE();
u = u - Eins * product(u,IntE);

}
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Streamline Diffusion Discretization

Consider the convection diffusion equation in 1D:

−�u−	b grad u = f

u
∣∣
∂Ω

= 0.

where 	b : Ω → R
2 is a vector field.

Discretization: Find uh ∈
◦
V h such that∫

Ω

(
∇uh ◦ ∇vh + hρ	b ◦ ∇uh

	b ◦ ∇vh ‖	b‖−1
2 −	b ◦ ∇uh vh

)
d(x, y)

=

∫
Ω

f(vh − ρh	b ◦ ∇vh ‖	b‖−1
2 )d(x, y)

for every vh ∈
◦
V h.
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Types of Grids

There exist

Cartesian grids

block structured grids

unstructured grids

...

to discretize a domain Ω.

– p. 68/123



Cartesian Grid

Example of an Cartesian grid:

Ωh,k = {(ih, jk) + (x0, y0) | i = 0, ...,m, j = 0, ..., n},

where h, k > 0.

Data structure: Array!
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Block Structured Grid

Let

Ω0
h = {(ih, jh) | i, j = 0, ..., n},

where h = 1
n . Furthermore, let T = {T1, . . . , TM} be a subdivision by

quadrangles (2D) and
Ψk : [0, 1]2 → Tk

smooth bijections such that Ω =
⋃M

k=1 Ψk([0, 1]
2).

Then,

Ωh =
M⋃
k=1

Ψk(Ω
0
h)

is a block structured grid.
(Generalizations in 3D and for different mesh sizes are possible.)

Data structure: Unstructured grid of quadrangles, each block by array.
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Simple Interpolation

A simple construction of the mapping

Ψk : [0, 1]2 → Tk

is

Ψk(η, ξ) = PSW + (PSE − PSW )η + (PNW − PSW )ξ +

(PNE − PSE − PNW + PSW )ξη.

0 1
0

1

PSW

PNW PNE

PSE
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Transfinite Interpolation

Let βN , βS , βW , βE : [0, 1] → R
2 be parameterizations of the north, south,

west and east boundary. Then, the transfinite interpolation is:

Ψk(η, ξ) = βS(η) + (βN (η)− βS(η))ξ

+βW (ξ) + (βE(ξ)− βW (ξ))η

−PSW − (PSE − PSW )η − (PNW − PSW )ξ

−(PNE − PSE − PNW + PSW )ξη.
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Unstructured Grid

An example of an unstructured grid is:

Data structure for an unstructured grid:

list or array of corners (information of coordinates)

list or array of triangles, quadrangles, ... with pointers to corners and
number of corners.

By this information one can construct:

list or array of edges and faces (in 3D).
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Visualization of an Unstructured Grid

Examples of powerful 3D visualization programs are:

AVS (commercial)

OpenDx (public domain)

ParaView (uses vtk Toolkit, public domain)

AVS supports structured grids and unstructured grids. An
unstructured grid may consist of geometric elements

point (0D)

line (1D)

triangle, quadrangle (2D)

tetrahedron, hexahedron, prism, pyramid (3D).
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Example of file in UCD format for AVS

# UCD file format for AVS

22 44 1 0 0

0 0.292053 0.292053 0.292053

1 0.292053 0.292053 0.892053

...

21 0.292053 0.292053 1.00005

1 1 tet 12 2 7 0

...

43 1 tet 19 21 17 1

44 1 tet 21 19 18 1

1 1

variable

0 0.433753

1 -0.296865

...

21 -0.369419
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Example of file in dx format for OpenDx

# dx file format for OpenDx unstructured grid

object 1 class array type float rank 1 shape 3 items 22 data follows

0.292053 0.292053 0.292053

...

0.292053 0.292053 1.00005

object 2 class array type int rank 1 shape 4 items 44 data follows

12 2 7 0

20 0 17 1

...

21 19 18 1

attribute "element type" string "tetrahedra"

attribute "ref" string "positions"

object 3 class array type float rank 0 items 22 data follows

0.433753

...

