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FD for Poisson’s Equation

-

ﬁet us consider the finite difference discretization of Poisson’s equation
—Au = fon Q =]0, 1[? with Dirichlet boundary conditions.
This leads to a matrix equation

Lyxy = fn,
where the diagonal is
4

and Lj; has eigenvalues

4 h h
Avy = 72 (Sin2 (%) + sin? (%))

and eigenvectors e, ,, v, =1,...,m — 1.

o |
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Jacobi Method with Damping Parameter

- N

et us consider the iteration
h? h?
oyt = (B — — L)z} + — fa.

The algebraic error satisfies
xzﬂ —xp = (E — th) (xlfL — xh) :
If the algebraic error is an eigenvector like

k
Lp — Th = Cu,p;

then we get forv = p

h? mvh
k41 .2 k
oy =y = (1= —=Ay) ey, = (1 — sin (—)) (azh — azh) .
8 2
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Jacobi Method with Damping Parameter

|7‘I’his means that the Jacobi Method with Damping Parameter T
has the following properties

® Bad convergence for low frequencies.

® Good convergence for high frequencies.
1.

0.5 -

-0 5

72 T

-1
mivhj J
L‘l he Gauss—Seidel method has similar properties as the damped Jacobi
method.
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Heuristic approach

X X
X X
X X
A X

X

X

X

X

Jacobi and Gauss-Seidel iteration need O(y/n) = O(h™!)
operations for a correction in B due to a change of A.
The idea is to achieve a better correction by using coarser

grids.

o

|
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Multigrid

o O o 0 O O O

o O o 0 O O O O O O

o O o 0 O O O

o O o 0 O O O O O O O
o O o 0 O O O

o O o 0 O O O O O O
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Let ..« be the number of levels such that /,,,.« € N and

Lforlzl...lmax. J
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Matrix Equation on Multigrid
-

ﬁet us assume that a PDE (e.g. Poisson’s equation) is given. Discretize
this equation by the grids ; := Q;,, where [ = 1,...,l,,4.- This leads to
the discrete matrix equations

Az = by (1)

where b;, z; € S; and S; = R™. The matrix A4; is an invertible matrix of
order n; x n;.
Let an iterative solver for (1) be given as

ot = otk Ny = Spy,(2h) (2)

o |

—p.7/123



Idea of Multigrid Algorithm
-

fLe’[ r; be an approximate solution for (1). The algebraic
error ¢; I1s defined as

e = — 1. (3)

Now ¢; has to be calculated in order to find z;. The following
residual equation is valid for ¢,

Ajer =y, (4)
where r; is called the residual and is given by

r = b — Az (5)

The aim is to find an approximate solution of the residual
quuation by solving the equation approximately on a coarseJ
rid €2;_1. To this end, we need the following matrix
operators



Two—grid Algorithm

Two—grid Algorithm with Parameters v; and vs.

Let =7 be an approximate solution of (1) and v; and v, the parameters of
pre—smoothing and post—smoothing.

1. Step 1 (Pre-smoothing) z;"" = S, ;*a}.

2. Step 2 (Coarse grid correction)
Residual calculation : r; = b — Ajz,".
Restriction : r;_; = Ill_lrl.
Solve on coarse grid: e;_1 = A;_1 *rj_q.

Prolongation : ¢; = I!_,e;_;. Correction : z,° = 27" + ¢;.

k+1 k.2
l+ :Sl,Zf(% ).

3. Step 3 (Post—smoothing) «

o |
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Restriction and Prolongation Operators

- N

X X X X X X X
X O X O X O X
X X X X X X X
X O X O X O X
X X X X X X X
X O X O X O X
X X X X X X X

O—Coarse grid point and X—Fine grid point.
Let us abbreviate w; ; = x(p, , jn, ,) and set z; ; = 0 for
1=00ryp=00r t=m;_1 0r 3 =m;_q.

o |
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Prolongation or Interpolation

-

The interpolation or prolongation of z; ; given by w; ; = {I}_; ()} in, jn,) 1S
defined by the following equations

-

W2i,25 = %ng (6)

Woit1,2] = i(%g + xit1,5) (7)

W2i.2j41 = Z(xz’,j + i 1) (8)
W2i41,2j41 = é(ﬂfzg + Xit1 + Tijt1 + Tit1+1) (9)
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Pointwise Restriction

- N

lecewise restriction is rarely applied and defined by

{jz l_l(m)}(ihz_l,jhl_l) = X2; 2 (10)

The quality of this restriction operator is not very good.

o |
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Weighted Restriction

|7Weighted restriction or full weighting is defined by

{Il l_l(x)}(’ihl—lajhl—l)

Remark

-

%( 2i4+1,2j4+1 T £2i—1,2j4+1 T 241,251 T $2i—1,2j—1) +
1
1(372z'—|—1,2j + X2i—1,25 + T2i2j41 + T2i25—1) +
1
§$2¢,2j
@Y =1, (11)

|
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Multigrid Algorithm
-

If | = 1then MGM (xF,b;,1) = A7 b 1f 1 > 1 then
Step 1 (v -pre—smoothing)
xf = 51,22 (x7)

Step 2 (Coarse grid correction)

Residual : r; = b, — Ajz)"
Restriction : r;_; = I' 17,
Recursive call:

ey =0

fori=1...pu

e, zMGM(el L, 0 —1)

€l—1 = 61—1

Prolongation : ¢, = ll 1el |

Correction : :1:1C 2 = azl L yg

\— Step 3 (v2-post—smoothing) J

MGM (af,b,1) =S, ;2 (z7%)

—p. 14/123



V-cycle and W-cycle

ﬁI'he algorithm p = 1 is called V-cycle.
The algorithm 1 = 2 is called W-cycle.