-0.369419

attribute "dep" string "positions"

object "irregular positions irregular connections" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end
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Example of file in dx format for OpenDx

# dx file format for OpenDx structured grid

object 1 class gridpositions counts 10 10 10

origin 0.005 0.000 0.005

delta 0.010 0 0

delta 0 0.010 0

delta 0 0 0.010

object 2 class gridconnections counts 100 101 99

attribute "element type" string "cubes"

attribute "ref" string "positions"

object 3 class array type float rank 0 items 1000 data follows

-0.200

...

-0.369419

attribute "dep" string "positions"

object 4 class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end
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Example of file in vtk format

# vtk file format

Population_Inversion

ASCII

DATASET UNSTRUCTURED_GRID

POINTS 6655 float

0.853816 0.0 529.0

0.768435 0.0853816 530.0

...

CELLS 5000 45000

8 132 121 122 133 11 0 1 12

8 5927 5916 5917 5928 5806 5795 5796 5807

...

CELL_TYPES 5000

12

12

...

POINT_DATA 6655

SCALARS Population_Inversion float 1

LOOKUP_TABLE default

5.72747e+11
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Visualization Using VTK

vtk has 14 different cell types. Some of them are:

type [1]: VTK VERTEX

type [12]: VTK HEXAHEDRON

type [14]: VTK PYRAMID

In order to visualize data

one can use a vtk-file viewer like paraview or

one applies vtk library to visualize data directly.

– p. 79/123



Interpolation between Grids

Assume that a finite element function u is given on a triangulation Th1 .

How to find the values of u on a grid Ωh2 ?

How to find the triangles Tp for every p ∈ Ωh2?
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Test for one Triangle

Let P1, P2, P3 be the corners of one triangle.
Is a certain point P contained in the triangle P1P2P3?
Let (ξ, η) be such that

P = P1 + (P2 − P1)ξ + (P3 − P1)η.

Then P is contained in the triangle P1P2P3 if and only if

ξ + η ≤ 1 and ξ, η ≥ 0.

Such a test for all points P ∈ Ωh2 and triangles Th1 is very time
consuming.

– p. 81/123



From Structured to Unstructured Grid

Let the structured grid be

Ωh1 = {(x0 + h1i, y0 + h1j) | i, j = 0, ..., N}

Then, by a simple indices calculation one obtains the index i′, j′ such that

p ∈ (x0, y0) + h1[i
′, i′ + 1]× h1[j

′, j′ + 1].
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From Unstructured to Structured Grid

Let the structured grid be

Ωh2 = {(x0 + h2i, y0 + h2j) | i, j = 0, ..., N.}

Now perform the following steps:

1. For every triangle T = T ((x1, y1), (x2, y2), (x3, y3)) ∈ Th1 consider the
quadrangle

Q = [(min(x1, x2, x3),min(y1, y2, y3)), (max(x1, x2, x3),max(y1, y2, y3))].

2. For every p ∈ Q ∩ Ωh2 , set T (p) = T , if p ∈ T . This means store the
index of T at p, if p ∈ T .

3. Test if T (p) is set for every p ∈ Ωh2 . If not, then calculate the next
point q ∈ Ωh2 from p such that T (q) is set and T (p) = T (q).

4. Interpolate data from Ωh1 to Ωh2 by using T (p).
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From Unstructured to Unstructured Grid

Construct an auxiliary structured grid such that the domain of this
grid contains the domain of the two unstructured grids. The meshsize
of the auxiliary structured grid should roughly be the meshsize of the
two unstructured grids.

Then, for every triangle T ∈ Th1 , put T in the cell c of the structured
grid, if c intersects with T . (see “From Unstructured to Structured
Grid”). This means let T ∈ Tc, if T ∩ c �= ∅.

For every p ∈ Ωh2 , find the structured cell c such that p ∈ c. Then, find
triangle T ∈ Tc such that p ∈ T .
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Heating of a Body

original body

deformed body

heating of the body

leads to

ux

uyuz
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Linear Elasticity

Let Ω ⊂ R3 be the domain of the body.

Let T0 ∈ R be the original temperature of the body.

Let T : Ω → R be the temperature of the body after
heating.

Let �u =

 ux

uy

uz

 : Ω → R3 be the deformation vector of

the body after heating.