Convergence of Multigrid

fLe’[ N be the number of unknowns. The computational T

amount of the V-cycle and W-cycle is O(N).
The theory of multigrid algorithms shows that there is a
constant p such that the convergence rate of the multigrid

algorithm satisfies
p(Cramy) <p <1

independent of [.

o |
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Debugging of MG
-

command out parts of the code (recursive coarse grid call, correction
step, ...)

often the coarse grid matrix is defined by
Ag = I A 1Y, 1= 1)t
Then, the following equation must hold for all coarse grid vectors v, w:
v Agw = (Iho)  ApIlhw.

Test this equation for w = 1 and other simple test functions.

In case of Neumann boundary conditions and Poisson’s equation:

Apl = 0.

|
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Linear Elements in 1D

-

Definition 1. ¢ is a linear function on the interval |a, b|, if there exist ¢, d € R such that

q(x) =cxr+d Vzx €la,bl.

Lleth = L m e N.

m J
Then, the space of functions

Vi, = {un € C([0,1]) | unljin,(i+1)n] islinear Vi = 0,...,m — 1 }

is called the finite element space of linear functions.
Define

V= {un € Vi | up(0) = up(1) = 0}.

o |
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Finite Element Discretization in 1D

o,

et us consider Poisson’s equation in 1D:

—u” = f on]0,1],
u(0) = ug, u(l) = uq.

Then, we get
1 1 .
/ u'vy, dx = / fun, dx Vv, €V, .
0 0

Definition 2. Letu; € V}, such that

1 1 .
/ vy, do = / fondz Yup €V,
0 0

un(0) = ug, up (1) = us.

o

uyp, Is called the finite element discretization with linear finite elements.

-

|
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Nodal Basis in 1D for Linear Elements

- N

et
Qp = {th|i=0,...,m},
O
Q, = {ih|i=1,...,m—1}.

(@]
Definition 3. The nodal basis of /1, is

(@]
Uhly -y Uh(m—1) €V

where

Up(q) = 0pg VD, q € Q.



Stiffness Matrix
-

or reasons of simplicity let us assume ug = u; = 0. Then, let us write
Up = Z TqUq,
O
q€ Qp

where z;, = (z,) o € R™ L
qe Qp,

Define the 1D local stiffness matrix and load vector as follows

1
!/
(/ VU, daz) o
0 p,q€ Qp,

1
(/ Jup dzz:) 5 -
0 pE Qp
Then, we get

L Apxp = fn. J
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Stiffness Matrix
-

fDefine the 1D local stiffness matrix and load vector as

follows
1
o ] 7
A = (/ VgV d:z:) )
0 p,q€ Qp

1
o= ([ rwas)
0 pe p

The local stiffness matrix and the load vector can be
calculated exactly or numerically.
Numerical integration leads to a matrix equation

Apzp = fi.
| |
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Example of Stiffness Matrices

ﬁet us consider linear finite elements in 1D.
The stiffness matrix corresponding to

1
/ uw'v dx
0

IS

-

|
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Stiffness Matrix
TT

he stiffness matrix corresponding to

1
/ v dx
0

IS

\ -1 0
The corresponding operator is

o wes |
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Stiffness Matrix
TT

he stiffness matrix corresponding to

1
/ wv' dx
0

IS

1 0 -1

The corresponding operator is

o wrs |
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-

IS

The corresponding operator is

o

Stiffness Matrix

he stiffness matrix corresponding to

1
/ uv dx
0

U — u.

|
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Example 1: Poisson’s Equation in 1D

-

—u” = f on]0,1],
u(0) = 0, u(1) = 0.

Discretize this equation by A,z = f, where

1 1
Ap = (/ R0 dx) N (/ In(f)vy, dx) o -
Q P,a€ Qn 0 PE Qp

-

(i

This means
[ 2 -1 \( - \ (4 1 \
-\ I A 1y

\f(lﬂ/



Finite Elements - Central Difference

L N

he discretization of

/
u—u

by finite elements leads to a discretization similar to the central difference
discretization

-1 0 1

\ 10

How do we get something similar to FD upwind?

o |
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Streamline Diffusion Discretization

e N

onsider the convection diffusion equation in 1D:
—u —bu' = f, w0)=u(l)=0

Multiply this equation by v = vy, — phv} sgn b, where vy, eI;h and integrate.
Assuming b > 0, this yields

1
/ (u'vy, + hpbu'vy, — bu'vy,) do + ph/ u'vy dr = / f(vn, — phvy,)d
0

In the streamline diffusion discretization, we neglect the term of third order
and replace u by uy,:

1 1
1+ hpb)uyv, —buyvy)dr = | f(vn, — phvy )dx.
. hUh h . h

o |
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Streamline Diffusion Discretization

-

Let p = 1. Then, the stencil corresponding to the term

-

1 1
1
/ (hpbuyv), — buyvy) do = b/ (ihuﬁlvg — upvp) do
0 0

IS

(1 -1 )
0

1 -1

0 1 -1
\ 0 1)
This shows that the finite element streamline diffusion discretization is
Lsimilar to the FD upwind discretization. J
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Finite Elements in 2D/3D
-

Definition 4. 7 = {1, ..., T} is a conform triangulation of () if

9 QIU:Z\il Ti, Tz I
a triangle or quadrangle (in 2D) or tetrahedron, hexahedron, prism, or pyramid (in
3D)

-

® ;N1 is either
$ emptyor
$ one common corner or

® one common edge.

o |
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Finite Elements in 2D/3D
-

® Let us write 7, if the diameter hy of every element
T € T, 1s less or equal h:

-

emark.

ht < h.

o A family of triangulations {7} is called quasi-uniform, if
there exists a constant p > 0 such that the radius pp of
the largest inner ball of every triangle T' € 7, satisfies

pT > ph.

o |
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Good and Bad Triangles

bad approximation

good

I

bad for Gauss—Seidel



Linear Elements in 2D

-

Definition 5. Let ]}, be a triangulation of {). Then, let V}, be the space
of linear finite elements defined as follows:

-

Vi,

{v c CY(Q)

v‘ - is linear for every T' € E}

Vi = Vi Hy(Q)

V| is linear means thatv‘T(x, y) = a+ bz + cy.

o |
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Bilinear Elements in 2D

-

Definition 6 (Bilinear elements on a Cartesian 2D grid). Let{2 =]0, 1|
h = % and

T = {[z’h, (z+ 1)h] X [jh, (7 + 1)h]

@j:Q”wm—l}.

The space of bilinear finite elements on €2 is defined as follows

Vi, = {v c CY(Q) U‘T

is bilinear for every T' € TH} .

v‘T is bilinear means thatv‘T(x, y) = a+ bx + cy + dzy.

o |
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FE Discretization of Poisson’s equation

- N

—Au = f

“‘59

Multiplication with v;, and integration leads to:
FE Discretization: Find w;, €17, such that

/ Vuy Vo, d(z, y) = / Fondizy)  YeneVa.  (12)
Q 0

o |
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Nodal Basis Functions

-

Definition 7. Let V}, be the space of linear or bilinear finite elements on
Tr, and N}, the set of corners of T;,. Then, define the nodal basis
function v, € V, at the point q by:

-

1 ifr=q
v (x) = forx € N
o) {0 itz # q h

Observe that
Vi, = span {vq

CIGNh}

This means that every function uy, € V}, can be represented as

Up = AgU
B " a B
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Stiffness matrix

- N

Up.q = /QVvq Vo, d(z,y), fp = /vap d(x,y)

0
A = (a : Np:= N, NQ
h ( p’Q)p,qu\(}h
u, = Z Ag Vg
QGJ\?’h

Then, (12) implies

Up = O‘q) g

A, U, = Fy where 9ENK
Fy =

h (fp)pe\f}h

The matrix A, is called the stiffness matrix of the FE discretization.

o |

—p. 38/123



Bilinear Elements on a Structured Grid

L N

Consider the structured grid on  =]0, 1[*:

Tn = {[z’h, (¢ + 1)h] X [jh, (7 + 1)h]

i,j:(),...,m—l}.

N}, is the set of corresponding nodal points (corner points).
Observe that the nodal basis functions can be decomposed as

Upapy (z,y) = vp, () - Up, (y)-

Thus,

1 1
ov,, Ov
v v d — Px dx d / d
/Q /UQ:BCIy vpﬂcpy (Qf, y) 0 ax 833 L 0 vpy 'qu y

L ov,, Ov !
+ Py — 1y dy/ Vp, Vg, A
0

L o Oy Oy

|
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Bilinear Elements on a Structured Grid

-

|7‘I’his shows that the discretization stencil for Poisson’s equation is:

;)

S|

(e )

|

|
~
| | |
—_ =
o |
— p—
| | |
—_ =
;/
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Local Stiffness Matrix
Since Q1 = |J;”, T;, we obtain

/ Vo, Vo, d(z,y) = f:/ Vv, Vu, d(z,y).
L i=1 7T
For linear or bilinear elements, we obtain

/T Vo, Vo, d(z,y) #0 < p,q e T;.
Definition 8. The matrix

(/ Vv, Vu, d(z, y))
T P,q€T;

is called local stiffness matrix at T’;.

o |
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Reference Element

To calculate the local stiffness matrices we need a reference element 7T
and a mapping

for every 1.

Example 1. A reference element for triangles is:

T={¢&n|&+n<1 and &n >0}

If T’; consists of the corners Py, Py, P3, then

Ui(&n) = PL+ (P2 — P1)§+ (Ps— P)n.

Example 2. A reference element for quadrangles is:

L T={(¢&n]0<&n< 1}, J
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Calculation of Local Stiffness Matrices

N N

ow, the local stiffness element can be calculated by

/ Vv:f Vo, d(z,y) =
T;
- / (DW,)"TVd,)" ((DW;)"TV4,) | det DW,| d(¢,n).
T

Example 3. Consider triangles. Then, describe the mapping V; by

\Ifi(f,n)Pﬁ(a)ﬁﬂL(c)n-
b d

: mi(zg) .

—p. 43/123
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Numerical Integration

o

alculate the integral

/T ((D\Ifi)_TV@q)T ((DY;)~"V,) | det DY,;| d(¢,n).

by Gauss quadrature rule.

Example 4. Consider triangles and choose the above reference element. Then, the first

Gauss quadrature rule implies:

/T ((qu@-)—qu)T ((DY;)~"'Viy,) | det D¥;| d(&,n)

Y
Y

33

% ((D\Ifi)_TV@q)T ((DY;)~"'Viy,) | det DU (1 1) ,

o |
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Calculation of Stiffness Matrix

- N

Py
The stiffness matrix of this
triangulation is:
P J
A, —
P, 5
2 P, (15 1 i +1B 1B 0
Iy Uy 13 0 0
NS R PN £ SR F- A AR | S 1
{1,2,3} = WN(4) 1B 0 IB+1S 1B +1$, IS
{1,3,4} = WN(B) \ 0 0 <, 1S
{4,3,5} = WN(C)

o |
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Algorithmic Calculation of Stiffness Matrix

L N

he calculation of stiffness matrix has to be performed in two steps:
1. Step: Calculate the local stiffness matrix.

2. Step: Calculate the stiffness matrix.

But there exist two approaches:

1. First compute and store the whole local stiffness matrix.
Then, calculate the stiffness matrix.

2. After the calculation of the local stiffness matrix of one element T,
add these integrals to the whole stiffness matrix.

o |
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Data Structure for (Local) Stiffness Matrix

-

|7 1. Local stiffness matrix: Let n be the number of degrees of freedom
for an element T € T, (3 for triangle). Then, forevery T' € T, a
nt X nr matrix has to be stored.

2. Stiffness matrix: For every unknown (grid point) the discretization
stencil has no fixed size.

o |
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Sparse Matrix Format

1.row 2.row k.row
1 N1 No—+ Nk—1
(5] —|—nk-_2
—+... + T
niy nNo T
1 =1 1= 2 1 = k
1 1 no + .. Nk—1 +

|
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fLe’[ N

1.

2.

Algorithm (Stiffness Matrix Calculation)

-

(T') be the corner points of the triangle 7.