Problem: Let Ω, T0, T be given. Then, calculate �u .
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Symmetric Derivative

Definition 9. Let �u : Ω → R3. The symmetric derivative is defined by:

D�u :=



∂ux

∂x
∂uy

∂y
∂uz

∂z
1
2

(
∂ux

∂y + ∂uy

∂x

)
1
2

(
∂uy

∂z + ∂uz

∂y

)
1
2

(
∂ux

∂z + ∂uz

∂x

)
.


: Ω → R

6
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Symmetric Derivative

Another notation is

εij :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(i,j)∈Φ

D�u :=



ε11

ε22

ε33

ε12

ε13

ε23


,

where Φ = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (3, 1)}.
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Symmetric Divergence

div
(
(σij)(i,j)∈Φ

)
:=

1

2

(
Σj

∂σij
∂xj

ei + Σi
∂σij
∂xi

ej

)
.

div
(
(σij)(i,j)∈Φ

)
is the adjoint operator of D�u in the following

sense:∫
Ω

div
(
(σij)(i,j)∈Φ

)
v d(x, y, z) = −

∫
Ω

(σij)(i,j)∈ΦDv d(x, y, z)

Observe, that for a symmetric matrix (σij)(i,j)∈Φ :

div
(
(σij)(i,j)∈Φ

)
= Σj

∂σij
∂xj

ei.
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Linear Elasticity

Definition 10. Let E > 0 and 0 < ν < 1
2 be the physical constants

E-Modul and Poisson ratio.
Then, define the matrix

C−1 =
1

E



1 −ν −ν

−ν 1 −ν 0

−ν −ν 1

1 + ν

0 1 + ν

1 + ν


,
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Linear Elasticity

The deformation vector of the body satisfies the equations:

D	u =



α

α

α

0

0

0


(T − T0) + C−1σ,

div (σ) = 0,

where

α is a physical constant and

σ is called stress vector.
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Weak Formulation of Linear Elasticity

Define the bilinear form

a : (H1(Ω))3 × (H1(Ω))3 → R

(u, v) �→
∫
Ω

(Du)TCDv d(x, y, z).

Let v ∈ (H1
0 (Ω))

3. Then, we obtain

a(u, v) =

∫
Ω

div C



α

α

α

0

0

0


(T − T0) v d(x, y, z).
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Matrix of Linear Elasticity

A short calculation shows that

a(	u,	v) =

=
∫
Ω

F
[
(1− ν) ∂ux

∂x
∂vx

∂x + ν
∂uy

∂y
∂vx

∂x + ν ∂uz

∂z
∂vx

∂x + 1
2 (1− 2ν)

∂uy

∂x
∂vx

∂y +

1
2 (1− 2ν) ∂ux

∂y
∂vx

∂y + 1
2 (1− 2ν) ∂uz

∂x
∂vx

∂z + 1
2 (1− 2ν) ∂ux

∂z
∂vx

∂z +

1
2 (1− 2ν) ∂ux

∂y
∂vy

∂x + 1
2 (1− 2ν)

∂uy

∂x
∂vy

∂x + ν ∂ux

∂x
∂vy

∂y +

(1− ν)
∂uy

∂y
∂vy

∂y + ν ∂uz

∂z
∂vy

∂y + 1
2 (1− 2ν) ∂uz

∂y
∂vy

∂z + 1
2 (1− 2ν)

∂uy

∂z
∂vy

∂z +

1
2 (1− 2ν) ∂ux

∂z
∂vz

∂x + 1
2 (1− 2ν) ∂uz

∂x
∂vz

∂x + 1
2 (1− 2ν)

∂uy

∂z
∂vz

∂y +

1
2 (1− 2ν) ∂uz

∂y
∂vz

∂y + ν ∂ux

∂x
∂vz

∂z + ν
∂uy

∂y
∂vz

∂z + (1− ν) ∂uz

∂z
∂vz

∂z

]
d(x, y, z).
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RHS of Linear Elasticity

The right hand side can be written as

−
∫
Ω

F

[
(1 + ν) αT ∆T

∂vx
∂x

+ (1 + ν) αT ∆T
∂vy
∂y

+ (1 + ν) αT ∆T
∂vz
∂z

]
d(x, y, z).