Calculate local stiffness matrix (1};); jen(r) for every
finite element T' € 7;,.

Calculate the number of neighbour points m; for every

(]

point ;. This gives the value n; =) ._; ms+1inthe
sparse matrix of the the stiffness matrix.

. Go to every grid point ¢ and iterate over the neighbour

element T € T;,i € N(T). Add the I/, to a;; for every
j e N(T).

= Later we explain how to obtain a suitable data structure
for the discretization grid.

o

|
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Data Structure of the Discretization Grid

|7Array (or list) of objects of type Triangle. Every triangle has an id.

class Triangulation_grid {
int number_triangles;
Trianglex triangles; // id 1s number in list

int number_points;
Points* points; // id 1s number in list

}
class Triangle {
int i1d_point_1, 1d_point_2, id_point_3;

}

class Points {
double x,y; // coordinate of point

int number_neighbour_points;
intx 1d_neighbour_points;
}

|
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Weak Formulation of a PDE

- N

et V be a vector space and

a:VxV—=>R
a symmetric positive definite bilinear form. a induces the “energy” norm
lulle = v a(u,v).

Furthermore, let
f: V=R

be a || - ||g continuous linear functional and let V' be complete with respect
tofl-l& -
Problem 1. Findu € V suchthat  a(u,v) = f(v) Vv eV.

Theorem 1. The above problem has a unique solution wu.

o |
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Examples of PDEs with Weak Formulation

Example 5 (Poisson’s Equation with Reaction Term). Let —‘
V=H}(Q):={ueLl?)|Vue L*Q)}andc > 0.

a(u,v) = /Q (VuVo + cuv) d(x, y).

Example 6 (Linear Elasticity). LetV = (H}(02))3,u € V, C a suitable 6 x 6 matrix
and Du the vector of symmetric derivatives (see section ??).

a(u,v) Z/Q(D’LL)TCD’U d(z,y, z).

Example 7 (Maxwell's Equations). LetV be a suitable vector space similar to (H}(Q))>

andc > 0.

o

a(u,v) = /Q(V x u)' (V x v) + cuv d(z,y, 2).

|
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General Convergence Theory

L

Problem 2. Finduy € Vj, suchthat  a(up,vn) = f(vy) Yop € Vi,

et V}, be a subspace of V.

Theorem 2.

_ < inf _
Ju—unlls < inf lu=vile

Example 8. Consider Poisson’s equation. Let V}, be the space of linear elements
corresponding to a a familiy of quasi-uniform triangulations.

Furthermore, assume thatu € C?(Q) (H*(2)) is the weak solution of Poisson’s
equation. Then, there is a constant C' such that

lu —unllp < RC

for every h, where uy, € V}, is the finite element solution.

LRemark: In case of H?(Q)-regularity, one can prove ||u — u |2 < h*C . J
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Operator Formulation

-

ﬁet V}, be a finite element space and (v, ),en;, the corresponding nodal
basis. Let u, £ be vectors of length |N}|. Then,

f = Laplace_FE (u);
means

£ = (fp)pen, = (/Q V( Z UqVq) VUp d(%‘,y))
9N pEN}

and
f = Helm FE (u);

f(fppENh</ Zuqqup xy) :
4N pPENL
. |
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Operator Formulation

ﬁl’hus, T

Laplace_FE( ), Helm_FE( )
are operators. Let
Diag_Laplace_FE( ), Diag_Helm_FE( )

be the corresponding diagonal operators.
Let

interior, boundary

represent the interior and boundary points of the domain and
product (u, v)

the scalar product of u and v.

o |
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Test 1: Volume Calculation

N N

ow let us implement the above operators by expression templates.
Then, the code

u = 1.0;

f = Helm FE (u);

cout << product (u,f) << endl;
calculates the volume of the domain.

o |
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Test 2: Volume Calculation

N N

ow let us implement the above operators by expression templates.
Then, the code

u = X;

f = Poilisson FE (u);

cout << product (u,f) << endl;

calculates the volume of the domain.
Here, let X be the x-coordinate.

o |
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E

can approximatively be solved by finite elements and the

Dirichlet Boundary Conditions

he problem
Problem 3. Findu € H'(Q) such that

—Au = [ onfl,

ulr = g

Gauss-Seidel iteration as follows:
Helm FE (L) ;

o

u
f
u

u

u.

g

’

| boundary;
for (1i=0; 1<i_max; ++1)
(Laplace_FE (u)—-f) /Diag_Laplace_FE ()

u_

interior_points;

-

|
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o,

Using a Direct Solver

which calculates

Then, apply the code

Helm FE (f) ;

u;
0.0
g

f - Laplace_FE (u)

0.0

interior;

boundary;

boundary;

et us assume that there is a good direct solver ui=Inverse (S, £1)

= S

ut

boundary;

Sparse_matrix (Laplace_FE, 1nterior);

vector (f, interior) ;

vector (u, interior) ;

Inverse (S, fi);

g

boundary;

-

|

—p.59/123



Boundary Conditions

ﬁet us consider the equation T

—dvpugradu = f on{,

u = g onlp,
ou
— = 0 onTl
on N
ou
% + B(U — Uref) = 0 on Fthirda

here (2 is a domain and
0N =TpUILNUTLpird

is a disjunct subdivision of the boundary, where I' , # ().
Furthermore, let 1 : 2 — R be a piecewise constant parameter and J
< peR.
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Boundary Conditions

o

efine the finite element space
Vh = {Uh eV ‘ Uh‘FD = O}

Then, we obtain

/QVu,quh d(z,y) + B,u/F uvp do = B,u/

I'inira

u?“efvhdo- + /f’l)hd<ilf,y>

third Q

for every vy, € V.
FE Discretization
Find u;, € V;, such that

/Vuhquh d(x,y) + /3#/ upvp do = 5u/ Ure U do + /fvhd(w,y
Q I'third Q

I'third

V?)h ~ Vh,

L up(z) = g(z) VzeQ,NIp. J
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Boundary Conditions

o

bserve that the bilinear form

a(u,v) = / VuuVod(x,y) + 5,u/ uv do
9) r

third

IS symmetric positive definite on the space

{ve H(Q) | U}FD = 0}.

|
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Operator Formulation

-

fLe’[ us implement the operators in section ?? by expression
templates.
Let A_FE be the operator corresponding to the bilinear form
a(u,v).
The previous problem can be solved by the Gauss-Seidel
iteration as follows:
u = Helm_FE(L);
f = u;
u = g | boundary_D;
for(1=0;1<1 _max; ++1)
u=1u - (A_FE(u)-f)/Diag_A_FE() | grid_space,
Here grid_space represents the interior points and the
boundary points which are no Dirichlet boundary points.

o |
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Neumann Boundary Conditions

o,

et us consider the equation

—Au = f onf{), (13)
ou
— = I. 14
57 0O on (14)
A short calculation shows
/ fd(z,y) =0. (15)
Q2

Thus, we assume (15).

o |
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Neumann Boundary Conditions

i

natural way to obtain a well-defined problem is:

Problem 4. Findu € H' () such that

where we assume

—Au
@
on

f onfl,

0 onl and/ ud(z,y) =0,
Q

/Qf d(z,y) = 0.

-

|
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Operator Formulation

fLe’[ us implement the operators in section ?? by expression T
templates.

The previous problem can be solved by Gauss-Seidel
iteration as follows:

Eins = 1.0; // set up for normalization
IntE = Helm FE (Eins);

Eins = Eins / product (Eins, IntE);

f = £ - Eins * product (f, IntE);

u = Helm FE (L) ;
f = u;

for (int 1=0; 1i<N;++1) {
u=u - (A_FE(u) —-f) / Diag_A FE();
t__ u = u — Eins % product (u, IntE); o

—p. 66/123



Streamline Diffusion Discretization

e N

onsider the convection diffusion equation in 1D:
—Au—bgradu =
u}ﬁﬂ

where b : Q — R2 is a vector field.
Discretization: Find u;, €V, such that

/ (Vuh o Vuy, + hpgo Vup bo Vuy, ngz_l —bo Vup ’Uh) d(z,y)
Q

— /Qf(vh — ,Ohl;o Vuy, ngz_l)d(xa y)

O
for every v, €Vy,.

o |
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Types of Grids
|

® (Cartesian grids

here exist

® Dblock structured grids
® unstructured grids
o ..

to discretize a domain (2.

o |
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Cartesian Grid

.

xample of an Cartesian grid:

Qnr = {@h,jk)+ (zo,y0) |1 =0,....m, 7=0,...,n},
where h, k > 0.

Data structure: Array!

o

|
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Block Structured Grid
L

et

Q) = {(ih,jh) |i,j=0,....,n},

where h = % Furthermore, let 7 = {T1,...,Ty} be a subdivision by
quadrangles (2D) and

oy
%‘\“ il
SN\hitiighyes
SN

Wy 2 0,1)* — Ty

Y,

A

Nt

Y
b

smooth bijections such that Q = |, , U ([0, 1]2).
Then,

0
oL ]]

M
Q= | Ur()
k=1

is a block structured grid.
(Generalizations in 3D and for different mesh sizes are possible.)
Data structure: Unstructured grid of quadrangles, each block by array.

|
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Simple Interpolation

i

simple construction of the mapping
Wy - [0, 1]2 — T

IS

Uie(n,§) = Psw+ (Pse— Psw)n+ (Pnw — Psw)§ +
(Pne — Psg — Pnw + Psw)én.
Prnw PnE
1
Yo s
o PSE




Transfinite Interpolation

-

Let Bn, Bs, Bw, Be : [0,1] — R? be parameterizations of the north, south,
west and east boundary. Then, the transfinite interpolation is:

-

Ur(n,8) = Bs(n)+(Bn(n) —Bs(n))§
+Bw (&) + (Be(§) — Bw(&))n
—Psw — (Psg — Psw)n — (Pnw — Psw)§
—(Pyg — Psg — Pnw + Psw)&n.

NENEN
RN -
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Unstructured Grid
A

n example of an unstructured grid is:

Data structure for an unstructured grid:
® list or array of corners (information of coordinates)

® list or array of triangles, quadrangles, ... with pointers to corners and
number of corners.

By this information one can construct:
L.’ list or array of edges and faces (in 3D). J
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Visualization of an Unstructured Grid
fExamples of powerful 3D visualization programs are: T
#® AVS (commercial)
#® OpenDx (public domain)
o ParaView (uses vtk Toolkit, public domain)

AVS supports structured grids and unstructured grids. An
unstructured grid may consist of geometric elements

# point (0D)

# line (1D)

# triangle, quadrangle (2D)

o tetrahedron, hexahedron, prism, pyramid (3D).

o |
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Example of file in UCD format for AVS
[__; UCD file format for AVS __W

22 44 1 0 O
0 0.292053 0.292053 0.292053
1 0.292053 0.292053 0.892053

21 0.292053 0.292053 1.00005
1 1 tet 12 2 7 O

43 1 tet 19 21 17 1
44 1 tet 21 19 18 1
1 1

variable

0 0.433753

1 -0.296865

e -

21 -0.369419
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Example of file in dx format for OpenDx

# dx file format for OpenDx unstructured grid

object 1 class array type float rank 1 shape 3 items 22 data follows
0.292053 0.292053 0.292053

0.292053 0.292053 1.00005
object 2 class array type int rank 1 shape 4 items 44 data follows
12 2 7 0
20 0 17 1

21 19 18 1

attribute "element type" string "tetrahedra"

attribute "ref" string "positions"

object 3 class array type float rank 0 items 22 data follows
0.433753

—-0.369419

attribute "dep" string "positions"

object "irregular positions irregular connections" class field
L__Somponent "positions" wvalue 1 ___J

component "connections" wvalue 2

component "data" wvalue 3 —p. 76/123
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Example of file in dx format for OpenDx