(16)

For the implementation of the right hand side, it is helpful to sort the above
terms: 

F1

F2

F3

 . (17)
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Boundary Conditions for Linear Elasticity

Let ΓD ⊂ ∂Ω be the fixed boundary of the deformation process. Let the
rest of the boundary be free.
Then, define

V = {v ∈ H1(Ω) | v|ΓD = 0}.

Problem 5 (Weak formulation with boundary condition). Find u ∈ V such that

a(u, v) =

∫
Ω

div C



α

α

α

0

0

0


(T − T0) v d(x, y, z)

for every v ∈ V .
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FE Discretization of Linear Elasticity

Let Vh be the space of trilinear finite elements. Then, define

	Vh = {	v ∈ (Vh)
3 | 	v|ΓD = 0}.

Problem 6 (Weak formulation with boundary condition). Find uh ∈ 	Vh such that

a(uh, vh) =

∫
Ω

div C



α

α

α

0

0

0


(T − T0) vh d(x, y, z)

for every vh ∈ 	Vh.
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Rigid Body Modes

Consider the vector space functions

M := span




1

0

0

 ,


0

1

0

 ,


0

0

1

 ,


y

−x

0

 ,


0

z

−y

 ,


z

0

−x




M is the kernel of the bilinear form a. This means

a(	m,	v) = 0 ∀	m ∈ M, ∀	v ∈ V.

Therefore, in case of Neumann boundary conditions, we have to construct
V such that V ∩M = {	0}.
In case of pure boundary conditions, define V as follows:

V = {v ∈ H1(Ω) | 〈v, 	m〉 = 0 ∀	m ∈ M}.
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Superconvergence of the Gradient

The stress σ has to be calculated by D	u.
The finite element theory for linear and trilinear finite elements shows

‖D	u−D	uh‖L2 = O(h).

This is a slow convergence. But one can prove the following
superconvergence of the gradient in case of structured grids:
Let Σh be the cell points of the structured grid. Then, for a sufficient
smooth solution 	u and a not complicated boundary Γ, we obtain:

max
p∈Σh

‖(D	u−D	uh)(p)‖ = O(h2).

Therefore, in case of linear elasticity, apply

trilinear elements on a block-structured grid or

quadratic finite elements.
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Fluid Dynamics

Let us describe a two dimensional flow by:

u x-component of the velocity vector of the flow,

v y-component of the velocity vector of the flow,

p pressure of the flow.

v

u

(u,v)
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Navier-Stokes-Equations

∂u

∂t
+

∂p

∂x
+

∂(u2)

∂x
+

∂(uv)

∂y
=

1

Re
∆u

∂v

∂t
+

∂p

∂y
+

∂(uv)

∂x
+

∂(v2)

∂y
=

1

Re
∆v

∂u

∂x
+

∂v

∂y
= 0

There exist different kind of boundary conditions:
input, output, slip, and no-slip boundary conditions.
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Boundary Conditions:

input boundary condition: Dirichlet boundary condition.
Usually it is

(u, v) ◦ 	t = 0.

output boundary condition: Neumann boundary condition or better
boundary conditions.

no-slip boundary condition: Dirichlet boundary condition:

slip boundary condition:

(u, v) ◦ 	n = 0,
∂(u, v) ◦ 	t

∂	n
= 0.

Here 	t and 	n are the tangential and normal boundary vectors.
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Stokes-Equations:

−∆u+
∂p

∂x
= fx,

−∆v +
∂p

∂y
= fy,

∂u

∂x
+

∂v

∂y
= 0.

There exist several different kind of implicit, semi-implicit,
and explicit discretizations of the Navier-Stokes equations.
Important is the stability of these discretizations in space
and time. Stability in time can be analyzed by Fourier
analysis.
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Checkerboard Function

Let us discretize Stokes equations by finite difference discretization as
follows:

all unknowns at the grid points:

Ωh =
{
(i, j)h | i, j = 0, ...,m

}
,

five point stencil for �u, and

central difference for ∂p
∂x and ∂p

∂y .

Then, the pressure function

a

a
b

b

b b

b

b b b

b
a

a

a
a

a
a

a
b a ...