# dx file format for OpenDx structured grid

object 1 class gridpositions counts 10 10 10

origin 0.005 0.000 0.005

delta 0.010 0 O

delta 0 0.010 O

delta 0 0 0.010

object 2 class gridconnections counts 100 101 99

attribute "element type" string "cubes"

attribute "ref" string "positions"

object 3 class array type float rank 0 items 1000 data follows
-0.200

-0.369419
attribute "dep" string "positions"
object 4 class field
component "positions" value 1

component "connections" wvalue 2

component "data" wvalue 3
end
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Example of file in vtk format

# vtk file format

Population_Inversion
ASCIT

DATASET UNSTRUCTURED_GRID
POINTS 6655 float
0.853816 0.0 529.0
0.768435 0.0853816 530.0

CELLS 5000 45000
g 132 121 122 133 11 0 1 12
8 5927 5916 5917 5928 5806 5795 5796 5807

CELL_TYPES 5000
12
12

POINT_DATA 6655

SCALARS Population_Inversion float 1

L__%OOKUP_TABLE default ___J
5.72747e+11
4.47913e+11 —p.78/123



-

® type
® type
® type

vik has 14 different cell types. Some of them are:

Visualization Using VITK
-

1]: VTK_VERTEX
12]: VTK_HEXAHEDRON

(14]: VTK_PYRAMID

In order to visualize data

#® one can use a vik-file viewer like paraview or
#® one applies vtk library to visualize data directly.

|
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Interpolation between Grids

i

® How to find the values of « on a grid €2, ?

ssume that a finite element function u is given on a triangulation 73, .

® How to find the triangles T;, for every p € 2,7

A
<IN

q

2N
fh

v

<

A

7\
N/

\
b

(“{
/[

/

Y

S

“r
a

\




Test for one Triangle

fI_et Py, Py, P; be the corners of one triangle.

Let (¢, 7) be such that
P=P + (P, — P )¢+ (Ps— Pi)n.
Then P is contained in the triangle P; P, Ps if and only if
E4+n<1 and &,n>0.

Such a test for all points P € €0;,, and triangles 7, is very time
consuming.

o |
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From Structured to Unstructured Grid

- N

et the structured grid be
th — {(CEO + hliayo + hlj) | 7’7.] — 07 7N}
Then, by a simple indices calculation one obtains the index ', ;' such that

p € (zo,y0) + hali',d" + 1] x ha[j’, 5" + 1].

AN
AWAY
N :

—— | / —p.82/123
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From Unstructured to Structured Grid

- N

Let the structured grid be

Qh2 — {<x0 =+ h27:7y0 =+ h2]) | Z?] — 07 7N} g

Now perform the following steps:

1. Forevery triangle T' = T((x1,y1), (2, y2), (3,y3)) € T, consider the
quadrangle

Q — [(min(xla X2, 2133), min(yla Y2, y3))7 (max(xl,x2,x3), max(ylvy27 y3))]

2. Foreverype QNQy,,setT(p)=1T,if p e T. This means store the
index of T"at p, ifpe T.

3. Testif T'(p) is set for every p € Q. If not, then calculate the next
\— point ¢ € Qy, from p such that T'(¢) is set and T'(p) = T'(q). J
4. Interpolate data from Q, to 2, by using T'(p).
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From Unstructured to Unstructured Grid

-

-

® C(Construct an auxiliary structured grid such that the domain of this
grid contains the domain of the two unstructured grids. The meshsize
of the auxiliary structured grid should roughly be the meshsize of the
two unstructured grids.

® Then, for every triangle T' € T, put T in the cell ¢ of the structured
grid, if c intersects with T'. (see “From Unstructured to Structured
Grid”). ThismeansletT € T,, if T Nc # 0.

® Foreveryp e Q,, find the structured cell ¢ such that p € ¢. Then, find
triangle T' € T, such that p € T..

|
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Heating of a Body

U, Uy

Lz

Uy

original body heating of the body
leads to

deformed body

o



Linear Elasticity

® Let QO c R? be the domain of the body.
_et Ty € R be the original temperature of the bodly.

® LetT :Q — R be the temperature of the body after
neating.

°

Uy
® letdi=| u, |:9— R’ bethe deformation vector of
Uy

the body after heating.

Problem: Let 2, Ty, T be given. Then, calculate « .

o |
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Symmetric Derivative

-

Definition 9. Letw : ) — R3. The symmetric derivative is defined by:

Ouy
[ )
Ouy
Jy
Ou
0z

8?@3 ZQ%R6

NI— pDol—= D=

o |
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Symmetric Derivative

A

nother notation is

L 1 8ui_|_(3’u]'

[en )

€22

= €33
Du =
€12

=y
where & = {(1,1),(2,2),(3,3),(1,2),(2,3), (3,1)}.

o




Symmetric Divergence

- N

_ 1 0o i 0o i
dN((Uij)(z‘,j)gb) = 5 (Zj (3’%]]62—'_2 axzj j>.

div((az-j)(i,j)eq,) Is the adjoint operator of D in the following
sense:

/ diV((Uij)(z‘,j)e@)U d(z,y,z) = —/(Uz'j)(z',j)ecbDU d(z,y, z)
Q Q

Observe, that for a symmetric matrix (o;)(; j)eo :

Do

dv((@iapes) = S le

o |
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Definition 10. Let £ > 0 and0 < v < % be the physical constants
E-Modul and Poisson ratio.

Linear Elasticity

Then, define the matrix

[ 1

—V

—V
1

—V

—UV
—UV

1

1+ v

1+ v

1—|—V)

|
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Linear Elasticity

-
/

div (o) = 0,

where
® o is a physical constant and

® o is called stress vector.

o)
o
)
0
0
0

)

/

he deformation vector of the body satisfies the equations:

(T —Ty) +C o,

-

|
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Weak Formulation of Linear Elasticity

b N

efine the bilinear form
a: (Hl(Q))3 X (Hl(Q))?’ — R

(u,v) +— /Q(Du)TCDvd(x,y,z).

Let v € (H}(Q2))3. Then, we obtain

(o)

a(u,v) = /QdiVC (T —Ty) vd(z,y, z).

o o o © © ©

- 0 N



Matrix of Linear Elasticity

fA short calculation shows that T
a(t,v) =
=1r | by G O gy D D (1 2y) D Dy
+3 (1-2v) G F= + T
%(1_2> up Oy (1_2)auy avy+ x%v;_'_
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RHS of Linear Elasticity

The right hand side can be written as
OV,
_/F [(1+V)04TAT 5 + + ] d(z,y,z).
X

Q
(16)
For the implementation of the right hand side, it is helpful to sort the above
terms:

(17)

o |

—p.94/123



Boundary Conditions for Linear Elasticity

-

ﬁet I'p C 0N be the fixed boundary of the deformation process. Let the
rest of the boundary be free.
Then, define

V={ve H Q) | v|r, =0}.

Problem 5 (Weak formulation with boundary condition). Find u € V' such that
[ o)
Q

a(u,v) = /Q divC (T —Ty) vd(z,y, 2)

o)
0
0
\ 0
\_for everyv € V. J
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FE Discretization of Linear Elasticity

- N

et V}, be the space of trilinear finite elements. Then, define
Vi = {7 € (Va)* | ¥r,, = 0}.

Problem 6 (Weak formulation with boundary condition). Find up € Vh such that

(o)

a(up,vp) = / divC (T — Ty) vy, d(x, y, 2)
Q

Q
Q
Q
0
0
y
\—for every v, € Vj,. J
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Rigid Body Modes

fConsider the vector space functions T
([ 1 0 0 Y 0 2\ )
M = Span < O 9 ]. 9 O 9 — 9 < 9 O >
L\ 0 0 1 0 —1 -z |

M is the kernel of the bilinear form a. This means
a(m,v) =0 Vme M, VoeV.

Therefore, in case of Neumann boundary conditions, we have to construct

V such that V. n M = {0}.
In case of pure boundary conditions, define V' as follows:

| V= {ve HYQ) | (v,m) =0 Vm e M. |
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Superconvergence of the Gradient

ﬁI'he stress o has to be calculated by Du. T
The finite element theory for linear and trilinear finite elements shows

|D@ — Dity|| 12 = O(h).

This is a slow convergence. But one can prove the following
superconvergence of the gradient in case of structured grids:

Let 325, be the cell points of the structured grid. Then, for a sufficient
smooth solution « and a not complicated boundary I', we obtain:

max || (DT — D) (p)|| = O(h?).

pEX

Therefore, in case of linear elasticity, apply

® trilinear elements on a block-structured grid or

\_.ﬂ quadratic finite elements. J
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Fluid Dynamics

fL

#® u x-component of the velocity vector of the flow,

et us describe a two dimensional flow by:

#® v y-component of the velocity vector of the flow,

u,v)

® p pressure of the flow. (

Vv

o |

—p.99/123



Navier-Stokes-Equations

ou Op Ow?)  O(w) 1
ot i ox i ox i 0y  Re Au
ov  Op Ow) 0O(v?) 1
— 4+ — = —A
ot i oy i ox i oy Re "
o
oxr Oy

There exist different kind of boundary conditions:
input, output, slip, and no-slip boundary conditions.

o |

—p. 100/123



Boundary Conditions:

input boundary condition: Dirichlet boundary condition.
Usually it is

—

(u,v) ot =0.

® output boundary condition: Neumann boundary condition or better
boundary conditions.

°

no-slip boundary condition: Dirichlet boundary condition:

°

slip boundary condition:

O(u,v)ot

0.
on

(u,v) on =0,

Here t and 7 are the tangential and normal boundary vectors.

o |
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Stokes-Equations:

Op
—A P T
u + 5 f
Op
_AU+ a_y — fy7
ou Ov
e + (9_y = 0.

There exist several different kind of implicit, semi-implicit,
and explicit discretizations of the Navier-Stokes equations.
Important is the stability of these discretizations in space
and time. Stability in time can be analyzed by Fourier
analysis.

o |
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Checkerboard Function

-

ﬁet us discretize Stokes equations by finite difference discretization as
follows:

® all unknowns at the grid points:
Q) = {(z’,j)h 14,5 =0, m}

® five point stencil for Au, and
® central difference for 92 and g—g.

Then, the pressure function

(@R IO REY)
Ve Ney
(@R IO REY)
Ve Ney
OO OO

Lis contained in the kernel of the discrete Stokes operator. J
Unstable discretization!
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Staggered Grid
|

et us define the following three kind of grids:

Vnu = {(i,j—0.5)h\7j:0,...,m, j:1,...,m},
Opo = {(z'—o.5,j)hu:1,...,m, j:o,...,m},
Opp = {(i—0.5,j—0.5)h|7Z,j:1,...,m}.

Apply the discretization:
® five point stencil for Aw at 24, ,, and for Av at ©y, ,,,

® central difference for 32 and 22 at 0, ,,,
T Y ,

® central difference for 3% + Z% at (0, ,.

Here apply the central difference discretization with respect to the
meshsize Z.

|
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Staggered Grid Discretization
B ; -

\%
S
The finite difference discretization on a staggered grid leads to

ou  Ov Ugp — Uw + UN — Vs
(z,y) =

5 T By — 0.

h -

—p. 105/123
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-

Staggered Grid Discretization

<

The finite difference discretization on a staggered grid leads to

0

—AU(&B, y) + _p(xv y)

o

dy

a4

—UN — Vg — Vg — vw +4upy

+PN—PS

h2

h

-

— fy(x,y)

|
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Stable Discretizations for CFD

- N

® The staggered grid discretization is similar to the finite volume
discretization.