...
is contained in the kernel of the discrete Stokes operator.
Unstable discretization!
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Staggered Grid

Let us define the following three kind of grids:

Ωh,u =
{
(i, j − 0.5)h | i = 0, ...,m, j = 1, ...,m

}
,

Ωh,v =
{
(i− 0.5, j)h | i = 1, ...,m, j = 0, ...,m

}
,

Ωh,p =
{
(i− 0.5, j − 0.5)h | i, j = 1, ...,m

}
.

Apply the discretization:

five point stencil for �u at Ωh,u and for �v at Ωh,v,

central difference for ∂p
∂x and ∂p

∂y at Ωh,p,

central difference for ∂u
∂x + ∂u

∂y at Ωh,p.

Here apply the central difference discretization with respect to the
meshsize h

2 .
Stable discretization!
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Staggered Grid Discretization

v
N

vS

uE
uW

p

The finite difference discretization on a staggered grid leads to(
∂u

∂x
+

∂v

∂y

)
(x, y) ≈ uE − uW + vN − vS

h
= 0.
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Staggered Grid Discretization
v
N

p

p

v
S

v vvM EW

S

N

The finite difference discretization on a staggered grid leads to

−�v(x, y) +
∂p

∂y
(x, y) ≈ −vN − vS − vE − vW + 4vM

h2
+

pN − pS
h

= fy(x, y).
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Stable Discretizations for CFD

The staggered grid discretization is similar to the finite volume
discretization.

There exist several stable finite element discretizations.
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The Lattice Boltzmann Method - Basic Physics

Definition 11 (Particle Distribution). The fundamental variable in
kinematic theory is the particle distribution f(x, ξ, t) with respect to
velocity ξ at spatial coordinate x and time t. This means that the density
of particles at point x and time t, which move with velocity ξ, is
f(x, ξ, t). Here, x ∈ Ω ⊂ R3 and ξ ∈ R3.

Obviously, the density of the fluid is

ρ(x, t) =

∫
f(x, ξ, t) dξ (18)

and the velocity can implicitly be calculated by

u(x, t)ρ(x, t) =

∫
ξf(x, ξ, t) dξ.
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Boltzmann Distribution

Kinematic theory tells that a gas tends to reach state of
equilibrium, which statisfies the Boltzmann distribution:

feq(x, |v|, t) = ρ

(
1

2πRT

)3/2

e|v|
2/(2RT ), (19)

where T is the temperature, v is the velocity, and R is the
specific gass constant. The Boltzmann equation is

df

dt
= Ω(f) := −1

τ
(f − feq(x, |v|, t)), (20)

where Ω(f) is called collision operator and τ relaxation time.
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The Lattice Boltzmann Method using D2Q9 Scheme

discretization
cell

discrete 

h

velocities
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The Lattice Boltzmann Method using D2Q9 Scheme

Motivated by the particle distribution f(x, ξ, t), Lattice
Boltzmann discretization with D2Q9 scheme uses 9
functions

fi(xk, t),

where i ∈ {0, 1, 2, 3, ..., 8}. The discrete distribution function
fi(xk, t) is related to the discrete velocities ci .

i 0 1 2 3 4 5 6 7 8
ci (0, 0) (1, 0) (0, 1) (−1, 0) (0,−1) (1, 1) (−1, 1) (−1,−1) (1,−1)

wi
4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36
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The Lattice Boltzmann Method

The discretized density is

ρh(xk, t) =

8∑
i=0

fi(xk, t) (21)

and the discretized velocity is implicitly defined by

uh(xk, t)ρh(xk, t) =

8∑
i=0

cifi(xk, t) (22)
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The Lattice Boltzmann Method

The Boltzmann distribution (19) can be discretized as
follows

f
eq
i (xk, t) = wiρh(xk, t)

(
1 +

uhci
c2s

+
(uhci)

2

4c4s
− uuuh

2c2s

)
,

where cs is speed of sound .
Furthermore, the Boltzmann equation (20) is discretized by

fi(xk + hci, t+�t)− fi(xk, t)

�t
= −1

τ
(fi − f

eq
i (xk, t)),

where �t is the time step related to the velocities ci and
meshsize h.
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The Lattice Boltzmann Method

Algorithm 1 (Lattice Boltzmann Algorithm).

1. Calculate density and velocity by (21) and (22).

2. Calculate collision term by

Ωi(f) := −�t

τ
(fi − feq

i (xk, t))

3. Calculate streaming by

fi(xk + hci, t+�t) = fi(xk, t) + Ωi(f).
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Convergence of Lattice Boltzmann Method

Observe that fi might take negative values. This clearly
shows that fi is not a discretization of f . Instead fi is an
auxilliary variable which has simular properties like f (e.g.
see (18) and (21)). Nevertheless the important unknows
velocity uu and density ρh converge to the physical
quantities u and ρ under suitable conditions.
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Properties of Lattice Boltzmann Discretization

Advantage:

easy to implement

easy to parallelize

Disadvantage:

only small time steps.

not suitable for steady state solutions.
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Maxwell’s Equations

The solution of Maxwell’s equations in 3D is

	E: the electrical field and

	H: the magnetic field.

Given are

µ: magnetic permeability,

ε: electric permittivity,

	M : equivalent magnetic current density,

	J : electric current density.

Maxwell’s equations are:

∂ 	H

∂t
= − 1

µ
∇× 	E − 1

µ
	M,

∂ 	E

∂t
=

1

ε
∇× 	H − 1

ε
	J.
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Finite Difference Time Domain Discretization

Let τ be a time step.
Time approximation:

	E|n+ 1
2 : approximation at time point (n+ 1

2 )τ .

	H|n: approximation at time point nτ .

Furthermore, let us use the following abbreviation:

	H|n+ 1
2 :=

1

2

(
	H|n+1 + 	H|n

)
,

	E|n :=
1

2

(
	E|n+ 1

2 + 	E|n− 1
2

)
.
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FDTD

Let h be a mesh size.
Space approximation:

Ex|
n+ 1

2

i,j+ 1
2 ,k+

1
2

: at point (ih, (j + 1
2 )h, (k + 1

2 )h) (yz-face) .

Ey|
n+ 1

2

i+ 1
2 ,j,k+

1
2

: at point ((i+ 1
2 )h, jh, (k + 1

2 )h) (xz-face).

Ez |
n+ 1

2

i+ 1
2 ,j+

1
2 ,k

: at point ((i+ 1
2 )h, (j +

1
2 )h, kh) (xy-face).

Hx|ni+ 1
2 ,j,k

: at point ((i+ 1
2 )h, jh, kh) (x-edge).

Hy|ni,j+ 1
2 ,k

: at point (ih, (j + 1
2 )h, kh) (y-edge).

Hz |ni,j,k+ 1
2

: at point (ih, jh, (k + 1
2 )h) (z-edge).
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FDTD

E
x

E
y

E
z

H
x

H
y

H
z

H
z

H
y

H
x

H
z

H
y

z

x
y

(i,j,k)
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Staggered Grid Discretization

Now, the Maxwell’s equations

∂Ex

∂t
=

1

ε

(
∂Hy

∂z
− ∂Hz

∂y
− Jx

)
is discretized as follows:

Ex|
n+ 1

2

i,j+ 1
2 ,k+

1
2

− Ex|
n− 1

2

i,j+ 1
2 ,k+

1
2

τ
=

1

εi,j+ 1
2 ,k+

1
2

(
Hy|ni,j+ 1

2 ,k+1
−Hy|ni,j+ 1

2 ,k

h
−

Hz|ni,j+1,k+ 1
2

−Hz|ni,j,k+ 1
2

h

−Jx|ni,j+ 1
2 ,k+

1
2

)
The other Maxwell’s equations are discretized analogously.
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Losses

	J has to be composed as follows:

	J = 	Jsource + σ 	E,

where σ is the electric conductivity.
	E is approximated by

	E|n =
1

2

(
	E|n+ 1

2 + 	E|n− 1
2

)
.
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Boundary Conditions

Reflecting boundary conditions can be modeled by pure Dirichlet
boundary conditions.
Non-reflecting boundary conditions can be discretized by the Perfect
Matched Layer (PML) method. These are not Neumann boundary
conditions!
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