® There exist several stable finite element discretizations.

o |
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The Lattice Boltzmann Method - Basic Physics

-

|7Definition 11 (Particle Distribution). The fundamental variable in
kinematic theory is the particle distribution f(x, &, t) with respect to
velocity £ at spatial coordinate x and time t. This means that the density
of particles at point x and time t, which move with velocity &, is

f(x,€&,t). Here, x € Q C R? and € € R?.
Obviously, the density of the fluid is

p(x, 1) — / F(x,6,1) de (18)

and the velocity can implicitly be calculated by

alx, o, 1) = [ €7(x.6.) de

o |
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Boltzmann Distribution

-

fKinema’[ic theory tells that a gas tends to reach state of
equilibrium, which statisfies the Boltzmann distribution:

1 \Y?
e e R

where T’ is the temperature, v is the velocity, and R is the
specific gass constant. The Boltzmann equation is

df _

1
o =AU = —(f - FEU(x, [v], 1)), (20)

T

where Q(f) is called collision operator and r relaxation time.

o |
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The Lattice Boltzmann Method using D2Q9 Scheme

- N

I - discretization
2" cell
L
. ]~ discrete
& % - -7 0 0
PP velocities

< - h - - >

o |
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The Lattice Boltzmann Method using D2Q9 Scheme

fMo’[iva’[ed by the particle distribution f(x, &, t), Lattice T
Boltzmann discretization with D2Q9 scheme uses 9
functions

fi(Xkat)a

where : € {0,1,2,3,...,8}. The discrete distribution function
fi(xg,t) Is related to the discrete velocities ¢; .

I | O 1 2 3 4 5 6 / 8

Ci (090) (190) (071) (_1?0) (07_1) (1?1) (_1?1) (_17_1) (17_1)
|4 1 1 1 1 1 1 1 1
Wil 9 9 9 9 9 36 36 36 36

o |
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The Lattice Boltzmann Method
E

he discretized density is

8

ok, t) = > filx, 1)

1=0
and the discretized velocity is implicitly defined by

8

W, (xk, )pn(Xk, 1) = Y cifi(xp, t)

1=0



The Lattice Boltzmann Method
-

fThe Boltzmann distribution (19) can be discretized as
follows

2 4 2
s 4cs 2cz

2
uyc; urc; u,,u
fz-eq(Xk,t) = w;pp(Xg, t) (1 + L2y (Unc:) : h) :

where ¢, Is speed of sound .
Furthermore, the Boltzmann equation (20) is discretized by

fi(xx + hcz',?fztﬁt) — filxg,1) _ —%(fi — 7 (xp, 1),

where At is the time step related to the velocities ¢; and
meshsize h.

o |
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The Lattice Boltzmann Method

A N

Igorithm 1 (Lattice Boltzmann Algorithm).

1. Calculate density and velocity by (21) and (22).

2. Calculate collision term by

0u(f) = 22 (i~ £, 1)

3. Calculate streaming by

fi(xk + heiyt + At) = fi(xp, ) + Qi(f).

o |
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Convergence of Lattice Boltzmann Method

-

fObserve that f; might take negative values. This clearly
shows that f; is not a discretization of f. Instead f; is an
auxilliary variable which has simular properties like f (e.g.
see (18) and (21)). Nevertheless the important unknows
velocity u,, and density p;, converge to the physical
guantities u and p under suitable conditions.

o |
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Properties of Lattice Boltzmann Discretization
fAdvantage: T
# easy to implement
# easy to parallelize
Disadvantage:
# only small time steps.
# not suitable for steady state solutions.

o |
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Maxwell’s Equations

-

® [E: the electrical field and
® H: the magnetic field.

he solution of Maxwell's equations in 3D is

Given are

® 1 magnetic permeability,

® c: electric permittivity,

® : equivalent magnetic current density,

® J: electric current density.

Maxwell's equations are:
OH 1 1
ot 1 1

E 1 1o
L 0 -VxH—--J. J
€

ot €
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Finite Difference Time Domain Discretization

-

ﬁet T be a time step.
Time approximation:

® FE|"*3: approximation at time point (n + 3)7.
® [i|": approximation at time point nr.

Furthermore, let us use the following abbreviation:

— 1 — —
H|n+% = 3 (Iﬂn+1 + H‘n) :

— ]_ — 1 —

B = (E|”+§ +E|”—%) .

o |
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FDTD

ﬁet h be a mesh size.
Space approximation:

1

® E"”‘i,j+%,k+%

: at point (ih, (5 + 3)h, (k + 2)h) (yz-face) .
n—l—%

Ey‘i‘l‘%,j,k-l-%

: at point ((i + 2)h, jh, (k + 1)h) (xz-face).
i
“lit3.+3,

" 1. atpoint ((i + 3)h, jh, kh) (x-edge).

Hyl}';y 1 - atpoint (ih, (5 + 2)h, kh) (y-edge).

H,|". . .:atpoint (ih, jh, (k+ 1)h) (z-edge).

L atpoint ((i + 5)h, (j + 5)h, kh) (xy-face).

® o o b ®
=

©,J,k+

o |
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FDTD

A
>
<
as R
A \
//L> HX
" BERN
< | < !
SN H |
Y Tl A
" N " ||||||
| |
I I <
s
|
HVA A |
N
T
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Staggered Grid Discretization
N

ow, the Maxwell’s equations

OE, 1 (8Hy OH, _J)
€ e

ot 0z Oy

IS discretized as follows:

i+ 5. k+3 btz kts
T
n
1 |zg—|— k+1 y‘ i,j+3.k Z|zg—|—1 k:—l—2 Z|zgkz—}—2
zy—l—é,k—l—Q h h
x|®]—|— k+2)

L‘I’he other Maxwell’s equations are discretized analogously. J
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I.osses

J has to be composed as follows:

—

J = J_l;ource + UE)

where o is the electric conductivity.
E is approximated by

DO | —

o |
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Boundary Conditions

-

|7Reﬂec;ting boundary conditions can be modeled by pure Dirichlet
boundary conditions.
Non-reflecting boundary conditions can be discretized by the Perfect
Matched Layer (PML) method. These are not Neumann boundary
conditions!

o |
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